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Abstract

Since ancient times, a natural number has been called perfect if it
equals the sum of its proper divisors; e.g., 6 = 1+2+3 is a perfect number.
In 1913, Dickson showed that for each fixed k, there are only finitely many
odd perfect numbers with at most k distinct prime factors. We show how
this result, and many like it, follow from embedding the natural numbers
in the supernatural numbers and imposing an appropriate topology on the
latter; the notion of sequential compactness plays a starring role.

1 Introduction.

Quick: You’re handed an infinite sequence of points in a compact subset of Rn

– what do you do? Probably your first instinct is to pass to a convergent subse-
quence and examine the limit. This fruitful proof technique in analysis does not
have an obvious analogue in number theory. Certainly an unbounded sequence
of natural numbers has a subsequence that tends to infinity, but this is seldom
useful information; it is clear that the standard topology on N was prescribed
by analysts and not more arithmetically-minded individuals. What would mat-
ters be like if number theorists ran the world and could define convergence the
way they saw fit?

Our purpose in this article is two-fold. First, to provide a glimpse into this
utopia (dystopia?). Second (but primarily), to highlight some results about
perfect numbers, amicable numbers, and their close relatives that deserve to
be better known and whose demonstrations underscore the usefulness of these
“sequential” methods.

Recall that a perfect number is a number N for which s(N) = N , where
s(N) :=

∑
D|N, D<N D denotes the sum of the proper divisors of N . For exam-

ple, N = 28 is perfect, since 28 = 1 + 2 + 4 + 7 + 14. The study of such numbers
goes back at least to Euclid (ca. 300 BCE), who showed in his Elements that if
2n − 1 is prime, then

N := 2n−1(2n − 1) (1)

is a perfect number. Two thousand years later, Euler showed that every even
perfect number arises in this manner. We expect, but cannot prove, that 2n− 1
is prime infinitely often; to date, 47 examples of such Mersenne primes have
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been found, the largest corresponding to n = 43112609. The situation for odd
perfect numbers is less satisfactory. We know of no examples, but despite over
two thousand years of effort, we cannot prove that none exist.

Short of such a proof, one could hope to prove something a bit weaker.
Perhaps one can show that there are at most finitely many odd perfect numbers?
Again, this seems difficult. We know from work of Hornfeck and Wirsing ([20];
see also [37]) that the odd perfect numbers are sparsely distributed; for any
ε > 0, the number of such up to x is < xε, once x > x0(ε). If we insist on
finiteness, then the best result we have is the following 1913 theorem of Dickson
[9]. We write ω(N) :=

∑
p|N 1 for the number of distinct prime divisors of N .

Theorem 1. For each positive integer k, there are at most finitely many odd
perfect numbers N with ω(N) ≤ k.

If N has the form (1), where 2n − 1 is prime, then ω(N) = 2. So one
consequence of Dickson’s theorem is that there are no infinite families of odd
perfect numbers which are as easy to write down as the (presumably) infinite
family (1) of even perfects.

What does Dickson’s theorem have to do with the arithmetician’s dream-
world alluded to at the start of this article? As shown by Shapiro [31], Dickson’s
theorem can be proved very simply using the notion of compactness, once one
writes down the correct topology! We turn to a description of this topology in
the next section. It will transpire that Dickson’s theorem is just one of several
results that suddenly become visible from this topological perspective.

To avoid misunderstanding, it should be emphasized that compactness al-
ready plays a well-recognized, fundamental role in many number theoretic ar-
guments. Indeed, topological considerations are so prevalent in the algebraic-
analytic theory that Weil includes Haar measure on locally compact groups as
a prerequisite for his book titled Basic Number Theory [36] (such choices on
Weil’s part were not without controversy, however; e.g., see the anecdote of [33,
p. 139]). Also, in that part of combinatorial number theory that overlaps with
Ramsey theory, compactness arguments are routinely used to show that if no
infinite colorings of a certain kind exist, then the same is true for sufficiently
large finite colorings; see [15, §1.5] for a general theorem of this kind. What we
are offering is a bit different; we take existing theorems of the sort that could be
presented in a first number theory course and propose a new, unifying topologi-
cal perspective on their proofs that both clarifies and motivates the arguments.
In this program, we have been inspired by Furstenberg’s topological proof of
the infinitude of primes [11].

