SUMS OF PROPER DIVISORS FOLLOW THE ERDŐS-KAC LAW

PAUL POLLACK AND LEE TROUPE

Abstract

Let $s(n)=\sum_{d \mid n, d<n} d$ denote the sum of the proper divisors of n. The secondnamed author proved that $\omega(s(n)$) has normal order $\log \log n$, the analogue for s-values of a classical result of Hardy and Ramanujan. We establish the corresponding Erdős-Kac theorem: $\omega(s(n))$ is asymptotically normally distributed with mean and variance $\log \log n$. The same method applies with $s(n)$ replaced by any of several other unconventional arithmetic functions, such as $\beta(n):=\sum_{p \mid n} p, n-\varphi(n)$, and $n+\tau(n)(\tau$ being the divisor function).

1. Introduction

Let $s(n)=\sum_{d \mid n, d<n} d$ denote the sum of the proper divisors of the positive integer n, so that $s(n)=\sigma(n)-n$. Interest in the value distribution of $s(n)$ traces back to the ancient Greeks, but the modern study of $s(n)$ could be considered to begin with Davenport [Dav33], who showed that $s(n) / n$ has a continuous distribution function $D(u)$. Precisely: For each real number u, the set of n with $s(n) \leq u n$ has an asymptotic density $D(u)$ which varies continuously with u. Moreover, $D(0)=0$ and $\lim _{u \rightarrow \infty} D(u)=1$.
While the values of $\sigma(n)=\prod_{p^{e} \| n} \frac{p^{e+1}-1}{p-1}$ are multiplicatively special, we expect shifting by $-n$ to rub out the peculiarities. That is, we expect the multiplicative statistics of $s(n)$ to resemble those of numbers of comparable size. By Davenport's theorem, it is usually safe to interpret "of comparable size" to mean "of the same order of magnitude as n itself".

Various results in the literature validate this expectation about $s(n)$. For example, the first author has shown [Pol14] that $s(n)$ is prime for $O(x / \log x)$ values of $n \leq x$ (and he conjectures that the true count is $\sim x / \log x$, in analogy with the prime number theorem). The second author [Tro20] has proved, in analogy with a classical result of Landau and Ramanujan, that there are $\asymp x / \sqrt{\log x}$ values of $n \leq x$ for which $s(n)$ is a sum of two squares. Writing $\omega(n)$ for the number of distinct prime factors of n, he also showed [Tro15] that $\omega(s(n))$ has normal order $\log \log n$. This is in harmony with the classical theorem of Hardy and Ramanujan [HR00] that $\omega(n)$ itself has normal order $\log \log n$.

In this note, we pick back up the study of $\omega(s(n))$. Strengthening the result of [Tro15], we prove that $\omega(s(n))$ satisfies the conclusion of the Erdős-Kac theorem [EK40].

Theorem 1. Fix a real number u. As $x \rightarrow \infty$,

$$
\frac{1}{x} \#\{1<n \leq x: \omega(s(n))-\log \log x \leq u \sqrt{\log \log x}\} \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{u} \mathrm{e}^{-\frac{1}{2} t^{2}} \mathrm{~d} t .
$$

2020 Mathematics Subject Classification. Primary 11N37; Secondary 11N56, 11N64.
P.P. is supported by NSF award DMS-2001581.

To prove Theorem 1, we adapt a simple and elegant proof of the Erdős-Kac theorem due to Billingsley ([Bil69], or [Bil95, pp. 395-397]). Making this go requires estimating, for squarefree d, the number of $n \leq x$ for which $d \mid s(n)$. A natural attack on this latter problem is to break off the largest prime factor P of n, say $n=m P$. Most of the time, P does not divide m, so that $\sigma(n)=\sigma(m)(P+1)$. Then asking for d to divide $s(n)$ amounts to imposing the congruence $s(m) P \equiv-\sigma(m)(\bmod d)$. For a given m, the corresponding P are precisely those that lie in a certain interval I_{m} and a certain (possibly empty) set of arithmetic progressions. At this point we adopt (and adapt) a strategy of Banks, Harman, and Shparlinski [BHS05]. Rather than analytically estimate the number of these P, we relate the count of such P back to the total number of primes in the interval I_{m}, which we leave unestimated! This allows one to avoid certain losses of precision in comparison with [Tro15]. A similar strategy was used recently in [LLPSR] to show that $s(n)$, for composite $n \leq x$, is asymptotically uniformly distributed modulo primes $p \leq(\log x)^{A}$ (with $A>0$ arbitrary but fixed).

