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Tao has shown that in any fixed base, a positive proportion of prime numbers
cannot have any digit changed and remain prime. In other words, most primes
are “digitally delicate”. We strengthen this result in a manner suggested by Tao:
A positive proportion of primes become composite under any change of a single
digit and any insertion a fixed number of arbitrary digits at the beginning or end.

1 Introduction

In a short note published in 2008, Tao [11] proved the following theorem:

Theorem 1.1. Let K ≥ 2 be an integer. For all sufficiently large integers N , the number
of primes p between N and (1 + 1/K)N such that |kp + jai| is composite for all integers
1 ≤ a, |j|, k ≤ K and 0 ≤ i ≤ K logN is at least cK

N
logN for some constant cK > 0 depending

on only K.

The following consequence is immediate, in view of the prime number theorem (or Cheby-
shev’s weaker estimates).

Corollary 1.2. Fix a base a ≥ 2. A positive proportion of prime numbers become composite
if any single digit in their base a expansion is altered.

The infinitude of the primes appearing in Corollary 1.2 had earlier been shown by Erdős
[2]. (He assumes a = 10 but the argument generalizes in an obvious way.) When a = 10,
these “digitally delicate” primes are tabulated as sequence A050249 in the OEIS, where they
are called “weakly prime”.

At the conclusion of [11], Tao suggests a few ways his result could possibly be improved.
In this paper we establish one of the suggested generalizations:

Theorem 1.3. Fix an integer K ≥ 2. There is a constant cK > 0 such that the following
holds for all sufficiently large N : Let SN ⊆ [−KN,KN ] be an arbitrary set of integers of
cardinality at most K. Let KN be the number of primes N ≤ p ≤ (1 + 1/K)N such that
|kp+ jai + s| is either equal to p or composite for all combinations of integers a, i, j, k, and s
where 1 ≤ a, |j|, k ≤ K, 0 ≤ i ≤ K logN , and s ∈ SN . Then KN ≥ cK N

logN .

This immediately yields the following strengthening of Corollary 1.2.
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Corollary 1.4. In any fixed base, a positive proportion of prime numbers become composite
if one modifies any single digit and appends a bounded number of digits at the beginning or
end.

As in Tao’s work, the key idea of the proof is to use a partial covering along with an upper
bound sieve. The following well-known estimate plays a critical role (see [5, Theorem 2.2, p
68], [11, Corollary A.2]).

Lemma 1.5 (Brun/Selberg upper bound). Let W and b be positive integers and let k and h
be non-zero integers. If x is sufficiently large (depending on W and b), the number of primes
m ≤ x where m ≡ b (mod W ) and |km+ h| is also prime is

�k
x

W (log x)2

(∏
p|W

(
1− 1

p

)−2)(∏
p|h
p-W

(
1− 1

p

)−1)
,

where the products are restricted to prime numbers p.

Whenever Lemma 1.5 is applied in Tao’s proof of Theorem 1.1, the product over p dividing h
is uniformly bounded. However, to prove Theorem 1.3, we must deal with cases where that
product can be very large. To work around this, we show that such cases arise very rarely, so
rarely that this product is bounded in a suitable average sense. To establish this, we need
to invoke a classical theorem of Romanoff [8] about multiplicative orders, which originally
appeared in his work on numbers of the form p+ 2k. (Actually we use a slightly strengthened
form of Romanoff’s result due to Erdős [1].)

We would like to draw the interested reader’s attention to the work reported on in [3], [7],
and [4], which also concerns problems connected with primality and digital expansions.

Notation

We write � - n to indicate that n is squarefree. The letter p always denotes a prime. For a
given integer n we use P (n) to denote the largest prime divisor of n and ω(n) for the number
of distinct prime factors of n. For a given integer a, we write `a(d) for the multiplicative
order of a modulo d. This notation reflects the importance in our analysis of considering
`a(d) primarily as a function of d rather than as a function of a.

We use f = O(g), or f � g, to mean that |f | ≤ Cg for a suitable constant C. We use
f � g synonymously with g � f . If f � g � f , we write f � g. We use f = o(g) to mean
lim f/g = 0 as N →∞, holding other variables constant.

In what follows, implied constants may depend on K. Any further dependence (or
independence) will be specified explicitly.

2 Proof of Theorem 1.3

2.1 A selective search

We will confine our search for “digitally delicate” primes to primes lying in a certain conve-
niently chosen invertible residue class b mod W . Here b mod W plays the same role for us as
in Tao’s paper [11]: It is selected so that whenever p ≡ b (mod W ) is prime, |kp+ jai + s|
has a known prime factor for the vast majority of choices of a, i, j, k, and s (as made precise
in (3) below). For the remaining choices of a, i, j, k, and s, the upper bound sieve provides
sufficient control on the number of p with |kp+ jai + s| prime.

