
AN ELEMENTAL ERDŐS–KAC THEOREM FOR
ALGEBRAIC NUMBER FIELDS

PAUL POLLACK

Abstract. Fix a number field K. For each nonzero α ∈ ZK , let ν(α) denote the number
of distinct, nonassociate irreducible divisors of α. We show that ν(α) is normally dis-
tributed with mean proportional to (log log |N(α)|)D and standard deviation proportional to
(log log |N(α)|)D−1/2. Here D, as well as the constants of proportionality, depend only on
the class group of K. For example, for each fixed real λ, the proportion of α ∈ Z[

√
−5] with

ν(α) ≤ 1

8
(log logN(α))2 +

λ

2
√

2
(log logN(α))3/2

is given by 1√
2π

∫ λ
−∞ e−t

2/2 dt. As further evidence that “irreducibles play a game of chance”,

we show that the values ν(α) are equidistributed modulo m for every fixed m.

1. Introduction

The field of probabilistic number theory was born in 1939 out of a fruitful collaboration of
Erdős and Kac. Let ω(n) denote the number of distinct prime factors of the positive integer
n. The celebrated Erdős–Kac theorem asserts that the quantity

ω(n)− log log x√
log log x

,

thought of as a random variable on the natural numbers n ≤ x (with the uniform measure),
converges in law to a standard Gaussian, as x→∞ [EK40]. In this statement, log log x may
be changed to log log n without affecting the meaning, since the two quantities differ by less
than 1 for all n ∈ (x1/e, x]. Thus, the theorem is often summarized by saying that ω(n) is
normally distributed with mean log log n and standard deviation

√
log log n.

Variants of the Erdős–Kac theorem abound (see [Kro66], [Ell80], [Liu04], [KL08], and the
references in [GS07]). In this article, we describe what appears to be a new generalization in
the number field setting.

Suppose that K is a number field with ring of integers ZK . Let Id(ZK) denote the
(commutative, cancellative) monoid of nonzero integral ideals of ZK , and let Prin(ZK) denote
the submonoid of principal ideals. For each a ∈ Id(ZK), let ω(a) denote the number of
distinct prime ideal factors of a. In [Liu04], Liu proves an Id(ZK)-generalization of Erdős–Kac,
namely that ω(a) is normally distributed with mean log logN(a) and standard deviation√

log logN(a).
The “fundamental theorem of ideal theory” asserts that Id(ZK) is a factorial monoid, with

the prime elements in the monoid sense coinciding with the nonzero prime ideals of ZK . By
contrast, Prin(ZK) is in general not factorial, as shown by the famous example

(1 +
√
−5)(1−

√
−5) = (2)(3)
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when K = Q(
√
−5). Notwithstanding the failure of unique factorization, it is still sensible to

count the number of irreducible divisors of an element of Prin(ZK) and to ask if something
like the Erdős–Kac theorem holds. Our main theorem asserts that this is indeed the case.

For each nonzero α ∈ ZK , we let ν(α) denote the number of nonassociate irreducible
divisors of α. (Equivalently, ν(α) is the number of irreducible divisors of (α) in the monoid
Prin(ZK).) We let logk denote the k-fold iterated logarithm.

Theorem 1. Let K be a number field. There are positive constants A and B, as well as a
positive integer D, such that the following holds. For each fixed λ > 0,

#{(α) : 0 < |N(α)| ≤ x and ν(α) ≤ A(log2 x)D + λ ·B(log2 x)D−
1
2}

#{(α) : 0 < |N(α)| ≤ x}
→
∫ λ

−∞
e−t

2/2 dt,

as x→∞. Moreover, the constants A, B, and D depend only on the isomorphism type of
the class group of K.

We can summarize Theorem 1 as asserting that ν(α) has a normal distribution with mean

A(log2 |N(α)|)D and standard deviation B(log2 |N(α)|)D− 1
2 .

We say a little about the values of A, B, and D. Of the three, D is the simplest to describe:
It is the smallest integer with the property that any sequence of D elements of the class
group Cl(ZK) contains a nonempty subsequence which multiplies to the identity. (If G is any
finite abelian group, the analogous quantity has become known as the Davenport constant of
G, and there is now a large literature on determining values of Davenport constants.) The
appearance of D in Theorem 1 is not so surprising. In fact, the constant D is important
to us for precisely the same reason it first caught the attention of Davenport: D is the
maximal number of prime ideals (counting multiplicity) that appear in the decomposition
of an irreducible element of ZK .1 The constants A and B are more complicated to define,
but in the case when Cl(ZK) is cyclic of order h, we will show that A = φ(h)h−hh!−1 and
B = h−h+3/2h!−1φ(h)1/2.