Our proof of Theorem 1 is fairly robust. In the final section, we describe the modifications necessary to prove the corresponding result with $s(n)$ replaced by $\beta(n):=\sum_{p \mid n} p, n-\varphi(n)$, or $n+\tau(n)$, where $\tau(n)$ is the usual divisor-counting function.

For other recent work on the value distribution of $s(n)$, see [LP15, PP16, Pom18, PPT18].
Notation. Throughout, the letters p and P are reserved for primes. We write (a, b) for the greatest common divisor of a, b. We let $P^{+}(n)$ denote the largest prime factor of n, with the convention that $P^{+}(1)=1$. We write $\log _{k}$ for the k th iterate of the natural logarithm. We use \mathbb{E} for expectation and \mathbb{V} for variance.

2. Outline

We let x be a large real number and we work on the probability space

$$
\Omega:=\left\{n \leq x: n \text { composite, } P^{+}(n)>x^{1 / \log _{4} x}, \text { and } P^{+}(n)^{2} \nmid n\right\},
$$

equipped with the uniform measure. Standard arguments (compare with the proof of Lemma 2.2 in [Tro15]) show that as $x \rightarrow \infty$,

$$
\# \Omega=(1+o(1)) x
$$

We let $y=(\log x)^{2}$ and $z=x^{1 / \log _{3} x}$, and we define

$$
\mathcal{P}=\{\text { primes } p \text { with } y<p \leq z\} .
$$

It turns out that counting prime factors of $s(n)$ from this "truncated" set of primes is sufficient (cf. equation (3) and the surrounding discussion). Our choice of z as a function of x for which $\log z / \log x$ decays to zero sufficiently slowly will be familiar to students of Billingsley's proof. The need to introduce y is less apparent. Shortly we will need to bound the frequency with which d divides $s(n)$ for certain products d of primes from \mathcal{P}. Perhaps surprisingly, our method below only gives good control of this proportion when d has no small prime factors. There is some flexibility in what we choose to count as "small"; $y=(\log x)^{2}$ turns out to be a convenient threshold for bounding the error terms that appear.

For each prime $p \leq x^{2}$, we introduce the random variable X_{p} on Ω defined by

$$
X_{p}(n)= \begin{cases}1 & \text { if } p \mid s(n) \\ 0 & \text { otherwise }\end{cases}
$$

We let Y_{p} be Bernoulli random variables which take the value 1 with probability $1 / p$. We define

$$
X=\sum_{p \in \mathcal{P}} X_{p} \quad \text { and } \quad Y=\sum_{p \in \mathcal{P}} Y_{p}
$$

we think of Y as an idealized model of X.
Observe that

$$
\begin{align*}
\mu:=\mathbb{E}[Y]=\sum_{p \in \mathcal{P}} \frac{1}{p} & =\log \log z-\log \log y+o(1) \\
& =\log \log x+o(\sqrt{\log \log x}) \tag{1}
\end{align*}
$$

while

$$
\begin{equation*}
\sigma^{2}:=\mathbb{V}[Y]=\sum_{p \in \mathcal{P}} \frac{1}{p}\left(1-\frac{1}{p}\right) \sim \log \log x \tag{2}
\end{equation*}
$$

We renormalize Y to have mean 0 and variance 1 by defining

$$
\tilde{Y}=\frac{Y-\mu}{\sigma}
$$

Lemma 2. \tilde{Y} converges in distribution to the standard normal \mathcal{N}, as $x \rightarrow \infty$. Moreover, $\mathbb{E}\left[\tilde{Y}^{k}\right] \rightarrow \mathbb{E}\left[\mathcal{N}^{k}\right]$ for each fixed positive integer k.

