Errata to: Finiteness theorems for perfect
numbers and their kin

Paul Pollack

In the title article, the author leaves to the reader the task of showing that
the abundancy function h: . — R = R U {o0} is continuous. As noted by
Richard Stone, this claim is in fact false! For example, if N = ]_[p> . D, then
Ny — 1 in the supernatural topology; on the other hand, each h(Ny) = oo
(since the sum of the reciprocals of the primes diverges) while h(1) = 1.

The following result should be substituted in place of the erroneous claim
above. For each natural number B, let .F denote the set of supernatural
numbers N whose support has size bounded by B.

Proposition. For each B, the set /P is a closed subset of . Moreover, the
restriction of h to .7 defines a continuous function to R.

From the first half of the proposition, we see that if IV; is any convergent
sequence in P with limit N, then N € .#5; we then deduce from the second
half that h(N;) — h(N). These results suffice for all of the applications given
in the paper, and allow their proofs to remain essentially unchanged.

Before we prove the proposition, we introduce a convenient decomposition
of the function h. Suppose that y > 1. If M is a supernatural number, say
M =T[,p, we set

hy(M) =[] hp?), and m¥(M) =] h(p®).

Then for every M € ., we have

Moreover, if M € .72, then
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In particular, taking y = 2, we see that h is bounded on .#Z.

Lemma. For each choice of y, the function hy: & — R is continuous.



For all of the proofs given below, we take advantage of the fact that . is
metrizable, being a countable product of metrizable spaces. (To see the last
claim, first observe that R is homeomorphic to the circle, and so N can be
thought of as a subset of the circle.) So for instance, in proofs of continuity we
may use the “convergent sequence” characterization.

Proof of the lemma. If N; — N, then v,(N;) — v,(N) for each prime p. We
may deduce from this that for every prime p, we have h(p®»N9)) — h(pUr(¥)),
Indeed, this last assertion is clear if v,(N) < oo, since in that case v,(V;) =
vp(N) for all large i. On the other hand, if v,(N) = oo, then v,(N;) — oo, and
so here too we have
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Since there are finitely many primes p < y, we conclude that

hy(Ni) = T h(pr ™) = TT h(@*r ™) = hy(N).

p<y p<y
This completes the proof. O

Proof of the proposition. First we prove that .77 is closed. Each element N of
the closure of .’ is the limit of a sequence of points N; € .B. Supposing for
the sake of contradiction that N is supported on more than B primes, choose
primes p1,...,pp+1 dividing N. Since v,(N;) — vp(N) for each p, it must be
that py ---ppy1 | IV; for all large 4, contradicting that N; € .#B. Next, we show
continuity of h|»s. Let {N;}2; be a sequence of points of .#P converging to
N € .. Fix any € > 0. For each y, we can write

hy(N;) hY(N;)
hy(N)  h¥(N)~

h(N:)/h(N) = (2)
Applying (1) with M = N and M = N;, we see that the second right-hand
factor belongs to the interval (1 — €,1 + €) for large enough y, depending only
on B and e. Now fix such a y. By the lemma, the first right-hand factor in (2)
tends to 1 as ¢ — co. (We use here that h, (V) < co.) Thus,

1 —e <liminf h(N;)/h(N) < limsup h(N;)/h(N) <1 +e.
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But € > 0 was arbitrary. Hence, h(N;)/h(N) — 1, and h(N;) — h(N). This
completes the proof of continuity. O