A few words about strategy are in order. The function ν(α) is not additive in any reasonable
sense; even if α and β generate comaximal ideals of ZK , we need not have ν(αβ) = ν(α)+ν(β).
For example, in Z[

√
−5], we have ν(2) = 1 and ν(3) = 1, whereas ν(6) = 4. To work around

this, we cook up an additive function f on Id(ZK) such that the behavior of ν is — most
of the time, and on the scale important for us — determined by the distribution of f
restricted to Prin(ZK). We then study the distribution of f |Prin(ZK) using the method of
Granville–Soundararajan for proving Erdős–Kac type theorems [GS07].

Of course, many other problems concerning ν could be investigated. We content ourselves
with proving one additional result further reinforcing that “irreducibles play a game of
chance.”

Theorem 2. Fix m ∈ Z+. Then ν(α) is equidistributed modulo m as α ranges over ZK.
More precisely, for each a ∈ Z,

lim
x→∞

#{(α) : 0 < |N(α)| ≤ x, ν(α) ≡ a (mod m)}
#{(α) : 0 < |N(α)| ≤ x}

=
1

m
.

When K = Q, this result is well-known (compare with [Sel39], [Pil40], [Add57]). In fact,
when K = Q and m = 2, it goes back to von Mangoldt [Man97]; that case was later proved to
be “elementarily equivalent” to the prime number theorem in work of Landau [Lan99, Lan11].
(Actually, von Mangoldt and Landau deal with squarefree positive integers, but a convolution
argument shows that the equidistribution assertion for squarefree integers is “elementarily

1According to Olson [Ols69], Davenport reported this observation at the Midwestern conference on group
theory and number theory, Ohio State University, April 1966.
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equivalent” to the assertion for all positive integers.) Our proof of Theorem 2 is easily adapted
to prove the equidistribution mod m of the count of prime ideal divisors of elements of Id(ZK)
(this is again classical when m = 2 [Lan03]), or of Prin(ZK); in fact, the arguments in these
cases are much simpler.

Several further quantitative problems concerning factorizations in Prin(ZK) have been

considered by Geroldinger, Halter-Koch, Kaczorowski, Narkiewicz, Odoni, Rémond, Śliwa,
and others. The interested reader is referred to the discussion in Chapter 9 of [Nar04] as well
as the extensive end-of-chapter references there. See also [GHK06, Chapter 9].

2. Algebro-analytic input

For the rest of this paper, K is a degree d number field admitting r1 real embeddings
and r2 pairs of complex conjugate embeddings, so that d = r1 + 2r2. We let h := #Cl(ZK)
denote the class number, R the regulator, ∆ the discriminant, and w the number of roots of
unity contained in K. We fix an ordering C1, . . . , Ch of the elements of Cl(ZK). Elements of
Id(ZK) are generally indicated with Fraktur letters; p and q are reserved for nonzero prime
ideals of ZK . Implied constants may always depend on K without further mention.

The next two results are classical.

Lemma 3. For each ideal class C of ZK, and all x ≥ 1,∑
Na≤x
a∈C

1 =
Ψx

h
+O(x1− 1

d ), where Ψ :=
2r1+r2πsR

w
√
|∆|

.

Proof. This is due to Weber [Web96]. �

Lemma 4. For each ideal class C of ZK, and all x ≥ 3,∑
Np≤x
p∈C

1

|p|
=

1

h
log2 x+O(1).

Proof. This follows from Landau’s ideal class variant of the prime ideal theorem (with error
term) [Lan18, Satz LXXXV], after partial summation. �

3. Reduction to a standard Erdős-Kac problem

3.1. Preliminary anatomical results. We begin by recording two easy consequences of
the analytic lemmas recalled in the preceding section. For each i = 1, 2, . . . , h, let ωi(a)
denote the number of distinct prime ideal factors of a from Ci, and let Ωi(a) denote the
corresponding count with multiplicity. Then ωi and Ωi are additive functions on Id(ZK), in
the sense that ωi(ab) = ωi(a) + ωi(b) for comaximal ideals a and b, and similarly for Ωi.

Proposition 5. For each i = 1, 2, . . . , h, and all x ≥ 3, we have∑
N(a)≤x

(
ωi(a)− 1

h
log2 x

)2

= O(x log2 x).

Proposition 6. For each i = 1, 2, . . . , h, and all x ≥ 3, we have∑
N(a)≤x

(Ωi(a)− ωi(a)) = O(x).

Propositions 5 and 6 follow by a straightforward imitation of the classical proofs for K = Q
(when h = 1), as found in Hardy and Wright [HW08, see eqs. (22.10.1), (22.10.2), and
(22.11.7)].
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3.2. The type of an irreducible and a decomposition of ν(α). Let π be an irreducible
element of ZK . Suppose that the decomposition of (π) into prime ideals takes the form

(1) (π) = p1 · · · pg.
The irreducibility of π guarantees that no nonempty, proper subsequence of p1, . . . , pg multi-
plies to a principal ideal. Hence, g ≤ D, the Davenport constant of the class group Cl(ZK).
On the other hand, if p1, . . . , pg are prime ideals whose product is principal but no nonempty
proper subproduct is principal, then p1 · · · pg = (π) for an irreducible π. Since every ideal
class contains prime ideals, one can construct irreducibles π with D prime ideal factors
(counting multiplicity): choose p1, . . . , pD−1 having no nontrivial principal subproduct, and
choose pD so that p1 · · · pD is principal. Then each generator π of p1 · · · pD is irreducible. We
thus recover Davenport’s result that D is the maximal number of prime ideals appearing in
the decomposition of an irreducible element of ZK .