Proof (sketch). Both claims follow from the proof in [Bil95, pp. 391-392] of the central limit theorem through the method of moments. One needs only that the recentered variables $Y_{p}^{\prime}:=$ $Y_{p}-\frac{1}{p}$, for $p \in \mathcal{P}$, are independent mean 0 variables of finite variance, bounded by 1 in absolute value, with $\sum_{p \in \mathcal{P}} \mathbb{V}\left[Y_{p}^{\prime}\right] \rightarrow \infty$ as $x \rightarrow \infty$. (Note that $\sum_{p \in \mathcal{P}} \mathbb{V}\left[Y_{p}^{\prime}\right]=\sum_{p \in \mathcal{P}} \mathbb{V}\left[Y_{p}\right]=\mathbb{V}[Y]=\sigma^{2}$ in our above notation.)

Let $\tilde{X}=\frac{X-\mu}{\sigma}$. The next section is devoted to the proof of the following proposition.
Proposition 3. For each fixed positive integer k,

$$
\mathbb{E}\left[\tilde{X}^{k}\right]-\mathbb{E}\left[\tilde{Y}^{k}\right] \rightarrow 0
$$

Lemma 2 and Proposition 3 imply that $\mathbb{E}\left[\tilde{X}^{k}\right] \rightarrow \mathbb{E}\left[\mathcal{N}^{k}\right]$, for each k. So by the method of moments [Bil95, Theorem 30.2, p. 390], $\tilde{X}=\frac{X-\mu}{\sigma}$ converges in distribution to the standard normal.
This is most of the way towards Theorem 1 . Since $\# \Omega=(1+o(1)) x$ and μ, σ satisfy the estimates (1), (2), Theorem 1 will follow if we show that $\frac{\omega(s(\cdot))-\mu}{\sigma}$ (viewed as a random variable on $\Omega)$ converges in distribution to the standard normal. Observe that $s(n) \leq \sum_{d<n} d<n^{2} \leq x^{2}$
for every $n \leq x$. So defining $X^{(s)}=\sum_{p \leq y} X_{p}$ and $X^{(l)}=\sum_{z<p \leq x^{2}} X_{p}$, we have $\omega(s(\cdot))=$ $X^{(s)}+X+X^{(l)}$ on Ω and

$$
\begin{equation*}
\frac{\omega(s(\cdot))-\mu}{\sigma}=\tilde{X}+\frac{X^{(s)}}{\sigma}+\frac{X^{(\ell)}}{\sigma} . \tag{3}
\end{equation*}
$$

Since \tilde{X} converges to the standard normal, to complete the proof of Theorem 1 it suffices to show that $\frac{X^{(s)}}{\sigma}$ and $\frac{X^{(\ell)}}{\sigma}$ converge to 0 in probability (see [Bil95, Theorem 25.4, p. 332]). Convergence to 0 in probability is obvious for $X^{(\ell)} / \sigma$: A positive integer not exceeding x^{2} has at most $\frac{\log \left(x^{2}\right)}{\log z}=2 \log _{3} x$ prime divisors exceeding z, so that

$$
\left|X^{(\ell)} / \sigma\right| \leq 2 \log _{3} x / \sigma=o(1)
$$

on the entire space Ω. Since $\sigma \sim \sqrt{\log \log x}$, that $X^{(s)} / \sigma$ tends to 0 in probability follows from the next lemma together with Markov's inequality.

Lemma 4. $\mathbb{E}\left[X^{(s)}\right] \ll \log _{3} x \log _{4} x$ for all large x.
Proof. Put $L=x^{1 / \log _{4} x}$, and for each $m \leq x$, let $L_{m}=\max \left\{x^{1 / \log _{4} x}, P^{+}(m)\right\}$. The n belonging to Ω are precisely the positive integers n that admit a decomposition $n=m P$, where $m>1$ and $L_{m}<P \leq x / m$. Note that this decomposition of n is unique whenever it exists, since one can recover P from n as $P^{+}(n)$.