2 What could be more natural?

Let N denote the set of natural numbers (positive integers), and let N≥0 :=
N ∪ {0} be the set of nonnegative integers. Define a supernatural number (also
called a Steinitz number) as a formal product

∏
p p

vp , where p runs over all
primes and each vp ∈ N≥0∪{∞}. The set S of all supernatural numbers forms
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a multiplicative semigroup with multiplication defined by exponent addition,
and the multiplicative semigroup of natural numbers N embeds into it by unique
factorization.

If N is a supernatural number, we will write vp(N) for the exponent of p
appearing in N . The support of N is the set of primes p for which vp(N) > 0.
If D and N are supernatural numbers, we say that D divides N , written D | N ,
if N = DD′ for some supernatural D′, or equivalently, if vp(D) ≤ vp(N) for all
primes p.

The supernatural numbers were introduced in Steinitz’s influential 1910 pa-
per Algebraische Theorie der Körper ([34]; see also [30]), which was the first
systematic development of field theory from an axiomatic viewpoint. They arise
in Steinitz’s description of the algebraic closure F̄p of the prime field Fp: For
each supernatural N , the elements of F̄p algebraic of degree dividing N form
a subfield; conversely, every subfield of F̄p arises in this way from a uniquely
determined supernatural number N .

We are interested in the supernatural numbers for a different reason: They
allow us to assign arithmetically meaningful limits to certain sequences of nat-
ural numbers. Our fundamental idea is to choose a topology on S so that if
{Ni}∞i=1 is a sequence of supernatural numbers, and N ∈ S , then

lim
i→∞

Ni = N ⇐⇒ for every prime p, lim
i→∞

vp(Ni) = vp(N), (2)

where the limit on the right-hand side is the usual limit from elementary calculus
(adopting the standard conventions about infinite limits).

Such a topology is not hard to come by. Write N̂ := N≥0 ∪ {∞}, and view

N̂ as the closure of N≥0 in R̂ := R∪{∞}, the one-point compactification of R.

Using subscripts on X to denote a copy of the space X, identify S with
∏
p N̂p,

mapping
∏
p p

ep to the exponent vector (e2, e3, e5, . . . ). It follows quickly from
the definition of the product topology that our desired convergence criterion (2)
holds.

Given all the fuss we have made over compactness, one might hope that
this topology makes S into a sequentially compact space. This is indeed true!
Each factor N̂p is sequentially compact for the boring reason mentioned in
the introduction. A sequence of natural numbers is either bounded or has
a subsequence that tends to infinity. And by a well-known diagonalization
argument, a countable product of sequentially compact spaces is sequentially
compact.

How do sums of divisors enter the picture? For a natural number N , its
abundance is defined by h(N) := σ(N)/N , where σ(N) :=

∑
D|N D is the usual

sum-of-divisors function from elementary number theory (in contrast with the
definition of s, note that the number N itself appears in the sum). For example,
N is perfect precisely when h(N) = 2. While σ does not seem to have a useful
extension to S , the function h does; namely, put

h(p∞) = lim
v→∞

h(pv) = lim
v→∞

(
1 +

1

p
+ · · ·+ 1

pv

)
=

p

p− 1
,
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and define h(
∏
p p

vp) =
∏
p h(pvp), where the product is understood as ∞ if

divergent.
In the sequel, we will need the following two properties of h, which respec-

tively describe how h interacts with the topology on S and the lattice structure
of S :

(i) For each natural number B, let S B denote the set of supernatural num-
bers whose support has size bounded by B. We leave as an exercise the
task of checking that S B is a closed subset of S , and that the restriction
of h to S B defines a continuous function to R̂.