Define the type τ of π as the integer tuple (t1, . . . , th), where ti is the number of p in (1)
belonging to Ci, counted with multiplicity. Let T denote the set of types τ that correspond
to some irreducible. For each τ = (t1, . . . , th) ∈ T, we have t1 + · · · + th = g ≤ D. When
t1 + · · ·+ th = D, we say τ is of maximal length.

For α ∈ ZK and τ ∈ T, we define ντ (α) as the number of distinct nonassociate irreducibles
dividing α and having type τ . Thus,

ν(α) =
∑
τ∈T

ντ (α).

We now turn attention to the summands ντ (α).
Specifying a type-τ irreducible factor of α amounts to making h choices: For each 1 ≤ i ≤ h,

we must choose ti prime ideals (not necessarily distinct) from the multiset of prime ideals
dividing αi belonging to the class Ci. Abusing notation somewhat and writing ωi(α) for
ωi((α)), and similarly for Ωi, the number of ways the ith choice can be made is bounded

below by
(
ωi(α)
ti

)
and bounded above by

(
Ωi(α)
ti

)
. Hence,

(2)
h∏
i=1

(
ωi(α)

ti

)
≤ ντ (α) ≤

h∏
i=1

(
Ωi(α)

ti

)
.

In order to obtain useful estimates from (2), we will assume that α avoids a small exceptional
set. Let x ≥ 3, and let α be a nonzero element of ZK with |N(α)| ≤ x. It is convenient for
what follows if (α) satisfies

(i) |ωi(α)− 1
h

log2 x| < (log2 x)2/3 for all i = 1, 2, . . . , h,
(ii) |Ωi(α)− ωi(α)| < log3 x for all i = 1, 2, . . . , h.

Let E denote the set of principal ideals (α) of norm not exceeding x for which one at least of
(i) or (ii) fails. Propositions 5 and 6 imply that

#E� x/ log3 x.

In particular, E makes up asymptotically 0% of the the principal ideals of norm bounded by
x, as x→∞.

Suppose that (α) /∈ E. Using (i), we see that

h∏
i=1

(
ωi(α)

ti

)
=

h∏
i=1

(
ωi(α)ti

ti!
(1 +O(1/ log2 x))

)

=

(
h∏
i=1

ωi(α)ti

ti!

)
(1 +O(1/ log2 x)) .(3)
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On the other hand, (i) and (ii) together imply that Ωi(α)/ωi(α) = 1 +O(log3 x/ log2 x) for
each i = 1, 2, . . . , h. Hence,

h∏
i=1

(
Ωi(α)

ti

)
=

h∏
i=1

(
Ωi(α)ti

ti!
(1 +O(1/ log2 x))

)

=

(
h∏
i=1

ωi(α)ti

ti!

)
(1 +O(log3 x/ log2 x)) .(4)

If τ is not of maximal length, so that t1 + · · ·+ th ≤ D− 1, we deduce from the upper bound
in (2) along with (i) and (4) that

ντ (α) = O((log2 x)D−1).

Suppose now that τ is of maximal length. Then combining (2), (3), and (4) with (i) reveals
that

(5) ντ (α) =
h∏
i=1

ωi(α)ti

ti!
+O((log2 x)D−1 log3 x).

Write ωi(α) = 1
h

log2 x
(

1 +
ωi(α)− 1

h
log2 x

1
h

log2 x

)
. Then (keeping in mind (i))

ωi(α)ti

ti!
=

1

ti!

(
1

h
log2 x

)ti (
1 + ti

ωi(α)− 1
h

log2 x
1
h

log2 x
+O((log2 x)−2/3)

)
.

Inserting this into (5),

ντ (α) =

(
h∏
i=1

1

ti!

)(
1

h
log2 x

)D
·

(
1 +

∑h
j=1 tjωj(α)− D

h
log2 x

1
h

log2 x
+O((log2 x)−2/3)

)
.

Now sum on τ ∈ T. To keep track of the components of the various τ , instead of t1, . . . , th,
we switch notation to t1(τ), . . . , th(τ). Then

(6) ν(α) =

( ∑
τ∈T

τ maximal

h∏
i=1

1

ti(τ)!

)(
1

h
log2 x

)D

+

(
1

h
log2 x

)D−1

 h∑
j=1

( ∑
τ∈T

τ maximal

tj(τ)
h∏
i=1

1

ti(τ)!

)
ωj(α)−

(
D

h

∑
τ∈T

τ maximal

h∏
i=1

1

ti(τ)!

)
log2 x


+O((log2 x)D−2/3).

