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Abstract. We call n a cyclic number if every group of order n is cyclic. It is implicit in
work of Dickson, and explicit in work of Szele, that n is cyclic precisely when gcd(n, φ(n)) =
1. With C(x) denoting the count of cyclic n ≤ x, Erdős proved that

C(x) ∼ e−γx/ log log log x, as x→∞.
We show that C(x) has an asymptotic series expansion, in the sense of Poincaré, in
descending powers of log log log x, namely

e−γx

log log log x

(
1− γ

log log log x
+

γ2 + 1
12
π2

(log log log x)2
−
γ3 + 1

4
γπ2 + 2

3
ζ(3)

(log log log x)3
+ . . .

)
.

1. Introduction

Call the positive integer n cyclic if the cyclic group of order n is the unique group of order
n. For instance, all primes are cyclic numbers. It is implicit in work of Dickson [Dic05],
and explicit in work of Szele [Sze47], that n is cyclic precisely when gcd(n, φ(n)) = 1, where
φ(n) is Euler’s totient. (In fact, this criterion had been stated as “evident” already by
Miller in 1899 [Mil99, p. 235].) If C(x) denotes the count of cyclic numbers n ≤ x, Erdős
proved in [Erd48] that

(1) C(x) ∼ e−γx/ log log log x,

as x→∞, where γ is the Euler–Mascheroni constant. Thus, the relative frequency of cyclic
numbers decays to 0 but “with great dignity” (Shanks).

Several authors have investigated analogues of (1) for related counting functions from
enumerative group theory. See, for example, [May79, MM84, War85, Sri87, EMM87, EM88,
NS88, Sri91, NP18]. Our purpose in this note is somewhat different; we aim to refine the
formula (1). Begunts [Beg01], optimizing the method of [Erd48], showed that C(x) is given
by e−γx/ log log log x up to a multiplicative error of size 1 +O(log log log log x/ log log log x)
(the same result appears as Exercise 2 on p. 390 of [MV07]). We improve this as follows.

Theorem 1.1. The function C(x) admits an asymptotic series expansion, in the sense
of Poincaré (see [dB81, §1.5]), in descending powers of log log log x. Precisely: There is a
sequence of real numbers c1, c2, c3, . . . such that, for each fixed positive integer N and all
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large x,

C(x) =
e−γx

log log log x

(
1 +

c1
log log log x

+
c2

(log log log x)2
+ · · ·+ cN

(log log log x)N

)
+ON

(
x

(log log log x)N+2

)
.

Our proof of Theorem 1.1 yields the following explicit determination of the constants
ck. Write the Taylor series for the Γ-function, centered at 1, in the form Γ(1 + z) =
1 +C1z +C2z

2 + . . . . Then the coefficients c1, c2, . . . are determined by the formal relation

1 + c1z + c2z
2 + c3z

3 + · · · = exp(0!C1z + 1!C2z
2 + 2!C3z

3 + . . . ).

For computations of the Ck and ck, it is useful to recall that

(2) Γ(1 + z) = exp

(
−γz +

∞∑
k=2

(−1)k

k
ζ(k)zk

)
.

(This is one version of a well-known expansion for the digamma function; see, e.g., entries
5.7.3 and 5.7.4 in [OLBC10].) The first few ck are given by

c1 = −γ, c2 = γ2 +
1

2
ζ(2) = γ2 +

π2

12
, c3 = −

(
γ3 +

1

4
γπ2 +

2

3
ζ(3)

)
.

Owing to (2), each ck belongs to the ring Q[γ, ζ(2), ζ(3), . . . , ζ(k)]. From the fact that the
coefficients of log Γ(1 + z) are alternating in sign, one deduces that both the Ck and the ck
are alternating as well. Moreover,

|ck| ≥ (k − 1)!|Ck| ≥ (k − 1)!ζ(k)/k ≥ (k − 1)!/k

for each k ≥ 2. It follows that the series 1 + c1/ log log log x + c2/(log log log x)2 + . . . is
purely an asymptotic series, in that it diverges for all values of x.

The proof of Theorem 1.1 has many ingredients in common with the related work cited
above (see also [PP, Pol]). But we must be more careful about error terms than in earlier
papers, and somewhat delicate bookkeeping is required to wind up with a clean result.

Notation. The letters p and q, with subscripts or other decorations, are reserved for primes.
We use K0,K1,K2, etc. for absolute positive constants. To save space, we write logk for
the kth iterate of the natural logarithm.

