ERRATA TO "DISTRIBUTION IN COPRIME RESIDUE CLASSES OF POLYNOMIALLY-DEFINED MULTIPLICATIVE FUNCTIONS"

(1) In the paragraph following the statement of Theorem 1.3, it is claimed that $D^{\omega(q)}>(\log x)^{(1+\delta) \alpha(q)}$ can happen already with $\log q$ of order $\log _{2} x /\left(\log _{3} x\right)^{D-1}$. What should have been claimed is that this can happen for $\log q \ll_{D} \log _{2} x$ (this weaker result is all that is needed to show condition (i) reflects a genuine obstruction to uniformity). It suffices to take q as the product of primes from $D+1$ to $K_{D} \log x$, where K_{D} is a large constant depending on D. (To estimate $\alpha(q)$ we use that F has on average one root per prime, which is a consequence of the prime ideal theorem applied to the number field cut out by F.)
(2) The argument for the absolute irreducibility of $F(x) F(y)-w$ appearing at the end of $\S 6$ requires repair. A correct proof is as follows:

Suppose that $F(x) F(y)-w=U(x, y) V(x, y)$ for some $U(x, y), V(x, y) \in \overline{\mathbb{F}}_{\ell}[x, y]$. Then for each root $\theta \in \overline{\mathbb{F}}_{\ell}$ of F, we find that $-w=U(\theta, y) V(\theta, y)$, and so in particular $U(\theta, y)$ is constant. Thus, if we write

$$
U(x, y)=\sum_{k \geq 0} a_{k}(x) y^{k}
$$

with each $a_{k}(x) \in \overline{\mathbb{F}}_{\ell}[x]$, then $a_{k}(\theta)=0$ for each $k>0$. Since F has no multiple roots over $\overline{\mathbb{F}}_{\ell}$, each such $a_{k}(x)$ is forced to be a multiple of $F(x)$, hence $U(x, y) \equiv a_{0}(x)(\bmod F(x))$. A symmetric argument shows that $V(x, y) \equiv b_{0}(y)(\bmod F(y))$ for some $b_{0}(y) \in \overline{\mathbb{F}}_{\ell}[y]$, so that $V(x, \theta)=b_{0}(\theta)$. Consequently, for any root $\theta \in \overline{\mathbb{F}}_{\ell}$ of F,

$$
-w \equiv F(x) F(\theta)-w \equiv U(x, \theta) V(x, \theta) \equiv a_{0}(x) b_{0}(\theta) \quad(\bmod F(x)),
$$

which shows that $U(x, y) \equiv a_{0}(x) \equiv c(\bmod F(x))$ for some constant $c \in \overline{\mathbb{F}}_{\ell}$. But this forces $c=$ $U(\theta, \theta)$, showing that $F(x)$ divides $U(x, y)-U(\theta, \theta)$. By symmetry, so does $F(y)$, and we obtain $U(x, y)=U(\theta, \theta)+F(x) F(y) Q(x, y)$ for some $Q(x, y) \in \overline{\mathbb{F}}_{\ell}[x, y] .{ }^{1}$ Degree considerations now imply that for $U(x, y)$ to divide $F(x) F(y)-w$, either $Q(x, y)$ is a nonzero constant, in which case $V(x, y)$ is constant, or $Q(x, y)=0$, in which case $U(x, y)$ is constant.

[^0]
[^0]: ${ }^{1}$ In the published version, it was argued (incorrectly) that $F(x), F(y)$ divide $U(x, y)-U(0,0)$.