Let $n \in \Omega$ and write $n=m P$ as above. Then $s(m P)=\sigma(m)(P+1)-m P=P s(m)+\sigma(m)$. Hence, for each $p \leq y$,

$$
\sum_{n \in \Omega} X_{p}(n)=\sum_{\substack{n \in \Omega \\ p \mid s(n)}} 1=\sum_{\substack{1<m<x / L}} \sum_{\substack{L m<P \leq x / m \\ P s(m) \equiv-\sigma(m)(\bmod p)}} 1 .
$$

If $p \nmid s(m)$, then the congruence $P s(m) \equiv-\sigma(m)(\bmod p)$ puts P in a determined congruence class $\bmod p($ possibly $0 \bmod p)$. By Brun-Titchmarsh, the number of such $P \leq x / m$ is

$$
\ll \frac{x}{m p \log (x / m p)} \ll \frac{x \log _{4} x}{m p \log x} .
$$

(We use here that $x / m p>L / p>L^{1 / 2}$ and $\log \left(L^{1 / 2}\right) \gg \log x / \log _{4} x$.) On the other hand, if $p \mid s(m)$, then the congruence $\operatorname{Ps}(m) \equiv-\sigma(m)(\bmod p)$ has integer solutions P only when $p \mid \sigma(m)$, in which case $p \mid \sigma(m)-s(m)=m$. In that scenario, every prime P satisfies $P s(m) \equiv-\sigma(m)(\bmod p)$. Since there are $\ll \frac{x \log _{4} x}{m \log x}$ primes $P \leq x / m$, we conclude that

$$
\sum_{1<m<x / L} \sum_{\substack{L_{m}<P \leq x / m \\ P s(m) \equiv-\sigma(m)(\bmod p)}} 1 \ll \sum_{\substack{m \leq x \\ p \mid m}} \frac{x \log _{4} x}{m \log x}+\sum_{m \leq x} \frac{x \log _{4} x}{m p \log x} \ll \frac{x \log _{4} x}{p} .
$$

Keeping in mind that $|\Omega| \sim x$,

$$
\mathbb{E}\left[X^{(s)}\right] \ll \frac{1}{x} \sum_{p \leq y} \frac{x \log _{4} x}{p} \ll \log _{4} x \log _{2} y \ll \log _{4} x \log _{3} x
$$

3. Completion of the proof of Theorem 1: Proof of Proposition 3

Throughout this section, k is a fixed positive integer. All estimates are to be understood as holding for x large enough, allowed to depend on k, and implied constants in Big-oh relations and \ll symbols may depend on k.

Recalling the definitions of \tilde{X}, \tilde{Y} and expanding,

$$
\begin{aligned}
\mathbb{E}\left[\tilde{X}^{k}\right]-\mathbb{E}\left[\tilde{Y}^{k}\right] & =\frac{1}{\sigma^{k}} \sum_{j=1}^{k}\binom{k}{j}(-\mu)^{k-j}\left(\mathbb{E}\left[X^{j}\right]-\mathbb{E}\left[Y^{j}\right]\right) \\
& \ll\left(\log _{2} x\right)^{O(1)} \sum_{j=1}^{k}\left|\mathbb{E}\left[X^{j}\right]-\mathbb{E}\left[Y^{j}\right]\right|
\end{aligned}
$$

For each $j=1,2, \ldots, k$,

$$
\mathbb{E}\left[X^{j}\right]-\mathbb{E}\left[Y^{j}\right]=\sum_{p_{1}, \ldots, p_{j} \in \mathcal{P}}\left(\mathbb{E}\left[X_{p_{1}} \cdots X_{p_{j}}\right]-\mathbb{E}\left[Y_{p_{1}} \cdots Y_{p_{j}}\right]\right)
$$

Writing d for the product of the distinct primes from the list p_{1}, \ldots, p_{j}, we have $X_{p_{1}} \cdots X_{p_{j}}=$ $\prod_{p \mid d} X_{p}, Y_{p_{1}} \cdots Y_{p_{j}}=\prod_{p \mid d} Y_{p}$, and

$$
\mathbb{E}\left[X_{p_{1}} \cdots X_{p_{j}}\right]-\mathbb{E}\left[Y_{p_{1}} \cdots Y_{p_{j}}\right]=\frac{1}{|\Omega|} \sum_{\substack{n \in \Omega \\ d \mid s(n)}} 1-\frac{1}{d}
$$