2. Lemmata

We will use Mertens’ theorem in the following form, which is a consequence of the prime
number theorem with the classical x exp(−K0

√
log x) error estimate of de la Vallée Poussin.

Lemma 2.1. There is an absolute constant c such that, for all X ≥ 3,∑
p≤X

1

p
= log2X + c+O(exp(−K1

√
logX)).

Moreover, for all X ≥ 3,∏
p≤X

(
1− 1

p

)
=

e−γ

logX

(
1 +O(exp(−K2

√
logX))

)
.
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The following sieve result is a special case of [HR74, Theorem 7.2].

Lemma 2.2. Suppose that X ≥ Z ≥ 3. Let P be a set of primes not exceeding Z. The
number of n ≤ X coprime to all elements of P is

X
∏
p∈P

(
1− 1

p

)(
1 +O

(
exp

(
−1

2

logX

logZ

)))
.

The final estimate of this section was proved independently by Pomerance (see Remark 1 of
[Pom77]) and Norton (see the Lemma on p. 699 of [Nor76]).

Lemma 2.3. For every positive integer m and every X ≥ 3,∑
p≤X

p≡ 1z (mod m)

1

p
=

log2X

φ(m)
+O

(
log (2m)

φ(m)

)
.

3. Proof of Theorem 1.1

3.1. Outline. We summarize the strategy of the proof, deferring the more intricate calcu-
lations to later sections. Put

y =
log2 x

2 log3 x
and z = (log2 x) · exp(

√
log3 x).

Let us call a prime p dividing n a standard divisor of gcd(n, φ(n)) if there is a prime

q ≤ x1/ log2 x dividing n with q ≡ 1 (mod p). Clearly, each standard divisor of (n, φ(n)) is a
divisor of gcd(n, φ(n)).

Let S0 be the set of n ≤ x with no prime factor in [2, y]. For each positive integer k, let Sk
be the set of n ∈ S0 having exactly k distinct prime factors from the interval (y, z], all of
which divide n to the first power only, and at least one of which is a standard divisor of
gcd(n, φ(n)). We will estimate C(x) by

(3) #

S0 \ ⋃
1≤k≤log3 x

Sk

 = #S0 −
∑

1≤k≤log3 x
#Sk.

Suppose n is counted by C(x) but not by (3). Then n has a prime factor p ≤ y. Since n is
counted by C(x), it must be that p - φ(n), so that n is not divisible by any q ≡ 1 (mod p).
By Lemma 2.2, for a given p the number of those n ≤ x is� x

∏
q≤x, q≡1 (mod p)(1− 1/q) ≤

x exp(−
∑

q≤x, q≡1 (mod p) 1/q). And by Lemma 2.3,∑
q≤x

q≡1 (mod p)

1

q
=

1

p− 1
log2 x+O(1) ≥ 2 log3 x+O(1).

Thus, the number of n corresponding to a given p is � x exp(−2 log3 x) = x/(log2 x)2.
Summing on p ≤ y, we deduce that the total number of n counted by C(x) but not (3) is
O(x/ log2 x).

Working from the opposite side, suppose that n is counted by (3) but not by C(x). Then
at least one of the following holds:
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(i) there is a prime p > y for which p2 | n,
(ii) there is a prime p > z that divides n and φ(n),

(iii) there is a prime p in (y, z] dividing n and a prime q ≡ 1 (mod p) dividing n with

q > x1/ log2 x,
(iv) n has more than log3 x different prime factors in (y, z].

The number of n ≤ x for which (i) holds is � x
∑

p>y 1/p2 � x/y log y � x/ log2 x. In

order for (ii) to hold but (i) to fail, there must be a prime q ≡ 1 (mod p) dividing n. Clearly,
there are most x/pq such n corresponding to a given p, q. Thus, the number of n that arise
this way is

� x
∑
p>z

1

p

∑
q≤x

q≡1 (mod p)

1

q
� x

∑
p>z

log2 x+ log p

p2
� x log2 x

z
=

x

exp(
√

log3 x)
.

For similar reasons, the number of n ≤ x for which (iii) holds is

� x
∑
y<p≤z

1

p

∑
x1/ log2 x<q≤x
q≡1 (mod p)

1

q
� x

∑
p>y

log3 x

p2
� x

log3 x

log2 x
.