To specify the residue class b mod W , we will require the use of a handful primes, determined
by K and an integer M ≥ K.
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Lemma 2.1. Let K ≥ 2 be an integer and let M ≥ K also be an integer. There is a set P
that is the disjoint union of sets P =

⋃K
a=2 Pa, where for each 2 ≤ a ≤ K, Pa is a finite set

of primes such that:

(i) for all p ∈ Pa, we have qp := P (ap − 1) > K,

(ii) the primes qp are distinct for distinct p ∈ P,

(iii)
∑
p∈Pa

1

p
≥M .

Proof. According to a theorem of Stewart [9, Theorem 1], P (ap − 1)� p log p for all primes
p and all 2 ≤ a ≤ K. (See [10] for a more recent, much stronger estimate.) Keeping this
mind, we construct the sets Pa inductively. Given an integer a with 2 ≤ a ≤ K, assume that
the sets Pn have been constructed for all integers 2 ≤ n < a.

We construct Pa as follows. By Stewart’s result, we can pick p0 so that whenever p > p0,
we have P (ap − 1) larger than K and larger than any element of qp′ for p′ ∈

⋃
2≤n<a Pn. As

p runs through the consecutive primes succeeding p0, the numbers P (ap − 1) are distinct,
since the order of a modulo P (ap − 1) is precisely p. So we can construct Pa as the set of the
first several consecutive primes exceeding p0. Here “first several” means that we continue
adding primes to Pa until (iii) holds. This is possible due to the divergence of

∑
p 1/p when

p is taken over all primes.

We now set
W =

∏
p∈P

qp.

Observe that from Stewart’s theorem quoted above,∑
p|W

1

p
=
∑
p∈P

1

qp
�
∑
p

1

p log p
= O(1); (1)

here the final estimate follows, for example, by partial summation along with the prime
number theorem.

Assume M is sufficiently large in terms of K. Then we can partition each Pa into disjoint
sets Pa,j,k,s such that

Pa =
⋃

1≤|j|≤K

K⋃
k=1

⋃
s∈SN

Pa,j,k,s

and for each Pa,j,k,s we have ∑
p∈Pa,j,k,s

1

p
�M. (2)

(Recall that by our convention, implied constants may depend on K.)
We now make our choice of residue class b mod W . Suppose 2 ≤ a ≤ K, 1 ≤ |j|, k ≤ K,

and s ∈ SN . Let p ∈ Pa,j,k,s. Since qp > K ≥ k, we know that k−1 exists modulo qp.
Moreover, at least one of the two residue classes k−1(j + s) mod qp or k−1(ja+ s) mod qp is
invertible. Pick one, and say it is bp mod W . We determine b mod W as the solution to the
simultaneous congruences

b ≡ −bp (mod qp) for all p ∈ P.

Note that b mod W is indeed a coprime residue class.
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2.2 Some initial reductions

In what follows, we will always assume N is sufficiently large in terms of fixed parameters M
and K. (Ultimately, M will be chosen sufficiently large in terms of K.) Let

QN := #{m ∈ [N, (1 +
1

K
)N ] : m ≡ b (mod W ), m prime}.

By the prime number theorem for arithmetic progressions,

QN �
N

φ(W ) logN
.

We would like to show that the same lower bound holds even after removing from our
count those m having |km + jai + s| noncomposite (and 6= p) for some 1 ≤ a, |j|, k ≤ K,
0 ≤ i ≤ K logN , and s ∈ SN .

We first dispense with those cases when |km+ jai + s| is noncomposite in virtue of having
|km+ jai + s| ≤ 1. Let

E := #{m ∈ [N, (1 +
1

K
)N ] : m ≡ b (mod W ), m prime,

|km+ jai + s| ≤ 1 for some value of a, i, j, k, s}

A given combination of a, i, j, k, and s can contribute only O(1) elements m to E, so we have
E � logN . This bound is clearly o(QN ), and so is negligible for us.

It remains to discard those m having |km+ jai + s| prime (and 6= m) for some a, i, j, k, s
as above. We may assume jai + s 6= 0. Otherwise |km| is prime, forcing k = 1 and
|km+ jai + s| = m, contrary to hypothesis.