Observe that given d and j, there are only $O(1)$ possibilities for the original list p_{1}, \ldots, p_{j}. Since there are $O(1)$ possibilities for j, we conclude that

$$
\mathbb{E}\left[\tilde{X}^{k}\right]-\mathbb{E}\left[\tilde{Y}^{k}\right] \ll\left(\log _{2} x\right)^{O(1)} \sum_{\substack{d \text { squarefree } \\ p \mid d \Rightarrow p \in \mathcal{P} \\ \omega(d) \leq k}}\left|\frac{1}{|\Omega|} \sum_{\substack{n \in \Omega \\ d \mid s(n)}} 1-\frac{1}{d}\right| .
$$

We will show that

$$
\begin{equation*}
\sum_{\substack{d \text { squarefree } \\ p \mid d \Rightarrow p \in \mathcal{P} \\ \omega(d) \leq k}}\left|\frac{1}{|\Omega|} \sum_{\substack{n \in \Omega \\ d \mid s(n)}} 1-\frac{1}{d}\right| \ll \frac{\left(\log _{2} x\right)^{O(1)}}{\log x} . \tag{4}
\end{equation*}
$$

Hence, $\mathbb{E}\left[\tilde{X}^{k}\right]-\mathbb{E}\left[\tilde{Y}^{k}\right] \rightarrow 0$ as claimed.
Let d be a product of at most k distinct primes from \mathcal{P}. It will be useful in subsequent arguments to keep in mind that $d=x^{O\left(1 / \log _{3} x\right)}$, and so is of size $L^{o(1)}$. Decomposing each $n \in \Omega$ in the form $m P$, as in the proof of Lemma 4, we see that

$$
\begin{equation*}
\sum_{\substack{n \in \Omega \\ d \mid s(n)}} 1=\sum_{1<m<x / L} \sum_{\substack{L_{m}<P \leq x / m \\ P s(m)+\sigma(m) \equiv 0(\bmod d)}} 1, \tag{5}
\end{equation*}
$$

where as before $L=x^{1 / \log _{4} x}$ and $L_{m}=\max \left\{x^{1 / \log _{4} x}, P^{+}(m)\right\}$. To analyze the right-hand double sum, we consider various cases for m.

Say that m is d-compatible if for every prime p dividing d, either p divides both $s(m)$ and $\sigma(m)$ or p divides neither. Then m is d-compatible precisely when the congruence $u s(m)+\sigma(m) \equiv 0$ $(\bmod d)$ has a solution u coprime to d; in this case, the primes P with $\operatorname{Ps}(m)+\sigma(m) \equiv 0$ $(\bmod d)$ are precisely those belonging to a certain coprime residue class modulo $d /(d, s(m))$. We call $m d$-ideal if $\operatorname{gcd}(d, s(m) \sigma(m))=1$; equivalently, m is d-ideal if m is d-compatible and $\operatorname{gcd}(d, s(m))=1$. Note that only d-compatible values of m contribute to the right side of (5).

When m is d-ideal,

$$
\sum_{\substack{\left.L_{m}<P \leq x / m \\ n\right)+\sigma(m) \equiv 0(\bmod d)}} 1=\frac{1}{\varphi(d)} \sum_{L_{m}<P \leq x / m} 1+O(E(x / m ; d)),
$$

where

$$
E(T ; q):=\max _{2 \leq t \leq T} \max _{\operatorname{gcd}(a, q)=1}\left|\pi(t ; q, a)-\frac{\pi(t)}{\varphi(q)}\right| .
$$

So the contribution to the right-hand side of (5) from d-ideal m is

$$
\begin{align*}
\frac{1}{\varphi(d)} \sum_{1<m<x / L} \sum_{L_{m}<P \leq x / m} 1 & -\frac{1}{\varphi(d)} \sum_{\substack{1<m<x / L \\
\text { not } d \text {-ideal }}} \sum_{L_{m}<P \leq x / m} 1+O\left(\sum_{m<x / L} E(x / m ; d)\right) \tag{6}\\
& =\frac{|\Omega|}{\varphi(d)}-\frac{1}{\varphi(d)} \sum_{\substack{1<m<x / L \\
\text { not } d \text {-ideal }}} \sum_{L_{m}<P \leq x / m} 1+O\left(\sum_{m<x / L} E(x / m ; d)\right) .
\end{align*}
$$