To handle (iv), observe that
∑

y<p≤z 1/p ≤ K3/
√

log3 x < 1/2 for large values of x. Thus,

the number of n ≤ x for which (iv) holds is (crudely) at most

x
∑

k>log3 x

( ∑
y<p≤z

1/p

)k
≤ 2x(K3/

√
log3 x)log3 x ≤ x/ log2 x.

Collecting estimates, we conclude that

C(x) = #

S0 \ ⋃
1≤k≤log3 x

Sk

+O(x/ exp(
√

log3 x)).

Since the error term is ON (x/(log3 x)N+2) for any fixed N , for the sake of proving Theorem
1.1 we may replace C(x) by #(S0 \

⋃
1≤k≤log3 x Sk).

In §3.2 we prove suitable estimates for the numbers #Sk and in §3.3 we tie everything
together and complete the proof of Theorem 1.1.

3.2. Estimating #Sk. The case k = 0 is easy to dispense with. By Lemmas 2.1 and 2.2,

(4) #S0 = e−γ
x

log y
+O(x/ exp(K4

√
log3 x)).

Now suppose that 1 ≤ k ≤ log3 x. In order for the integer n ≤ x to belong to Sk, it is
sufficient than n = p1 · · · pkm where

(a) p1, . . . , pk are distinct primes belonging to (y, z],
(b) the integer m is free of prime factors in [2, z], and

(c) m has a prime factor q ≤ x1/ log2 x with q ≡ 1 (mod pi) for some i = 1, 2, . . . , k.
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Moreover, these conditions are close to necessary: If n belongs to Sk but does not satisfy all
of (a)–(c), then n is divisible by some product pp′ where p, p′ ∈ (y, z] with p′ ≡ 1 (mod p).
Writing p′ = pt+ 1, where t < z/y, we see that the number of such n ≤ x is at most

∑
p∈(y,z]

∑
t<z/y

x

p(pt+ 1)
< x

∑
p>y

1

p2

∑
t<z/y

1

t
�

x
√

log3 x

log2 x
.

Thus, #Sk is given by the count of n ≤ x satisfying (a)–(c), up to an error term of

O(x
√

log3 x/ log2 x).

Now fix distinct primes p1, . . . , pk ∈ (y, z]. We will count the number of n ≤ x for which
(a)–(c) hold with p1, . . . , pk the prime divisors of n in (y, z]. To get at this, we count all
n = p1 . . . pkm ≤ x where condition (b) holds and then subtract the contribution from n
for which (b) holds but (c) fails. By Lemma 2.2, this is approximately

(5)
x

p1 · · · pk

∏
p≤z

(
1− 1

p

)(
1−

∏
z<q≤x1/ log2 x

q≡1 (mod pi) for some i

(
1− 1

q

))
.

In fact, taking X = x/p1 · · · pk (which exceeds x1/2) and Z = x1/ log log x in Lemma 2.2, we
see that the error in this approximation is (very crudely) bounded by O(x/(p1 . . . pk log2 x)).

Now we replace
∏
p≤z(1− 1/p) in (5) with e−γ/ log z. This introduces another error of size

x/(p1 · · · pk exp(K5

√
log3 x)).

It remains to estimate the product over q in (5). We have that

∏
z<q≤x1/ log2 x

q≡1 (mod pi) for some i

(
1− 1

q

)
= exp

(
−

∑
z<q≤x1/ log2 x

q≡1 (mod pi) for some i

1

q
+O

(∑
q>z

1

q2

))

= exp

(
−

∑
z<q≤x1/ log2 x

q≡1 (mod pi) for some i

1

q

)
(1 +O(1/z)).

Continuing, we observe that

∑
z<q≤x1/ log2 x

q≡1 (mod pi) for some i

1

q
=

k∑
i=1

∑
z<q≤x1/ log2 x

q≡1 (mod pi)

1

q
+O

( ∑
1≤i<j≤k

∑
z<q≤x1/ log2 x

q≡1 (mod pipj)

1

q

)
,

and that the O-term here is

�
∑

1≤i<j≤k

log2 x

pipj
�
(
k

2

)
(log3 x)2

log2 x
� (log3 x)4

log2 x
.
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Moreover,

k∑
i=1

∑
z<q≤x1/ log2 x

q≡1 (mod pi)

1

q
=

k∑
i=1

(
log2 x

pi − 1
+O

(
log3 x

pi

))

=
k∑
i=1

log2 x

pi
+O

(
k

(log3 x)2

log2 x

)
=

k∑
i=1

log2 x

pi
+O

(
(log3 x)3

log2 x

)
.