(ii) The function h is monotonic along the divisor lattice. More precisely, if N
and N ′ are two supernatural numbers for which N | N ′, and h(N ′) <∞,
then h(N) ≤ h(N ′), with equality only if N = N ′. This is immediate from
the definitions, noting that for each fixed prime p, the function h(pv) is
strictly increasing in v, for 0 ≤ v ≤ ∞.

One more piece of notation before we see some applications: If D and N
are supernatural numbers, we say that D is a unitary divisor of N , and write
D ‖ N , if vp(D) = vp(N) for every prime p dividing D. The key example is the
following: If Ni → N , and D is a natural number for which D ‖ N , then D ‖ Ni
for all but finitely many indices i.

3 Getting something for (almost) nothing: Ω re-
sults.

As a first illustration of how these topological ideas are useful, let us consider
the following simpler variant of Dickson’s theorem. We write Ω(N) :=

∑
pk|N 1

for the total number of prime divisors of N , counted with multiplicity.

Theorem 2. Let α be a rational number, and let k be a positive integer. There
are only finitely many natural numbers N for which σ(N)/N = α and Ω(N) ≤ k.

Theorem 2 is in one sense weaker than Dickson’s theorem, since requiring
that Ω(n) be bounded is much stronger than requiring the same for ω(n). Note,
though, that Theorem 2 is not restricted to odd N , and that the result is stated
for any α, not just α = 2. When α = 2, Hare [17] showed that there are in
fact no odd solutions with Ω(N) < 75 and Nielsen [26] that there are none with
ω(N) < 9.

After our mini-course on supernatural topology, the proof of Theorem 2 is
almost an exercise in definition-chasing.

Proof of Theorem 2. For our later attack on Theorem 1 (and Theorem 5 below),
it is convenient to prove the result in the following alternative formulation. If
{Ni}∞i=1 is an infinite sequence of distinct natural number solutions to h(Ni) = α
all of which satisfy ω(Ni) ≤ k, then the sequence {Ω(Ni)}∞i=1 is unbounded.
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Passing to a convergent subsequence of the Ni in the supernatural topology,
we can suppose that Ni → N∞ (say), where N∞ ∈ S . Since each Ni ∈ S k,
the limit N∞ ∈ S k. Since h|S k is continuous, h(N∞) = limh(Ni) = α. Thus,
we may write

N∞ = N ′N ′′∞,

where N ′ and N ′′ are relatively prime natural numbers with N ′′ squarefree.
Here N ′ encodes the contribution to N∞ from those primes p for which the
exponents vp(Ni) stabilize (as i→∞), while N ′′ is the product of those primes
p for which the exponents vp(Ni) shoot off to infinity.

We know that N ′ ‖ Ni for all but finitely many i and that there is at most
one value of i with N ′ = Ni. Hence, N ′ is a proper divisor of Ni for all large i.
Choosing such an i and recalling the monotonicity property of h, we find that
h(N ′) < h(Ni) = α. Since h(N∞) = α, clearly N ′ 6= N∞, so that N ′′ > 1.

Now pick a prime p dividing N ′′. The total number Ω(Ni) of prime factors
of Ni satisfies Ω(Ni) ≥ vp(Ni) for each i, while our convergence criterion (2)
gives that vp(Ni)→ vp(N∞) =∞. The theorem follows.

What else is this method good for? Recall that an amicable pair is a pair
of distinct natural numbers N and M for which each is the sum of the proper
divisors of the other; in other words, s(N) = M and s(M) = N . For example,
N = 220 and M = 284 form an amicable pair, since

220 = 1 + 2 + 4 + 71 + 142, while

284 = 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110.

The amicable numbers, like their perfect brethren, have an ancient pedigree.
According to the Neoplatonic philosopher Iamblichus, writing in the third cen-
tury CE (see [35, pp. 122–123]):

. . . 284 and 220 are [amicable numbers]; for the parts of each are
generative of each other according to the nature of friendship, as
was shown by Pythagoras. For someone asking him what a friend
was, he answered éteros egw [=another I], which is demonstrated to
take place in these numbers.