Since d is a product of $O(1)$ primes all of which exceed y, the first main term here admits the estimate

$$
\begin{equation*}
\frac{|\Omega|}{\varphi(d)}=\frac{|\Omega|}{d}(1+O(1 / y))=\frac{|\Omega|}{d}+O(x / d y) \tag{7}
\end{equation*}
$$

We bound the second main term, involving the double sum on m, P, from above. The inner sum is no more than $\pi(x / m) \ll \frac{x}{m \log (x / m)} \ll \frac{x \log _{4} x}{m \log x}$, so that

$$
\begin{equation*}
\frac{1}{\varphi(d)} \sum_{\substack{1<m<x / L \\ \text { not } d \text {-ideal }}} \sum_{L_{m}<P \leq x / m} 1 \ll \frac{x \log _{4} x}{\log x} \sum_{\substack{1<m<x / L \\ \text { not } d \text {-ideal }}} \frac{1}{m d} . \tag{8}
\end{equation*}
$$

Next, we investigate the contribution to the right-hand side of (5) from m that are d-compatible but not d-ideal. For these m, the corresponding primes P are restricted to a progression mod $d /(d, s(m))$, and so by the Brun-Titchmarsh inequality these m contribute

$$
\begin{equation*}
\ll \sum_{\substack{1<m<x / L \\ d \text {-compat } \\ \text { not } d \text {-ideal }}} \frac{x}{m \cdot \varphi(d /(d, s(m))) \log (x(d, s(m)) / m d)} \ll \frac{x \log _{4} x}{\log x} \sum_{\substack{1<m<x / L \\ d \text {-compat } \\ \text { not } d \text {-ideal }}} \frac{(d, s(m))}{m d} . \tag{9}
\end{equation*}
$$

We derive from (6), (7), (8), and (9) that

$$
\left|\frac{1}{|\Omega|} \sum_{\substack{n \in \Omega \\ d \mid s(n)}} 1-\frac{1}{d}\right| \ll \frac{1}{x} \sum_{m<x / L}|E(x / m ; d)|+\frac{1}{d y}+\frac{\log _{4} x}{\log x} \sum_{\substack{1<m<x / L \\ \text { not } d \text {-ideal }}} \frac{1}{m d}+\frac{\log _{4} x}{\log x} \sum_{\substack{1<m<x / L \\ d-\text { compat } \\ \text { not } d \text {-ideal }}} \frac{(d, s(m))}{m d} .
$$

Now we sum on d.
First off, the Bombieri-Vinogradov theorem implies that

$$
\begin{aligned}
\sum_{\substack{d \text { squarefree } \\
p \mid d \Rightarrow p \in \mathcal{P} \\
\omega(d) \leq k}}\left(\frac{1}{x} \sum_{m<x / L}|E(x / m ; d)|\right) & \leq \frac{1}{x} \sum_{m<x / L} \sum_{d \leq(x / m)^{1 / 3}}|E(x / m ; d)| \\
& \ll \frac{1}{x} \sum_{m<x / L} \frac{x / m}{(\log (x / m))^{2}} \ll \frac{\left(\log _{4} x\right)^{2}}{(\log x)^{2}} \sum_{m<x / L} \frac{1}{m} \ll \frac{\left(\log _{4} x\right)^{2}}{\log x}
\end{aligned}
$$

Next,

$$
\sum_{\substack{d \text { squarefree } \\ p \mid d \Rightarrow p \in \mathcal{P} \\ \omega(d) \leq k}} \frac{1}{d y} \leq \frac{1}{y} \sum_{j=0}^{k} \frac{1}{j!}\left(\sum_{p \in \mathcal{P}} \frac{1}{p}\right)^{j} \ll \frac{\left(\log _{2} x\right)^{k}}{(\log x)^{2}}
$$

