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Abstract. It is well-known that Euclid’s argument can be adapted to prove
the infinitude of primes of the form 4k − 1. We describe a simple proof that
the sum of the reciprocals of all such primes diverges. More generally, if q is
a positive integer, and H is a proper subgroup of the units group (Z/qZ)×,
we show that ∑

p prime
p mod q 6∈H

1

p
=∞.

1. Introduction

Perhaps no argument in number theory is more famous than Euclid’s proof of
the infinitude of primes. It is a traditional exercise in a first course in number
theory to extend Euclid’s argument to certain special arithmetic progressions.
For example, take the progression 2, 5, 8, 11, . . . consisting of the positive inte-
gers of the form 3m − 1. Let p1, . . . , pk be any finite list of primes of the form
3m−1, and consider the integer P := 3p1 · · · pk−1. Now P factors into primes,
all of which are either of the form 3m + 1 or 3m− 1. The product of numbers
of the form 3m+ 1 is again of the form 3m+ 1, whereas P has the form 3m− 1.
Thus, P must have some prime divisor of the form 3m − 1, and clearly this
prime cannot be any of the pi. It follows that we can extend the list p1, . . . , pk
indefinitely; that is, there are infinitely many primes in the progression 3m− 1.

Reasoning along similar lines, one obtains a proof of the following result,
which is given as an exercise in D. A. Marcus’s text on algebraic number theory
[5, Exercise 6, p. 205]. We write p mod q for the element of Z/qZ representing
the reduction of p modulo q.

Theorem A. Let q be a positive integer. Suppose that H is a proper subgroup
of the unit group (Z/qZ)×. Then there are infinitely many primes p for which
p mod q 6∈ H.

Our primary objective here is to showcase a proof, almost as simple, for the
following strengthening of Theorem A.

Theorem 1. Let q be a positive integer. Suppose that H is a proper subgroup
of the unit group (Z/qZ)×. Then ∑

p prime
p mod q 6∈H

1

p
=∞.

Theorem 1 bears the same relation to Theorem A as Euler’s result on the
divergence of the series of prime reciprocals bears to Euclid’s theorem.

Note that except in very special cases, the complement of H is a union of
several progressions modulo q and not a single progression. Indeed, we only get
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a divergence result from Theorem 1 for an individual progression when φ(q) = 2
and |H| = 1, corresponding to q ∈ {3, 4, 6} and H = {1 mod q}. (Note also
that the q = 6 result is the same as the result for q = 3.) Thus, Theorem 1
is much weaker than Dirichlet’s 1837 result that the primes belonging to any
given coprime progression modulo q have divergent reciprocal sum. However,
all known proofs of Dirichlet’s theorem are much more difficult than the simple
argument we give for Theorem 1.

In the case when φ(q) = 2, a short, elementary proof of Theorem 1 was given
earlier by Tibor Šalát [7]. However, the argument of this note — which is a
close relative of a proof of Euler’s theorem published by Pinasco [6] — seems
more natural.

At the conclusion of this note, we show how Theorem 1 can be used to estimate
the proportion of positive integers represented by a given binary quadratic form.

2. Proof of Theorem 1

2.1. A useful definition. The proof runs a little more smoothly if we have
at hand the notion of density. If A is a subset of the natural numbers, its
(natural) density is defined as the limit

lim
x→∞

1

x
#A ∩ {1, 2, 3, . . . , bxc}. (1)

This limit need not exist. Consider, for instance, the set A of integers with
leading decimal digit 1. For x ∈ [2 · 10k−1, 10k − 1], the counting function of A
is constant:

#A ∩ [1, x] = 1 + 10 + · · ·+ 10k−1 =
10k − 1

9
.

Thinking of k as large, we see that as x ranges from 2 · 10k−1 to 10k − 1, the
ratio 1

x
#A ∩ [1, x] transitions from ≈ 5/9 to 1/9. Thus, the limit in (1) is not

defined. However, if in (1) we replace the limit with the lim inf or lim sup, then
the corresponding quantities certainly do exist, and are known as the lower and
upper densities, respectively. In our example, the lower density is 1/9 and the
upper density is 5/9.

The most important special case for us is when A is a union of k distinct
residue classes modulo a positive integer m. In that case, it is straightforward
to prove that A has density k/m.

2.2. Proof of Theorem 1. Let P be the set of all primes p not dividing q for
which p mod q 6∈ H. The idea of the proof is to study, by two different methods,
the density of natural numbers n for which we have simultaneously

(i) n mod q ∈ (Z/qZ)× \H, and
(ii) n has no prime factors from P.

Method 1. Since H is a subgroup of (Z/qZ)×, any natural number coprime to q
whose reduction mod q is missing from H must have a prime in its factorization
whose reduction is also missing from H. In other words, any n satisfying (i)
fails (ii). So the density in question is just the density of the empty set, which
is 0.
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Method 2. Now suppose for a contradiction that the reciprocal sum of the primes
in P converges. We then show that the set of n satisfying (i) and (ii) has positive
lower density, contradicting what we found above and proving Theorem 1.

Since 1 − t = exp(−(t + t2

2
+ t3

3
+ . . . )) ≥ exp(−t/(1 − t)) ≥ exp(−2t) for

0 ≤ t ≤ 1
2
, we deduce that

∆ :=
∏
p∈P

(
1− 1

p

)
≥ exp

(
−2
∑
p∈P

1

p

)
> 0.