We have all the tools necessary to prove the following amicable pair analogue
of Theorem 2. A stronger result will be established as Theorem 8 in §5.

Theorem 3. Fix a natural number k. Then there are only finitely many ami-
cable pairs (N,M) for which Ω(NM) ≤ k.

Proof of Theorem 3, following Borho [5, §5]. We follow our nose, attempting to
mimic the proof of Theorem 2. We will suppose that {(Ni,Mi)}∞i=1 is an infinite
sequence of distinct amicable pairs for which ω(NiMi) is bounded and will show
that this forces Ω(NiMi) to be unbounded. Since S×S is sequentially compact,
after passing to a subsequence, we can assume that (Ni,Mi) → (N∞,M∞).
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Since ω(NiMi) is bounded, it follows that N∞ and M∞ are both supported on
at most finitely many primes. Thus, we can write

M∞ = M ′M ′′∞ and N∞ = N ′N ′′∞,

where M ′,M ′′, N ′, N ′′ are natural numbers, gcd(M ′,M ′′) = gcd(N ′, N ′′) = 1,
and M ′′, N ′′ are squarefree. Comparing with the proof of Theorem 2, we see it
is enough to show that either N ′′ > 1 or M ′′ > 1.

The proof of Theorem 2 depended on taking the limit of the sequence of
equations h(Ni) = 2. An analogue in the amicable case is

(h(Ni)− 1)(h(Mi)− 1) =

(
σ(Ni)−Ni

Ni

)(
σ(Mi)−Mi

Mi

)
=
s(Ni)

Ni

s(Mi)

Mi
=
Mi

Ni

Ni
Mi

= 1,

which, upon passing to the limit, gives

(h(N∞)− 1)(h(M∞)− 1) = 1. (3)

Now choose i large enough that N ′ and M ′ are unitary divisors of Ni and Mi (re-
spectively) and so that the pair (N ′,M ′) 6= (Ni,Mi). Then by the monotonicity
of h,

1 = (h(Ni)− 1)(h(Mi)− 1) > (h(N ′)− 1)(h(M ′)− 1). (4)

Comparing (3) and (4), we see that (N ′,M ′) 6= (N∞,M∞). So either N ′′ > 1
or M ′′ > 1, as desired.

In the early part of the 20th century, two competing generalizations of ami-
cable pairs were introduced:

• Meissner [24, p. 200] proposed investigating what are now known as so-
ciable numbers. Here N ∈ N is called k-sociable if the sequence of iterates
N , s(N), s(s(N)), . . . is purely periodic with exact period k (see [23] for
more of the history and some recent results). Then the perfect numbers
are exactly the sociable numbers of order 1, while the sociable numbers
of order 2 are precisely those integers which belong to an amicable pair.
Higher-order sociable numbers exist as well; e.g., Poulet [28] discovered
that iterating the map s produces the 5-element cycle

· · · 7→ 12496 7→ 14288 7→ 15472 7→ 14536 7→ 14264 7→ 12496 7→ · · · .

• Dickson [8] proposed calling (N1, . . . , Nk) an amicable k-tuple if

σ(Ni) = N1 + · · ·+Nk for all 1 ≤ i ≤ k,

and he gave a handful of examples when k = 3 (many more examples were
collected by Poulet in his tract La Chasse aux Nombres [29, Chapitre IV]).
It is simple to check that two distinct integers N1 and N2 form an amicable
pair precisely when (N1, N2) is an amicable 2-tuple in Dickson’s sense.
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The following theorem of Borho (cf. [5, §5]) generalizes Theorem 3 in both
directions.

Theorem 4. Let k and K be natural numbers, with k ≥ 2.

(i) There are only finitely many k-sociable numbers N for which the product of
the elements N, s(N), . . . , sk−1(N) has at most K prime factors, counted
with multiplicity.

