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In the title article, the author leaves to the reader the task of showing that
the abundancy function h : S → R̂ = R ∪ {∞} is continuous. As noted by
Richard Stone, this claim is in fact false! For example, if Nk =

∏
p>k p, then

Nk → 1 in the supernatural topology; on the other hand, each h(Nk) = ∞
(since the sum of the reciprocals of the primes diverges) while h(1) = 1.

The following result should be substituted in place of the erroneous claim
above. For each natural number B, let S B denote the set of supernatural
numbers N whose support has size bounded by B.

Proposition. For each B, the set S B is a closed subset of S . Moreover, the
restriction of h to S B defines a continuous function to R̂.

From the first half of the proposition, we see that if Ni is any convergent
sequence in S B with limit N , then N ∈ S B ; we then deduce from the second
half that h(Ni) → h(N). These results suffice for all of the applications given
in the paper, and allow their proofs to remain essentially unchanged.

Before we prove the proposition, we introduce a convenient decomposition
of the function h. Suppose that y > 1. If M is a supernatural number, say
M =

∏
p p

ep , we set

hy(M) =
∏
p<y

h(pep), and hy(M) =
∏
p≥y

h(pep).

Then for every M ∈ S , we have

h(M) = hy(M)hy(M).

Moreover, if M ∈ S B , then

1 ≤ hy(M) =
∏
p≥y

h(pep) ≤
∏
p≥y
p|M

p

p− 1
≤
(

1 +
1

y − 1

)B

. (1)

In particular, taking y = 2, we see that h is bounded on S B .

Lemma. For each choice of y, the function hy : S → R̂ is continuous.
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For all of the proofs given below, we take advantage of the fact that S is
metrizable, being a countable product of metrizable spaces. (To see the last

claim, first observe that R̂ is homeomorphic to the circle, and so N̂ can be
thought of as a subset of the circle.) So for instance, in proofs of continuity we
may use the “convergent sequence” characterization.

Proof of the lemma. If Ni → N , then vp(Ni) → vp(N) for each prime p. We
may deduce from this that for every prime p, we have h(pvp(Ni)) → h(pvp(N)).
Indeed, this last assertion is clear if vp(N) < ∞, since in that case vp(Ni) =
vp(N) for all large i. On the other hand, if vp(N) =∞, then vp(Ni)→∞, and
so here too we have

h(pvp(Ni)) =
∑

0≤j≤vp(Ni)

p−j → p

p− 1
= h(pvp(N)).

Since there are finitely many primes p < y, we conclude that

hy(Ni) =
∏
p<y

h(pvp(Ni))→
∏
p<y

h(pvp(N)) = hy(N).

This completes the proof.

Proof of the proposition. First we prove that S B is closed. Each element N of
the closure of S B is the limit of a sequence of points Ni ∈ S B . Supposing for
the sake of contradiction that N is supported on more than B primes, choose
primes p1, . . . , pB+1 dividing N . Since vp(Ni) → vp(N) for each p, it must be
that p1 · · · pB+1 | Ni for all large i, contradicting that Ni ∈ S B . Next, we show
continuity of h|S B . Let {Ni}∞i=1 be a sequence of points of S B converging to
N ∈ S B . Fix any ε > 0. For each y, we can write

h(Ni)/h(N) =
hy(Ni)

hy(N)
· h

y(Ni)

hy(N)
. (2)

Applying (1) with M = N and M = Ni, we see that the second right-hand
factor belongs to the interval (1 − ε, 1 + ε) for large enough y, depending only
on B and ε. Now fix such a y. By the lemma, the first right-hand factor in (2)
tends to 1 as i→∞. (We use here that hy(N) <∞.) Thus,

1− ε ≤ lim inf
i→∞

h(Ni)/h(N) ≤ lim sup
i→∞

h(Ni)/h(N) ≤ 1 + ε.

But ε > 0 was arbitrary. Hence, h(Ni)/h(N) → 1, and h(Ni) → h(N). This
completes the proof of continuity.
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