The next easiest series of cases correspond to a = 1. In these cases, |km+ j + s| is prime
(and 6= m) for some 1 ≤ |j|, k ≤ K and s ∈ SN . Given j, k, and s, the number of m we must
discard here is, by Lemma 1.5,

� N

W (logN)2

∏
p|W

(
1− 1

p

)−2 ∏
p|j+s

(
1− 1

p

)−1 .

From (1), the product on p dividing W is O(1). Since 0 < |j + s| ≤ K(1 +N), the product
on p dividing j + s cannot exceed O(log logN); see [6, Theorem 328, p. 352]. Summing on
the O(1) possibilities for j, k, s, we see we must discard a total of

� 1

W

N log logN

(logN)2

primes m from these cases. This is o(QN ).
Naturally, the heart of the proof is the consideration of those cases when a ≥ 2. Let

QN,a,i,j,k,s := #{m ∈ [N, (1 +
1

K
)N ] : m ≡ b (mod W ),

m prime, and |km+ jai + s| prime and 6= m}.

In the next section, we will show that

K∑
a=2

∑
0≤i≤K logN

∑
1≤|j|≤K

K∑
k=1

∑
s∈SN

QN,a,i,j,k,s �
N

W logN
exp(−1

2
θKM) (3)

for a certain constant θK > 0. Fixing M sufficiently large in terms of K, we see that these
values of a force us to discard at most (say) 1

2QN primes.
Collecting the above estimates, we find that there are � QN � N/ logN remaining primes

m, all of which are digitally delicate in the strong sense of Theorem 1.3.
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2.3 Detailed counting

In this section, we establish the claimed upper bound on

K∑
a=2

∑
0≤i≤K logN

∑
1≤|j|≤K

K∑
k=1

∑
s∈SN

QN,a,i,j,k,s.

We first handle the sum on i. For now treat a, j, k, and s as fixed and consider∑
0≤i≤K logN

QN,a,i,j,k,s. (4)

Because of our careful choice of b, either kb+ j+ s ≡ 0 (mod qp), or kb+ ja+ s ≡ 0 (mod qp)
for all our p ∈ Pa,j,k,s. In the former case, if i ≡ 0 (mod p) for some p ∈ Pa,j,k,s, then
qp | kb+ jai + s. In the latter case, the same divisibility holds instead when i ≡ 1 (mod p).
(To see these results, recall that ap ≡ 1 (mod qp), by the choice of qp.) If qp | kb+ jai + s
then at most two values of m for a given a, i, j, k, and s can have |km+ jai + s| prime: those
where |km+ jai + s| = qp. So the number of m contributed to (4) in this way is O(logN).

We thus focus on the remaining values of i. Let

I := {0 ≤ i ≤ K logN : for all p ∈ Pa,j,k,s, qp - kb+ jai + s},

where I is understood to depend on the given a, j, k, and s. The condition that qp - kb+jai+s
sieves out either those i ≡ 0 (mod p) or those i ≡ 1 (mod p). Hence, the Chinese remainder
theorem along with inclusion-exclusion yields

#I �

 ∏
p∈Pa,j,k,s

(
1− 1

p

) logN. (5)

Moreover, ∑
0≤i≤K logN

QN,a,i,j,k,s � logN +
∑
i∈I

QN,a,i,j,k,s. (6)

Whenever jai + s = 0, the quantity QN,a,i,j,k,s vanishes, and so the final sum on i can be
restricted to those values with jai + s 6= 0. By another application of Lemma 1.5, as long as
jai + s 6= 0,

QN,a,i,j,k,s �
N

W (logN)2

∏
p|jai+s

(
1− 1

p

)−1
. (7)

(We omitted the product over p dividing W here, since (1) shows that product is � 1.)
Controlling the contribution from the product terms in (7) requires some care, and this is
the main novelty of the paper. (The corresponding product in Tao’s work [11] is only over p
dividing jai, and so is trivially O(1).) To this end, we apply the Cauchy–Schwarz inequality
to deduce that

∑
i∈I

jai+s 6=0

∏
p|jai+s

(
1− 1

p

)−1
≤

(∑
i∈I

1

)1/2( ∑
0≤i≤K logN

jai+s 6=0

∏
p|jai+s

(
1− 1

p

)−2)1/2

. (8)

The first right-hand sum simply counts the number of i ∈ I, and so from (2) and (5),

∑
i∈I

1 = #I �

 ∏
p∈Pa,j,k,s

(
1− 1

p

) logN � exp(−θKM) · logN, (9)
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for a constant θK > 0. To estimate the second sum of (8), we begin by observing that
(1− 1

p)−2 = (1 + 2
p)(1 + 3p−2

p3−3p+2
), and that

∏
p

(
1 +

3p− 2

p3 − 3p+ 2

)
≤ exp

(∑
p

3p− 2

p3 − 3p+ 2

)
<∞,

where the products and sums are over all primes p. Thus,

∏
p|jai+s

(
1− 1

p

)−2
�

∏
p|jai+s

(
1 +

2

p

)
.