(ii) There are only finitely many amicable k-tuples (N1, . . . , Nk) for which the
product N1 · · ·Nk has at most K prime factors, counted with multiplicity.

At this point, the proof of Theorem 4 can be safely left as an exercise. Part
(i) follows the proof of Theorem 3. The proof of (ii) is similar, but one should
first observe that the definition of an amicable k-tuple gives

1

h(N1)
+

1

h(N2)
+ · · ·+ 1

h(Nk)
=

Ni
σ(Ni)

+ · · ·+ Nk
σ(Nk)

=
N1

N1 + · · ·+Nk
+

N2

N1 + · · ·+Nk
+ · · ·+ Nk

N1 + · · ·+Nk
= 1. (5)

4 Dickson’s theorem revisited.

We have already seen how to prove some variants of Theorem 1. In order to
prove Theorem 1 itself, we have to work a little harder, but not much. The
argument below is due to Shapiro [31] (compare to Gradstein [14, Chapter II,
§§3–7]).

Proof. We start exactly as in Theorem 2. Fix a natural number k, and suppose
that there are infinitely many odd perfect N with ω(N) ≤ k. Take an infinite
sequence Ni of distinct such N . Passing to a subsequence, we can assume that
Ni → N∞. Exactly as in the proof of Theorem 2, we may write N∞ = N ′N ′′∞,
where N ′ and N ′′ are coprime natural numbers and N ′′ is squarefree. Since
each Ni is odd, we see easily that N ′N ′′ is also odd. From the proof of Theorem
2, we have N ′′ > 1.

Let us write q for the primes dividing N ′ and r for those dividing N ′′. Since
N ′′ > 1, there is at least one such r. Writing vq = vq(N

′), we have

2 = h(N∞) = h(N ′)h(N ′′∞) =
∏
q

qvq+1 − 1

qvq (q − 1)

∏
r

r

r − 1
, (6)

and thus

2

(∏
q

qvq

)∏
r

(r − 1) =
∏
q

qvq+1 − 1

q − 1

∏
r

r.

Since each r is coprime to 2
∏
qvq , it follows that∏
r

r |
∏
r

(r − 1).
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But this is impossible; the left-hand side is larger than the right.

A clever modification of this argument gives Theorem 1 with the number
“2” replaced by any rational α.

Theorem 5. Let α be a rational number, and let k be a positive integer. There
are only finitely many odd natural numbers N for which σ(N)/N = α and
ω(N) ≤ k.

Proof. We imitate the proof of Theorem 1 up until (6), which now takes the
shape α = h(N ′)

∏
r

r
r−1 . Choose an index i large enough to guarantee that

N ′ ‖ Ni. Writing Ni = N ′Qi gives α = h(N ′)h(Qi), and so h(Qi) =
∏
r

r
r−1 .

Thus, ∏
s

1 + s+ s2 + · · ·+ svs

svs
=
∏
r

r

r − 1
,

where s runs over the prime divisors of Qi and vs := vs(Qi). This is absurd;
the right-hand product has even denominator in lowest terms (since there is at
least one r), while the left has odd denominator.

This proof of Theorem 5 is due to Artjuhov [2], who is perhaps best-known
for anticipating [1] the Selfridge–Miller–Rabin strong pseudoprimality test im-
plemented in most computer algebra systems (for details of this test, see, e.g.,
[7, §3.5]).1 It may seem that the proof of Theorem 5 renders Shapiro’s argument
obsolete, but this is not the case; Shapiro’s method (but not Artjuhov’s) also
gives results for what are called primitive α-abundant numbers. See Shapiro’s
papers [31, 32] for details.

By methods beyond the scope of this article, Kanold [22] proved the following
elegant common generalization of Theorems 1, 2, and 5 (a narrower form of
which was conjectured in [21]).

Theorem 6. Let α be a rational number, and let k be a positive integer. Among
all solutions N to the equation σ(N)/N = α for which ω(N) ≤ k, all but
finitely many have the form N = AB, where A is an even perfect number,
σ(B)/B = α/2, and gcd(A,B) = 1.