Therefore, ∏
z<q≤x1/ log2 x

q≡1 (mod pi) for some i

(
1− 1

q

)
=

(
k∏
i=1

exp

(
− log2 x

pi

))(
1 +O

(
(log3 x)4

log2 x

))

=
k∏
i=1

exp

(
− log2 x

pi

)
+O

(
(log3 x)4

log2 x

)
.

Now collect estimates. We find that the number of n ≤ x satisfying (a)–(c) where p1, . . . , pk
are the prime divisors of n from (y, z] is

(6) x
e−γ

log z

(
1

p1 · · · pk
−

k∏
i=1

exp(−(log2 x)/pi)

pi

)
+O

(
x

p1 · · · pk exp(K5

√
log3 x)

)
.

Finally, we sum (6) over all sets of distinct primes p1, . . . , pk ∈ (y, z]. The O-terms contribute

O(x/ exp(K5

√
log3 x)). Next we look at the contribution from the 1/p1 · · · pk terms. On

the one hand, the multinomial theorem immediately implies that∑
y<p1<p2<···<pk≤z

1

p1 · · · pk
≤ 1

k!
σk0 , where σ0 :=

∑
y<p≤z

1

p
.

(We have σ0 � 1/
√

log3 x for large x by Mertens’ theorem.) On the other hand,∑
p1,...,pk∈(y,z]

distinct

1

p1 · · · pk
=

∑
p1,...,pk−1∈(y,z]

distinct

1

p1 · · · pk−1

∑
y<pk≤z

pk /∈{p1,...,pk−1}

1

pk

≥
(
σ0 −

k − 1

y

) ∑
p1,...,pk−1∈(y,z]

distinct

1

p1 · · · pk−1
.

We can estimate the sum over p1, . . . , pk−1 in a similar way. Iterating, we find that∑
p1,...,pk∈(y,z]

distinct

1

p1 · · · pk
≥

k−1∏
i=0

(
σ0 −

i

y

)
≥
(
σ0 −

2(log3 x)2

log2 x

)k
,

so that ∑
y<p1<p2<···<pk≤z

1

p1 · · · pk
≥ 1

k!

(
σ0 −

2(log3 x)2

log2 x

)k
.
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Combining the upper and lower bounds,∑
y<p1<p2<···<pk≤z

1

p1 · · · pk
=

1

k!
σk0

(
1 +O

(
(log3 x)3

log2 x

))k
=

1

k!
σk0 +O

(
1

k!

(log3 x)4

log2 x

)
.

The contribution from the terms of the form
∏k
i=1 exp(−(log2 x)/pi)/pi can be handled

similarly. Put

σ1 :=
∑
y<p≤z

exp(−(log2 x)/p)

p
.

Clearly, σ1 ≤
∑

y<p≤z 1/p� 1/
√

log3 x. Since exp(−(log2 x)/p)� 1 when p ≥ log2 x, we

also have that σ1 �
∑

log2 x<p≤z 1/p� 1/
√

log3 x. Now a computation completely parallel

to the one shown above yields∑
y<p1<p2<···<pk≤z

k∏
i=1

exp(−(log2 x)/pi)

pi
=

1

k!
σk1 +O

(
1

k!

(log3 x)4

log2 x

)
.

Piecing together all of our estimates, we conclude that

(7) #Sk = e−γ
x

log z

(
σk0
k!
− σk1
k!

)
+O

(
x

exp(K5

√
log3 x)

+
x

k!

(log3 x)4

log2 x

)
.

3.3. Denouement. Summing (7) over positive integers k ≤ log3 x, keeping in mind that

σ0, σ1 � 1/
√

log3 x, we find that∑
1≤k≤log3 x

#Sk = e−γ
x

log z
(exp(σ0)− exp(σ1)) +O

(
x

exp(K6

√
log3 x)

)
.

By Mertens’ theorem, exp(σ0) = log z
log y

(
1 +O(1/ exp(K7

√
log3 x))

)
. So recalling (4),

#S0 −
∑

1≤k≤log3 x
#Sk = e−γ

x

log z
exp(σ1) +O(x/ exp(K8

√
log3 x)).