Moreover, we can fix a large number z with the property that∑
p>z
p∈P

1

p
<

∆

q
.

We continue in two steps. First, we determine the density when (ii) is replaced
by the weaker requirement (ii′) that n has no prime factors from P not exceeding
z. Condition (i) places n in φ(q)− |H| residue classes mod q, while (ii′) places
n in φ(P ) residue classes modulo the number P :=

∏
p≤z, p∈P p. Since P and

q are relatively prime, the Chinese remainder theorem tells us that (i) and (ii′)
together put n in one of (φ(q) − |H|)φ(P ) residue classes modulo qP , and so
the density of these n is(

φ(q)− |H|
q

)(
φ(P )

P

)
≥ 1

q

φ(P )

P

=
1

q

∏
p≤z
p∈P

(
1− 1

p

)
≥ ∆

q
.

Second, we eliminate those n satisfying (ii′) but not (ii). Such n have a prime
factor from P that exceeds z. For a given prime p, the number of multiples of
p up to a generic height x is bx/pc. Hence, the number of n ≤ x possessing a
prime factor from P ∩ (z,∞) does not exceed∑

p>z
p∈P

bx/pc ≤ x
∑
p>z
p∈P

1

p
.

Thus, the set of n satisfying (ii′) but not (ii) has upper density at most∑
p>z
p∈P

1

p
<

∆

q
.

Combining the results of the last two paragraphs, we find that the lower
density of of n satisfying (i) and (ii) is indeed positive.

3. An application to quadratic forms

We quickly sketch an application of Theorem 1 to the theory of representa-
tions by binary quadratic forms. Given integers a, b, and c, let

F (x, y) = ax2 + bxy + cy2.

We say n is represented by F if there are integers x and y with F (x, y) = n,
and we ask: What proportion of the positive integers can be represented by F?



4 PAUL POLLACK

The simplest nontrivial example is perhaps a = c = 1 and b = 0, where we are
asking what proportion of the positive integers are sums of two squares.

Using Theorem 1, we give an elementary proof of the following result.

Corollary 1. Let F (x, y) = ax2 + bxy + cy2 be a quadratic form with integer
coefficients a, b, and c whose discriminant D := b2 − 4ac is either 0 or not a
perfect square. The set of positive integers n that are representable by F has
density zero.

Remark. Alaca, Alaca, and Williams [1] show that a binary quadratic form
with integer coefficients represents all elements from an infinite arithmetic pro-
gression of natural numbers if and only if its discriminant is a nonzero square.
Corollary 1 is a strengthening of the “only if” half of that result. On the other
hand, the (easier) “if” direction of their result shows that the conclusion of
Corollary 1 fails if our hypothesis on D is violated.

Proof of Corollary 1. If D = 0, then F (x, y) = R(Ax + By)2 for some integers
R,A, and B. So all of the numbers represented by F are the product of R with
a square. But only a density zero set of positive integers arise in that way. So
we may assume that D is nonzero and not a square.

Using the identities 4aF (x, y) = (2ax + by)2 − Dy2 and 4cF (x, y) = (2cy +
bx)2 −Dx2, we see that if n = F (x, y) and p is a prime dividing n, then

(2ax+ by)2 ≡ Dy2 (mod p) and (2cy + bx)2 ≡ Dx2 (mod p).

If either x or y is invertible modulo p, these congruences allow us to deduce that
D is a square modulo p (possibly 0 mod p). On the other hand, if p divides both
x and y, then p2 | F (x, y) = n. Consequently, if n is a representable integer and
p is a prime that shows up to precisely the first power in n, then D is a square
modulo p.

According to the law of quadratic reciprocity, there is an index 2 subgroup
H of (Z/4|D|Z)× with the property that for odd primes p,

D is a nonzero square modulo p⇐⇒ p mod 4|D| ∈ H.
(This formulation of quadratic reciprocity goes back to Euler; see [3, Chapter
1], especially Corollary 1.19, for a discussion.) Let P be the set of odd primes
not dividing D for which p mod 4|D| 6∈ H. If n is representable by F , then
every prime from P that divides n has to occur to at least the second power in
the prime factorization of n.

It follows that each representable n avoids the p− 1 residue classes p, 2p, 3p,
. . . , (p − 1)p mod p2 for all primes p ∈ P. The density of n that avoid these
residue classes for all p ∈ P up to a finite height z is, by an argument similar
to that occurring in the proof of Theorem 1, precisely∏

p≤z
p∈P

(
1− p− 1

p2

)
.

Since 1− t ≤ exp(−t) and p−1
p2
≥ 1

2p
, the product is bounded above by

exp

(
− 1

2

∑
p≤z
p∈P

1

p

)
.

As z →∞, Theorem 1 shows that this final expression tends to zero. �



AN EASY GENERALIZATION OF EULER’S THEOREM 5

Remark. In the doctoral thesis of Paul Bernays [2], it is shown if F satisfies
the hypotheses of Corollary 1 with D 6= 0, then the number of positive integers
n ≤ x representable by F is asymptotic to cF · x/

√
log x as x→∞. Here cF is

a positive constant depending on a, b, and c. The special case when a = c = 1
and b = 0 had been treated by Bernays’ advisor, Edmund Landau [4]. Both of
these results lie much deeper than our Corollary 1.
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