It is somewhat satisfying that Kanold’s argument makes essential use of
Siegel’s theorem, perhaps the best-known finiteness theorem in number theory,
which states that a curve of positive genus has only finitely many integral points.

5 A more perfect result on amicable numbers.

We saw in Theorem 3 that for any prescribed bound k, there are only finitely
many amicable pairs with Ω(NM) ≤ k. Ideally, we would like to have the same
result with Ω replaced by ω. Even if this is true – and no one has presented
compelling arguments either way – it appears hopeless to prove.

1Correction: What Artjuhov describes is the Solovay–Strassen test, not the Selfridge–
Miller–Rabin test. Thanks to Keith Conrad for pointing this out to me.
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To justify this pessimistic assessment, it is helpful to recall a theorem of
the ninth century CE mathematician/astronomer Thābit ibn Qurra (see [10, p.
39]).

Proposition 7 (Thābit’s rule). Suppose that for the integer n > 1, all three of

p := 3 · 2n−1 − 1, q := 3 · 2n − 1, r := 9 · 22n−1 − 1 (7)

are prime numbers. Then N := 2n · p · q and M := 2n · r form an amicable pair.

Once written down, Thābit’s rule is straightforward to verify. The divisors of
N are precisely the integers of the form 2apbqc, where 0 ≤ a ≤ n and b, c ∈ {0, 1}.
Hence,

σ(N) =

n∑
a=0

∑
b∈{0,1}

∑
c∈{0,1}

2apbqc

=

(
n∑
a=0

2a

)
(1 + p)(1 + q) = (2n+1 − 1) · 9 · 22n−1.

By a direct calculation, this last expression coincides with the sum N + M .
Hence, s(N) = σ(N) − N = M . Similarly, the divisors of M are the numbers
2arb, where 0 ≤ a ≤ n and b ∈ {0, 1}. Thus,

σ(M) = (2n+1 − 1)(1 + r) = (2n+1 − 1) · 9 · 22n−1 = N +M,

so that s(M) = σ(M)−M = N . Hence, N and M form an amicable pair. It is
not clear how Thābit discovered Proposition 7; see [6] for some speculations.

Of course, the relevance of Proposition 7 to the present discussion is that if
N and M come out of Thābit’s rule, then ω(NM) = 4.

One might think of Proposition 7 as an analogue of Euclid’s rule for gen-
erating perfect numbers, quoted in the introduction. However, there is a key
respect in which we believe that Euclid was luckier than Thābit. On probabilis-
tic grounds (see, e.g., [7, §1.3]), we expect that there are infinitely many primes
of the form 2n − 1, so that Euclid’s formula (1) should yield infinitely many
perfect numbers. But those same heuristic arguments suggest that for large n,
at most one of p, q, and r in (7) is prime, so that Thābit’s rule never gets off the
ground. This is borne out by computation; in fact, of the numbers n ≤ 191600,
Thābit’s rule applies only for n = 2, 4, and 7 (see [12]).

So it would be quite surprising if Thābit’s rule actually yields infinitely
many amicable pairs. However, given the current state of number-theoretic
technology, it would be almost as surprising if anyone were to prove this any
time soon! Rigorously (vs. heuristically) understanding arithmetic properties
of exponentially-growing expressions like those in (7) is still something of a pipe
dream (cognoscenti can consult the last chapter of [19] for a discussion of some
of the difficulties involved here). Moreover, even if one could show that Thābit’s
rule applies only finitely often, there are many other sources of amicable pairs
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which would have to be better understood (cf. [4, §6]) in order to prove that
ω(NM) cannot remain bounded. The upshot is that any proof of the analogue
of Theorem 3 for distinct prime factors must lie very deep.

So perhaps we should not aim so high. The following theorem is a happy
medium between the unattainable and the trivial.

Theorem 8. Let k be a natural number. There are only finitely many amicable
pairs (N,M) for which ω(NM) ≤ k and Ω(gcd(N,M)) ≤ k.