To continue, for 1 ≤ j ≤ h, set

(7) κj =
∑
τ∈T

τ maximal

tj(τ)
h∏
i=1

1

ti(τ)!
.

Then
h∑
j=1

κj =
∑
τ∈T

τ maximal

h∏
i=1

1

ti(τ)!

h∑
j=1

tj(τ) = D
∑
τ∈T

τ maximal

h∏
i=1

1

ti(τ)!
.

In the next section, we will prove the following Erdős–Kac type result for certain additive
functions f on Id(ZK), restricted to Prin(ZK).
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Theorem 7. Let κ1, . . . , κh be nonnegative constants, not all of which vanish. For nonzero
α ∈ ZK, let

f(α) =
h∑
j=1

κjωj(α).

As x→∞, the quantity

f(α)−
(

1
h

∑h
j=1 κj

)
log2 x√

( 1
h

∑h
j=1 κ

2
j) log2 x

,

considered as a random variable on the space of nonzero principal ideals (α) of norm ≤ x
(with the uniform measure), converges in law to a standard normal distribution.

Theorem 1 follows easily from Theorem 7. Indeed, from (6), we have that when (α) /∈ E,

ν(α)−
(∑

τ∈T
τ maximal

∏h
i=1

1
ti(τ)!

) (
1
h

log2 x
)D

( 1
h

log2 x)D−1

√
( 1
h

∑h
j=1 κ

2
j) log2 x

=

∑h
j=1 κjωj(α)−

(
1
h

∑h
j=1 κj

)
log2 x√

( 1
h

∑h
j=1 κ

2
j) log2 x

+O((log2 x)−1/6).

Since only o(x) ideals (α) land in E, and (log2 x)−1/6 = o(1), Theorem 7 implies Theorem 1
with

A =
1

hD

∑
τ∈T

τ maximal

h∏
i=1

1

ti(τ)!
i.e., A =

1

DhD

h∑
j=1

κj,

and

B =
1

hD−1/2

√√√√ h∑
j=1

κ2
j .

Example (Calculation of A and B when the class group is cyclic; cf. [BÖRS05, §4]). Suppose
that Cl(ZK) is a cyclic group of order h. Then D = h. (See [Nar04, §9.1] for basic facts
about Davenport constants.) We suppose the ideal classes are numbered so that, under a
fixed isomorphism of Cl(ZK) with Z/hZ, the class Ci corresponds to i mod h. Then there are
φ(h) types τ of maximum length, namely (0, , . . . , 0, h, 0, . . . , 0), where the allowed positions
for ‘h’ are precisely the units mod h (compare with [GR09, Corollary 2.1.4, p. 24]). From
(7), we see that κj = 1

(h−1)!
when gcd(j, h) = 1 and κj = 0 otherwise. After a bit of algebra,

we arrive at

A =
1

hhh!
φ(h) and B =

1

hhh!
(h3φ(h))1/2,

as claimed in the introduction.

4. Proof of Theorem 7

To prove Theorem 7, we follow very closely the approach to the Erdős–Kac theorem detailed
by Granville and Soundararajan [GS07]. By the method of moments (the Fréchet-Shohat
theorem), to prove Theorem 7 it is sufficient to establish the following estimates.
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Proposition 8. Let k be a fixed positive integer. Suppose that x is sufficiently large. If k is
even, then

∑
(α)

0<|N(α)|≤x

(
f(α)−

(
1

h

k∑
j=1

κj

)
log2 x

)k

=
Ψx

h
· k!

2k/2 · k
2
!

(
1

h

h∑
j=1

κ2
j

)k/2

(log2 x)k/2 +O(x(log2 x)
k−1
2 ).

If k is odd, then ∑
(α)

0<|N(α)|≤x

(
f(α)−

(
1

h

k∑
j=1

κj

)
log2 x

)k

= O((log2 x)
k−1
2 ).

Here the implied constants may depend not only on K but also on k and the κj.

Proposition 8 will be deduced from the following technical lemma. For a nonzero prime
ideal p of ZK , we set κp = κj, where j is that index for which p ∈ Cj.

Lemma 9. For each nonzero prime ideal p of ZK, and each nonzero ideal a of ZK, set

gp(a) =

{
1− 1

Np
if p | a,

− 1
Np

if p - a.

Fix a positive integer k. Suppose x is sufficiently large, and let z = x
1

2dk . If k is even, then∑
(α)

0<|N(α)|≤x

( ∑
Np≤z

κpgp(α)

)k
=

Ψx

h
· k!

2k/2 · k
2
!

(
1

h

h∑
j=1

κ2
j

)k/2

(log2 x)k/2 +O(x(log2 x)
k
2
−1).

If k is odd, then ∑
(α)

0<|N(α)|≤x

( ∑
Np≤z

κpgp(α)

)k
= O((log2 x)

k−1
2 ).

Here the implied constants may depend on K, k, and the κj.