We claim that truncating the last product to primes p ≤ logN will not change its magnitude.
To see this, observe that∏

p|jai+s
p>logN

(
1 +

2

p

)
≤ exp

(
2

logN

∑
p|jai+s
p>logN

1

)
≤ exp

(
2

logN

log |jai + s|
log logN

)
.

Put Z := K ·KK logN +KN . Since |jai +s| ≤ |j|ai + |s| ≤ Z, we have log |jai + s| ≤ logZ �
logN , and so final expression in the preceding display is O(1). Consequently,∏

p|jai+s

(
1 +

2

p

)
�

∏
p|jai+s
p≤logN

(
1 +

2

p

)
,

as claimed. Now rewrite ∏
p|jai+s
p≤logN

(
1 +

2

p

)
=

∑
d|jai+s

p|d⇒p≤logN
�-d

2ω(d)

d
.

Assembling the above, we can estimate the second sum in (8) as follows:

∑
0≤i≤K logN

jai+s 6=0

∏
p|jai+s

(
1− 1

p

)−2
�

∑
0≤i≤K logN

jai+s 6=0

∑
d|jai+s

p|d⇒p≤logN
�-d

2ω(d)

d

�
∑
d≤Z

p|d⇒p≤logN
�-d

2ω(d)

d

∑
0≤i≤K logN

d|jai+s

1.

Suppose i ≥ 1 is such that d | jai + s. Defining Bd := gcd(d, ja), and keeping in mind that d
is squarefree, we find that

gcd(d, s) = gcd(d, jai) = gcd(d, ja) = Bd, (10)

and
ja

Bd
· ai−1 ≡ − s

Bd
(mod

d

Bd
).
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This congruence, along with (10), shows that ai−1 belongs to a uniquely determined coprime
residue class modulo d/Bd. Thus, i belongs to a fixed residue class modulo `a(d/Bd), and so

∑
d≤Z

p|d⇒p≤logN
�-d

2ω(d)

d

∑
0≤i≤K logN

jai≡−s (mod d)

1�
∑
d≤Z

p|d⇒p≤logN
�-d

2ω(d)

d

K logN

`a

(
d
Bd

) + 1



� logN
∑
d∈N

(d/Bd,a)=1

2ω(d)

d · `a
(

d
Bd

) +
∑
d≤Z

p|d⇒p≤logN
�-d

2ω(d)

d
. (11)

To handle the first right-hand sum, write d = Bdd
′. Since Bd | ja,∑

d∈N
(a,d/Bd)=1

2ω(d)

d · `a
(

d
Bd

) ≤∑
B|ja

∑
d′∈N

(a,d′)=1

2ω(Bd′)

Bd′ · `a(d′)
≤
∑
B|ja

2ω(B)

B

∑
d′∈N

(a,d′)=1

2ω(d
′)

d′ · `a(d′)
,

due to the complete subadditivity of ω. Erdős has proven a strengthening of Romanoff’s
theorem [1, see Lemma 2, p. 417] saying that for any two positive integers A and S, the series∑

n∈N
(n,A)=1

Sω(n)

n · `A(n)

is convergent. Taking n = d′, A = a, and S = 2, and noting that a, j, and B are all O(1), we
see that the first of the two summands in (11) is O(logN).

To deal with the second summand of (11), we reverse a previous step and rewrite

∑
d≤Z

p|d⇒p≤logN
�-d

2ω(d)

d
=

∏
p≤logN

(
1 +

2

p

)
≤

 ∏
p≤logN

(
1− 1

p

)−12

.

By Mertens’ Theorem (see [6, Theorem 429, p. 466]), the final expression is O((log logN)2),
which is certainly O(logN). Hence,

∑
0≤i≤K logN

jai+s 6=0

∏
p|jai+s

(
1− 1

p

)−2
� logN.

Substituting this estimate and (9) into (8),

∑
i∈I

jai+s 6=0

∏
p|jai+s

(
1− 1

p

)−1
� logN · exp

(
−1

2
θKM

)
.

We now deduce from (6) that∑
0≤i≤K logN

QN,a,i,j,k,s �
N

W logN
exp

(
−1

2
θKM

)
.

Finally, summing over the O(1) possibilities for a, j, k, and s yields (3) and so completes the
proof.
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