There is a still-unresolved folklore conjecture (going back at least to Gmelin
[13, §10]) that in each amicable pair, the numbers N and M share a com-
mon factor > 1. Hagis [16] has shown that there are no counterexamples with
ω(NM) ≤ 21. Theorem 8 implies that the number of counterexamples with
ω(NM) ≤ k is finite for each fixed k.

Theorem 8 is due to Borho [4]; a similar but weaker theorem was published
by Artjuhov [3]. Rather than attack Theorem 8 directly, we prove a somewhat
stronger (but less easily-stated) result.

Proposition 9. Let {(Ni,Mi)}∞i=1 be an infinite sequence of distinct amicable
pairs for which ω(NiMi) is bounded. Then for a certain prime q, each power of
q divides some gcd(Ni,Mi).

Note that even if there were an infinite sequence of amicable pairs produced
by Thābit’s rule, this would not contradict Proposition 9, whose conclusion
would then hold with q = 2.

It will be convenient for the proof of Proposition 9 to abuse notation slightly
and, in addition to our earlier use of vp, to also use vp(x) for the power of p
appearing in the nonzero rational number x (the so-called p-adic valuation of
x). In other words, if x ∈ Q× has the form pna/b, where p - ab, we write
vp(x) = n. Any confusion this may cause is benign, since both definitions of vp
agree on N = Q× ∩S .

Since the following important fact is sometimes omitted from a first course
in number theory, we reproduce the proof here.

Lemma 10 (Ultrametric triangle inequality). Let p be a prime number. If
x and y are any rational numbers, then vp(x + y) ≥ min{vp(x), vp(y)}, with
equality unless vp(x) = vp(y). Here we interpret vp(0) as ∞ when it appears.

Proof. Scaling x and y by an appropriate integer, we may assume that x and
y are themselves integral. If either x or y is zero, the claims of the lemma are
obvious, so suppose xy 6= 0. Let v1 and v2 be the largest nonnegative integers for
which pv1 | x and pv2 | y. Without loss of generality, v1 ≤ v2. The lower bound
in the lemma is just the assertion that pv1 divides x+y, which is clear since pv1 is
a common divisor of x and y. Suppose now that vp(x) 6= vp(y), so that v1 < v2.
If pv1+1 | x+y, then (since v2 ≥ v1+1) we would have that pv1+1 | (x+y)−y = x,
which is false. Hence, vp(x+ y) = v1 = min{vp(x), vp(y)}.

Proof of Proposition 9, following Borho [4]. We start the argument exactly as
in the proof of Theorem 3. Thus, we assume we have passed to a subsequence
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where (Ni,Mi) → (N∞,M∞), and we suppose that N ′,M ′, N ′′,M ′′ have the
same meaning as in that prior argument. We know from the proof of Theorem
3 that either N ′′ > 1 or M ′′ > 1. So interchanging the roles of N and M if
necessary, we can assume that M ′′ > 1. Let q be the largest prime factor of
M ′′. It suffices to show that q also divides N ′′, for then each fixed power of q
divides gcd(Ni,Mi) for all but finitely many i.

SinceNi andMi form an amicable pair, (5) gives that 1/h(Ni)+1/h(Mi) = 1,
and so 1/h(N∞) + 1/h(M∞) = 1. Since h(p∞) = p/φ(p) (with φ the familiar
Euler function), this can be rewritten as

N ′

σ(N ′)

φ(N ′′)

N ′′
+

M ′

σ(M ′)

φ(M ′′)

M ′′
= 1. (8)

We will use (8) to establish the desired link between q, which divides the de-
nominator of the second summand, and N ′′, which appears in the denominator
of the first summand.