Deduction of Proposition 8 from Lemma 9. For each j, let ωj(α; z) denote the number of
prime ideal factors p of (α) with p ∈ Cj and Np ≤ z. Using Lemma 4, we see that∑

Np≤z

κpgp(α) =
∑
p|α
Np≤z

κp −
∑
Np≤z

κp
Np

=
h∑
j=1

κjωj(α; z)−
h∑
j=1

κj

(
1

h
log2 z +O(1)

)

= f(α)−
(

1

h

h∑
j=1

κj

)
log2 x+O(1).

To go from the first line to the second, we used that log2 z = log2 x+O(1) and that (α) can
have only O(1) prime ideal factors of norm exceeding z. We deduce that(

f(α)−
(

1

h

h∑
j=1

κj

)
log2 x

)k

=

(∑
Np≤z

κpgp(α)

)k

+O

(
k−1∑
`=0

∣∣∣∣ ∑
Np≤z

κpgp(α)

∣∣∣∣`
)
.
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Sum both sides over principal ideals (α) with 0 < |N(α)| ≤ x. To estimate the main term
on the right-hand side, we may appeal to Lemma 9. We can also use Lemma 9 to see that
the even values of ` make an acceptable contribution to the error term. If ` is odd, we use
Cauchy–Schwarz to deduce that

∑
(α): 0<|N(α)|≤x

∣∣∣∣ ∑
Np≤z

κpgp(α)

∣∣∣∣`

≤

 ∑
(α): 0<|N(α)|≤x

∣∣∣∣ ∑
Np≤z

κpgp(α)

∣∣∣∣`−1
1/2 ∑

(α): 0<|N(α)|≤x

∣∣∣∣ ∑
Np≤z

κpgp(α)

∣∣∣∣`+1
1/2

.

Appealing once more to Lemma 9, we find that the contribution of the odd ` also fits within
the O-term claimed in Proposition 8. �

Proof of Lemma 9. If r =
∏

i p
ei
i , put gr(a) =

∏
i gp(a)ei . Then

(8)
∑
(α)

0<|N(α)|≤x

( ∑
Np≤z

κpgp(α)

)k
=

∑
p1,...,pk

each Npi ≤ z

κp1 · · ·κpk
∑
(α)

0<|N(α)|≤x

gp1···pk(α).

To proceed, we consider more generally sums of the form∑
(α)

0<|N(α)|≤x

gr(α),

for any r with Nr ≤ zk. Write r = qe11 · · · qess , where the qi are distinct prime ideals. Put
R = q1 · · · qs. If d = gcd((α),R), then gr(α) = gr(d). Hence,

(9)
∑
(α)

0<|N(α)|≤x

gr(α) =
∑
d|R

gr(d)
∑
(α)

0<|N(α)|≤x
gcd((α),R)=d

1.

We turn attention to the right-hand inner sum. Observe that gcd((α),R) = d precisely when
d | α and αd−1 and Rd−1 are coprime. Thus, thinking of b = αd−1, the inner sum equals∑

b: Nb≤x/Nd
[b]=[d]−1

gcd(b,Rd−1)=1

1.

(Here and below, [·] denotes the image of an ideal in the class group Cl(ZK).) Letting µ
denote the Möbius function on Id(ZK),∑

b: Nb≤x/Nd
[b]=[d]−1

gcd(b,Rd−1)=1

1 =
∑

b: Nb≤x/Nd
[b]=[d]−1

∑
e|Rd−1

e|b

µ(e) =
∑

e|Rd−1

µ(e)
∑

b: Nb≤x/Nd
[b]=[d]−1

e|b

1.
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Writing b = ef, we see that∑
e|Rd−1

µ(e)
∑

b: Nb≤x/Nd
[b]=[d]−1

e|b

1 =
∑

e|Rd−1

µ(e)
∑

f: N f≤x/N(de)
[f]=[de]−1

1

=
∑

e|Rd−1

(
Ψx

h

µ(e)

NdNe
+O

((
x

N(de)

)1−1/d
))

=
Ψx

h ·Nd
· φ(Rd−1)

N(Rd−1)
+O

x1−1/d
∑

e|Rd−1

1

(N(de))1−1/d

 .

(Here the ideal-theoretic φ-function is defined by φ(u) = #(O/u)×.) Plugging this back into
(9), and using that |gr(d)| ≤ 1,

∑
(α)

0<|N(α)|≤x

gr(α) =
Ψx

h
· 1

NR

∑
d|R

gr(d)φ(Rd−1) +O

(
x1−1/d

∑
d,e
de|R

1

N(de)1−1/d

)
.

The error term here is harmless: For any ε > 0, there are �ε N(R)ε ≤ zkε = xε/2d ideal
divisors of R. Hence, the number of pairs d, e with de dividing R is crudely�ε x

ε/d. Trivially,
1/N(de)1−1/d ≤ 1, and so we see (taking ε = 1/4) that the O-term above is O(x1− 3

4d ). The
sum on d dividing R appearing in the main term can be explicitly evaluated; we find that

(10)
∑
(α)

0<|N(α)|≤x

gr(α) =
Ψx

h
·G(r) +O(x1− 3

4d ),

where

G(r) :=
∏
qe‖r

(
1

Nq

(
1− 1

Nq

)e
+

(
−1

Nq

)e(
1− 1

Nq

))
.