By another application of the prime number theorem with the de la Vallée Poussin error
term,

σ1 =

∫ z

y

exp(−(log2 x)/t)

t log t
dθ(t) =

∫ z

y

exp(−(log2 x)/t)

t log t
dt+O(1/ exp(K9

√
log3 x)),

and thus
(8)

#S0 −
∑

1≤k≤log3 x
#Sk = e−γ

x

log z
exp

(∫ z

y

exp(−(log2 x)/t)

t log t
dt

)
+O(x/ exp(K10

√
log3 x)).

We proceed to analyze the integral appearing in this last estimate. Making the change of
variables u = (log2 x)/t,∫ z

y

exp(−(log2 x)/t)

t log t
dt =

1

log3 x

∫ 2 log3 x

(log2 x)/z

exp(−u)

u

(
1− log u

log3 x

)−1
du.
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Here (log2 x)/z = exp(−
√

log3 x). Inside the domain of integration, log u�
√

log3 x, and
so for each fixed positive integer M ,

(
1− log u

log3 x

)−1
= 1 +

(
log u

log3 x

)
+

(
log u

log3 x

)2

+ · · ·+
(

log u

log3 x

)M
+OM ((log3 x)−(M+1)/2).

Thus,

1

log3 x

∫ 2 log3 x

(log2 x)/z

exp(−u)

u

(
1− log u

log3 x

)−1
du

=
M∑
k=0

1

(log3 x)k+1

∫ 2 log3 x

(log2 x)/z

exp(−u)

u
logk u du

+O

(
1

(log3 x)(M+3)/2

∫ 2 log3 x

(log2 x)/z

exp(−u)

u
du

)
.

The O-term here is � (log3 x)−
1
2
(M+3)

∫ 2 log3 x
(log2 x)/z

du/u � (log3 x)−1−
1
2
M . To handle the

main term, we integrate by parts to find that

∫ 2 log3 x

(log2 x)/z

exp(−u)

u
logk u du = exp(−u)

logk+1 u

k + 1

∣∣∣∣∣
u=2 log3 x

u=(log2 x)/z

+
1

k + 1

∫ 2 log3 x

(log2 x)/z
exp(−u) logk+1 u du.

For each 0 ≤ k ≤M , and all large x,

exp(−u)
logk+1 u

k + 1

∣∣∣∣∣
u=2 log3 x

u=(log2 x)/z

=
−1

k + 1

(
log

(
log2 x

z

))k+1

+OM (1/ exp(K11

√
log3 x)),

while

1

k + 1

∫ 2 log3 x

(log2 x)/z
exp(−u) logk+1 u du

=
1

k + 1

∫ ∞
0

exp(−u) logk+1 u du+OM (1/ exp(K12

√
log3 x))

=
1

k + 1
Γ(k+1)(1) +OM (1/ exp(K12

√
log3 x))

= k!Ck+1 +OM (1/ exp(K12

√
log3 x)).
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Assembling our results,∫ z

y

exp(−(log2 x)/t)

t log t
dt

= −
M∑
k=0

1

k + 1

(
log((log2 x)/z)

log3 x

)k+1

+

M∑
k=0

k!Ck+1

(log3 x)k+1
+OM ((log3 x)−1−

1
2
M )

= log

(
1− log((log2 x)/z)

log3 x

)
+

M∑
k=0

k!Ck+1

(log3 x)k+1
+OM ((log3 x)−1−

1
2
M )

= log
log z

log3 x
+

M∑
k=0

k!Ck+1

(log3 x)k+1
+OM ((log3 x)−1−

1
2
M ).

We now choose M = 2N , where N is as in Theorem 1.1. In the last displayed sum on k, the
terms of the sum with k ≥ N may be absorbed into the error. Doing so and exponentiating,

exp

(∫ z

y

exp(−(log2 x)/t)

t log t
dt

)

=
log z

log3 x
exp

 ∑
1≤k≤N

(k − 1)!Ck
(log3 x)k

(1 +ON ((log3 x)−1−N )
)
,

so that

e−γ
x

log z
exp

(∫ z

y

exp(−(log2 x)/t)

t log t
dt

)

= e−γ
x

log3 x
exp

 ∑
1≤k≤N

(k − 1)!Ck
(log3 x)k

(1 +ON ((log3 x)−1−N )
)

= e−γ
x

log3 x
exp

 ∑
1≤k≤N

(k − 1)!Ck
(log3 x)k

+ON (x(log3 x)−2−N ).

This expression describes #(S0 \
⋃

1≤k≤log3 x Sk), by (8), and so also describes C(x), by

the discussion in §3.1. Theorem 1.1 follows, along with the description of the constants ck
appearing in the introduction.
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