The number φ(M ′′) is a product of terms r − 1, with each r ≤ q, so that
q - φ(M ′′). Since q | M ′′ and gcd(M ′,M ′′) = 1, also q - M ′. It follows that
the q-adic valuation of the second summand in (8) is negative. Since vq(1) = 0,
Lemma 10 forces

vq

(
N ′

σ(N ′)

φ(N ′′)

N ′′

)
= vq

(
M ′

σ(M ′)

φ(M ′′)

M ′′

)
< 0. (9)

Assume for the sake of contradiction that q - N ′′. Then (9) shows that
vq(N

′/σ(N ′)) < 0. For i large enough to ensure that N ′ ‖ Ni, it follows that

vq(Ni/σ(Ni)) = vq(N
′/σ(N ′)) + vq

(
Ni/N

′

σ(Ni/N ′)

)
< vq

(
Ni/N

′

σ(Ni/N ′)

)
.

Since q - N ′′, the relation vq(Ni) → vq(N∞) shows that eventually vq(Ni) =
vq(N

′), and so vq(Ni/N
′) = 0. We conclude that

vq(Ni/σ(Ni)) < 0 for all but finitely many i. (10)

With (10) established, we are nearly out of the woods. Since Ni/σ(Ni) +
Mi/σ(Mi) = 1, Lemma 10 and (10) imply that vq(Mi/σ(Mi)) < 0. But
vq(Mi) → ∞, since q | M ′′. So it must be that vq(σ(Mi)) → ∞ also. Since
Ni and Mi form an amicable pair, Ni = σ(Mi) −Mi, and so vq(Ni) → ∞ by
Lemma 10. This implies that q | N ′′, contrary to our assumption.

Theorem 8 says that only finitely many amicable pairs satisfy given bounds
on ω(NM) and Ω(gcd(N,M)). Rather than impose a hypothesis on gcd(N,M),
we could instead strengthen the ω-condition by prescribing the actual elements
of the support of NM . This also leads to a finiteness result. More precisely, for
any finite set of primes P, there are only finitely many amicable pairs for which
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the support of NM is a subset of P (the obvious generalizations for sociable
cycles and amicable tuples also hold). We won’t prove this here, although the
proof is simple and uses nothing beyond the tools that have been on display
throughout this article. If the paper had been an infomercial for sequential
compactness, now is where we would ask the reader to make that leap of faith
and commit. What do you have to lose? There’s even a money-back guarantee!

6 Parting shots.

We conclude with some open questions intended as an invitation to further
research.

• Because our proofs rely on limiting processes, they appear deafeningly
silent on how to compute (even in principle) the finite sets which they
assert exist. But already in 1925, Gradstein showed how to convert our
proof of Theorem 1 into a procedure to find all odd perfect N with ω(N) ≤
k “by a finite number of tests” (see [14, Theorem 1]). In the more general
situation of Kanold’s Theorem 6, Pomerance [27] gave an algorithm to
compute an upper bound on the finite set in question; in principle, one can
then individually examine all numbers up to this upper bound, by brute
force. His work easily implies corresponding upper bounds in Theorems
1, 2, and 5.

For the specific case of odd perfect numbers, one has the following effec-
tive version of Theorem 1, which is a sharpening due to Nielsen [25] of a
theorem of Heath–Brown [18]. If N is odd perfect and ω(N) ≤ k, then

N < 24
k

. Borho [5, Satz 2] states a cognate result in the situation of
Theorem 3: If N and M form an amicable pair with Ω(NM) ≤ k, then

NM < k2
k

. This suggests the following question: What about Theorems
4 and 8? For example, is there a doubly-exponential upper bound on the
number of coprime amicable pairs satisfying ω(NM) ≤ k?

• Theorem 8 is a partial ω-analogue of Theorem 3, one which we were able
to obtain by adding an extra condition on the greatest common divisor
of M and N . In the generalized-amicable situation of Theorem 4, what
conditions should be added to establish an ω-analogue?

• Our final question is more broad. What have we missed? It does not seem
too presumptuous to expect that this simple and transparent method has
number-theoretic implications beyond those described here.

Acknowledgements. Thanks are owed to Greg Martin, Michael Pollack, Carl
Pomerance, Jonah Sinick, Enrique Treviño, Erick Wong, and the referees for
helpful comments and conversations.
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