We see from this formula that G(r) vanishes unless r is squarefull, by which we mean that
each prime ideal divisor of r is repeated.

Substituting (10) back into (8),

∑
(α)

0<|N(α)|≤x

( ∑
Np≤z

κpgp(α)

)k
=

Ψx

h

∑
p1,...,pk

each Npi≤z
p1···pk squarefull

κp1 · · ·κpkG(p1 · · · pk) +O(x1− 3
4d zk).

The O-term is � x1− 1
4d , which will be negligible for us. The main term can be rewritten as

Ψx

h

∑
s≤k/2

1

s!

∑
q1,...,qs

qi distinct
each Nqi≤z

∑
e1,...,es≥2∑

ei=k

k!

e1! · · · es!
· κe1q1 · · ·κ

es
qs ·G(qe11 · · · qess ).
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Let us estimate the contribution from the values of s < k/2. We use the easily seen
inequality |G(qe11 · · · qess )| ≤ 1

N(q1···qs) to deduce that

Ψx

h

∑
s<k/2

1

s!

∑
q1,...,qs

qi distinct
each Nqi≤z

∑
e1,...,es≥2∑

ei=k

k!

e1! · · · es!
· κe1q1 · · ·κ

es
qs ·G(qe11 · · · qess )

� x
∑
s<k/2

∑
q1,...,qs

each Nqi ≤ z

1

N(q1 · · · qs)
= x

∑
s<k/2

(∑
Nq≤z

1

Nq

)s

� x(log2 x)b(k−1)/2c,

since each s in the sum is at most k−1
2

and
∑

Nq≤z
1
Nq
≤ log2 x + O(1). Thus, the values

s < k/2 contribute � x(log2 x)
k−1
2 when k is odd and � x(log2 x)

k
2
−1 when k is even. This

completes the proof of Lemma 9 in the odd k case.
When k is even, there is an additional contribution corresponding to s = k/2 and e1 =

e2 = · · · = ek/2 = 2, of size

Ψx

h
· k!

2k/2 · k
2
!

∑
q1,...,qk/2
qi distinct

each Nqi≤z

k/2∏
i=1

κ2
qi

Nqi

(
1− 1

Nqi

)
.

Forgetting the distinctness restriction, we obtain an upper bound on this last sum of( ∑
Nq≤z

κ2
q

Nq

)k/2

=

(
h∑
j=1

κ2
j

∑
Nq≤z
q∈Cj

1

Nq

)k/2

≤

((
1

h

h∑
j=1

κ2
j

)
log2 x+O(1)

)k/2

=

(
1

h

h∑
j=1

κ2
j

)k/2

(log2 x)k/2 +O((log2 x)
k
2
−1).

It is easy to obtain a lower bound of the same form. Indeed, for any given choices of
q1, . . . , q k

2
−1,

∑
Nq≤z

q6=q1,...,q k
2−1

κ2
q

Nq

(
1− 1

Nq

)
≥
∑
Nq≤z

κ2
q

Nq
+O(1) =

h∑
j=1

κ2
j

∑
Nq≤z
q∈Cj

1

Nq
+O(1)

=

(
1

h

h∑
j=1

κ2
j

)
log2 z +O(1) =

(
1

h

h∑
j=1

κ2
j

)
log2 x+O(1).

Repeating this procedure, we eventually find that∑
q1,...,qk/2
qi distinct

each Nqi≤z

h∏
i=1

κ2
qi

Nqi

(
1− 1

Nqi

)
≥

((
1

h

h∑
j=1

κ2
j

)
log2 x+O(1)

)k/2

=

(
1

h

h∑
j=1

κ2
j

)k/2

(log2 x)k/2 +O((log2 x)
k
2
−1).

Combining these estimates with the results of the preceding paragraph completes the proof
in the even k case. �
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Remark. Theorem 7 could also be proved by applying the results of [Kro66, Chapter 2], with
Lemma 4 used as the analytic input. De Kroon proves an Erdős–Kac theorem for f |Prin(ZK),
for additive functions f on Id(ZK) satisfying conditions analogous to those in the main
theorem of [EK40]. De Kroon’s approach follows [EK40], in that the central limit theorem is
used in combination with Brun’s sieve. We have preferred to give a more self-contained proof
illustrating the flexibility of the method of [GS07].

5. Remarks on Theorem 1

5.1. A Prin(ZK)-analogue of an observation of Kac. Let d(n) denote the classical divisor

function. In 1941, Kac [Kac41] showed that log d(n)
log 2

is normally distributed with mean and

variance log2 n. This can be proved by the following simple argument: According to [EK40],
both ω(n) and Ω(n) are normally distributed with mean and variance log2 n; now observe
that 2ω(n) ≤ d(n) ≤ 2Ω(n) for all n.

Substituting the results of [Liu04] for those of [EK40], an identical argument shows that
the divisor function on Id(ZK) — which by abuse of notation we will also denote d — is
normally distributed with mean and variance log2N(a). Seeking a Prin(ZK) analogue, define
δ(α) for nonzero α ∈ ZK as the number of nonassociate divisors of α. It turns out that δ is

distributed in the same way as d, by which we mean that log δ(α)
log 2

is normal with mean and

variance log2 |N(α)|.
Let us sketch the proof. First, one shows that ω(α) :=

∑h
i=1 ωi(α) and Ω(α) :=

∑h
i=1 Ωi(α)

are both normally distributed with mean and variance log2 |N(α)|. For ω, this follows from
Theorem 7 with κ1 = · · · = κh = 1. The Ω assertion then follows from Proposition 6. (For
these claims, one could also appeal to [Kro66].) Next, one observes that δ(α) ≤ d(α) ≤ 2Ω(α).
On the other hand, one can construct many nonassociate divisors of α by the following recipe:
For each i = 1, 2, . . . , h, list the distinct prime ideal divisors of α belonging to Ci, choose a
subset of these whose cardinality is a multiple of h, and then multiply the prime ideals from
each of these subsets. This construction yields

δ(α) ≥
h∏
i=1

( ∑
0≤j≤ωi(α)

h|j

(
ωi(α)

j

))
.

For each i, the sum on j is� 2ωi(α). (One can see this by rewriting the sum as 1
h

∑
ζ(1+ζ)ωi(α),

where ζ runs over the hth roots of unity, and noting that ζ = 1 dominates.) It follows that

δ(α)� 2ω1(α)+···+ωh(α) = 2ω(α).

Thus,

2ω(α)+O(1) ≤ δ(α) ≤ 2Ω(α),

and now we can obtain the normal distribution result for δ in the same way as for d.

5.2. Average order results. One can show that as x→∞, the average of ν(α) on principal
ideals (α) of norm ≤ x is ∼ A(log log x)D (for the same constant A from Theorem 1), while
the corresponding average of δ(α) is ∼ Ψ

h
log x. These estimates are considerably simpler

to prove than the normal order results discussed above. Indeed, they follow more or less
immediately from∑

(π): |N(π)|≤x
π irreducible

1

|N(π)|
∼ A(log log x)D and

∑
(α): 0<|N(α)|≤x

1

|N(α)|
∼ Ψ

h
log x.



12 PAUL POLLACK

The second of these may be derived quickly by partial summation from Lemma 3. The
first can be proved by methods discussed earlier in this article, or by partial summation in
conjunction with Rémond’s asymptotic formula for the count of nonassociate irreducibles of
bounded norm [Rém66, Théorème II, pp. 391–392, and Corollaire, pp. 409–410].

6. Equidistribution of ν(α) in residue classes:
Proof of Theorem 2

Below, we say a multiplicative function f on Id(ZK) is of finite order if for some positive
integer r, all of the nonzero values of f are rth roots of unity.

Lemma 10. Let f be a multiplicative function on Id(ZK) of finite order. Suppose that

(11)
∑
f(p)6=1

1

Np
diverges.

Then f has mean value 0 on Id(ZK), in the sense that∑
Na≤x

f(a) = o(x),

as x→∞.

Proof. This appears to be well-known when K = Q, and the argument in the general case is
the same; for lack of a suitable reference we sketch the proof. We use a theorem of Halász
[Hal68], as generalized to “arithmetic semigroups” (a setting which includes Id(ZK)) by Lucht
and Reifenrath [LR01, Theorem 6.1]. It suffices to show that for each real number t, the
series

(12)
∑
p

1−<(f(p) ·N(p)−it)

Np

diverges. The divergence when t = 0 follows quickly from (11). Now suppose that t 6= 0.
Fix a positive integer r such that f(Id(ZK)) is contained in {0} ∪ {ζ : ζr = 1}. The prime
ideal theorem implies that for �r x/ log x prime ideals of norm not exceeding x, the quantity
N(p)it lies at a distance �r 1 from each rth root of unity; the divergence of (12) is an easy
consequence. �

Lemma 11. Let f be a multiplicative function on Id(ZK) of finite order. Suppose that∑
p principal
f(p)6=1

1

Np
diverges.

Then f has mean value 0 along each ideal class, in the sense that for each i = 1, 2, . . . , h,∑
Na≤x
a∈Ci

f(a) = o(x),

as x→∞.

Proof. By the orthogonality relations for group characters, it suffices to show that for each
character χ of the class group Cl(ZK), the function χf has mean value 0 on Id(ZK). This
follows immediately from Lemma 10. �
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Proof of Theorem 2. Throughout this proof, we assume that the ideal classes Ci are numbered
so that C1 is the principal class. By the orthogonality relations for additive characters mod
m, it suffices to show that for all nontrivial mth roots of unity ζ,

(13)
∑
(α)

0<|N(α)|≤x

ζν(α) = o(x), as x→∞.

Fix a nonzero, squarefull ideal s of ZK . We study the contribution to (13) from (α) with
squarefull part s in Id(ZK). Write (α) = su, so that u is a squarefree ideal, s and u are
comaximal, and [u] = [s]−1. Then

(14) ν(α) =
∑
τ∈T

ντ (α) = ω1(α) +
∑
τ∈T

t1(τ)=0

ντ (α),

and
ω1(α) = ω1(s) + ω1(u).

(We used here that (1, 0, . . . , 0) is the only type in Twith a nonvanishing t1 coefficient, and
that ν(1,0,...,0)(α) = ω1(α).) For each τ ∈ Twith t1(τ) = 0, let

D(s, τ) = {d ∈ Id(ZK) : d | s, Ωi(d) ≤ ti(τ) for all i = 1, 2, . . . , h}.
Any irreducible of type τ dividing α can be written uniquely as the product of an element of
D(s, τ) and a cofactor relatively prime to s. Thus,

(15) ντ (α) =
∑

d∈D(s,τ)

h∏
i=1

(
Ωi(α)− Ωi(s)

ti(τ)− Ωi(d)

)
=

∑
d∈D(s,τ)

h∏
i=2

(
ωi(u)

ti(τ)− Ωi(d)

)
.

Keeping in mind the universal bound ti(τ) ≤ h, it follows from (15) that the residue class
class mod m of ∑

τ∈T
t1(τ)=0

ντ (α)

depends only on the vector

(ω2(u) mod mh!, . . . , ωh(u) mod mh!) ∈ (Z/mh!Z)h−1.

Consequently, finite Fourier theory implies that

ζ
∑
τ∈T, t1(τ)=0 ντ (α)

can be written as a finite C-linear combination of terms of the form

ζ
ω2(u)
2 · · · ζωh(u)

h ,

where ζ2, . . . , ζh are (mh!)th roots of unity. Referring back to (14), we see that ζν(α) is a
finite C-linear combination of expressions of the form

ζω1(u)ζ
ω2(u)
2 · · · ζωh(u)

h .

Thus, ∑
(α)

squarefull part s
0<|N(α)|≤x

ζν(α)

is a finite C-linear combination of sums of the form∑
Nu≤x/N(s)

[u]=[s]−1

1gcd(u,s)=1 · µ2(u) · ζω1(u)ζ
ω2(u)
2 · · · ζωh(u)

h .
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For all choices of (mh)!th roots of unity ζ2, . . . , ζh, the function

u 7→ 1gcd(u,s)=1 · µ2(u) · ζω1(u)ζ
ω2(u)
2 · · · ζωh(u)

h

satisfies the conditions of Lemma 11. Hence, the contribution to (13) from (α) with a fixed
squarefull part is o(x), as x→∞.

We now finish the proof of Theorem 2. Let ε > 0. Let B be a large, fixed real number.
Continuing to use s for the squarefull part of (α), we see that the contribution to (13) from
(α) with Ns ≤ B is o(x), as x→∞. On the other hand,∣∣∣∣∣ ∑

(α)
0<|N(α)|≤x
Ns>B

ζν(α)

∣∣∣∣∣ ≤ ∑
s squarefull
B<Ns≤x

∑
Na≤x
s|a

1� x
∑

s squarefull
Ns>B

1

Ns
.

The sum appearing here is the tail of a convergent series, since∑
s squarefull

1

Ns
=
∏
p

(
1 +

1

Np2
+

1

Np3
+ . . .

)
<∞.

So if we choose B sufficiently large, those (α) with Ns > B contribute less than εx. Since
ε > 0 is arbitrary, Theorem 2 follows. �

Remark. The distribution of δ(α) in residue classes is much more complicated than that of
ν(α), even in the case K = Q (for which see [Nar86, Chapter 5, §3]).
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[EK40] P. Erdős and M. Kac, The Gaussian law of errors in the theory of additive number theoretic
functions, Amer. J. Math. 62 (1940), 738–742.

[Ell80] P.D.T.A. Elliott, Probabilistic number theory II: Central limit theorems, Grundlehren der Mathe-
matischen Wissenschaften, vol. 240, Springer-Verlag, Berlin-New York, 1980.

[GHK06] A. Geroldinger and F. Halter-Koch, Non-unique factorizations: Algebraic, combinatorial and
analytic theory, Pure and Applied Mathematics, vol. 278, Chapman & Hall/CRC, Boca Raton,
FL, 2006.

[GR09] A. Geroldinger and I.Z. Ruzsa, Combinatorial number theory and additive group theory, Advanced
Courses in Mathematics, CRM Barcelona, Birkhäuser Verlag, Basel, 2009.
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[Lan03] , Über die zahlentheoretische Funktion µ(k), SBer. Kais. Akad. Wissensch. Wien 112 (1903),
537–570.
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