Continuing, note that if m is not d-ideal, then there is a prime $p \mid d$ with $p \mid s(m) \sigma(m)$. Hence,

$$
\begin{aligned}
& \sum_{\substack{d \text { squarefree } \\
p \mid d \Rightarrow p \in \mathcal{P} \\
\omega(d) \leq k}}\left(\frac{\log _{4} x}{\log x} \sum_{\substack{1<m<x / L \\
\text { not } d-\text { ideal }}} \frac{1}{m d}\right) \leq \frac{\log _{4} x}{\log x} \sum_{\substack{d \text { squarefree } \\
p \mid d \Rightarrow p \in \mathcal{P} \\
\omega(d) \leq k}} \frac{1}{d} \sum_{\substack{p \mid d}} \sum_{\substack{1<m<x / L \\
p \mid s(m) \sigma(m)}} \frac{1}{m} \\
& \leq \frac{\log _{4} x}{\log x} \sum_{1<m<x / L} \frac{1}{m} \sum_{\substack{p \mid s(m) \sigma(m) \\
p \in \mathcal{P}}} \sum_{\substack{d \leq x \text { squarefree } \\
p \\
\omega(d) \leq k}} \frac{1}{d} \ll \frac{\left(\log _{2} x\right)^{O(1)}}{\log x} \sum_{1<m<x / L} \frac{1}{m} \sum_{\substack{p \mid s(m) \sigma(m) \\
p \in \mathcal{P}}} \frac{1}{p} .
\end{aligned}
$$

Since each $p \in \mathcal{P}$ exceeds y, the final sum on p is $\ll \omega(s(m) \sigma(m)) / y \ll \log x / y=1 / \log x$, and so the last displayed expression is

$$
\ll \frac{\left(\log _{2} x\right)^{O(1)}}{(\log x)^{2}} \sum_{1<m<x / L} \frac{1}{m} \ll \frac{\left(\log _{2} x\right)^{O(1)}}{\log x}
$$

Finally, suppose m is d-compatible but not d-ideal. Then $(d, s(m))>1,(d, s(m)) \mid \sigma(m)$, and $(d, s(m)) \mid \sigma(m)-s(m)=m$. Hence, thinking of d^{\prime} as $(d, s(m))$,

$$
\begin{equation*}
\sum_{\substack{d \text { squarefree } \\ p \mid d \Rightarrow p \in \mathcal{P} \\ \omega(d) \leq k}}\left(\frac{\log _{4} x}{\log x} \sum_{\substack{1<m<x / L \\ d \text {-compat } \\ \text { not } d \text {-ideal }}} \frac{(d, s(m))}{m d}\right) \leq \frac{\log _{4} x}{\log x} \sum_{\substack{d \text { squarefree } \\ p q \Rightarrow p \in \mathcal{P} \\ \omega(d) \leq k}} \frac{1}{d} \sum_{\substack{d^{\prime} \mid d \\ d^{\prime}>1}} d^{\prime} \sum_{\substack{1<m<x / L \\ d^{\prime}\left|m, d^{\prime}\right| \sigma(m)}} \frac{1}{m} . \tag{10}
\end{equation*}
$$

Let us estimate the inner sum on m. Write $m=d^{\prime} m^{\prime}$. The contribution to that sum from m with $\left(d^{\prime}, m^{\prime}\right)>1$ is at most

$$
\sum_{p \mid d^{\prime}} \frac{1}{d^{\prime}} \sum_{\substack{m^{\prime}<x \\ p \mid m^{\prime}}} \frac{1}{m^{\prime}} \ll \frac{1}{d^{\prime}} \log x \sum_{p \mid d^{\prime}} \frac{1}{p} \ll \frac{\log x}{d^{\prime} y} \omega\left(d^{\prime}\right) \ll \frac{1}{d^{\prime} \log x} .
$$

Suppose now that $\operatorname{gcd}\left(d^{\prime}, m^{\prime}\right)=1$. If $d^{\prime} \mid \sigma(m)$, then $P^{+}\left(d^{\prime}\right) \mid \sigma\left(d^{\prime}\right) \sigma\left(m^{\prime}\right)$, while $P^{+}\left(d^{\prime}\right)>$ $P^{+}\left(\sigma\left(d^{\prime}\right)\right)$ (since d^{\prime} is a squarefree product of odd primes and $\left.d^{\prime}>1\right)$. Thus, $P^{+}\left(d^{\prime}\right) \mid \sigma\left(m^{\prime}\right)$. Choose a prime power $q^{e} \| m^{\prime}$ with $P^{+}\left(d^{\prime}\right) \mid \sigma\left(q^{e}\right)$. If $e \geq 2$, then $y<P^{+}\left(d^{\prime}\right) \leq \sigma\left(q^{e}\right)<2 q^{e}$, and so m^{\prime} has squarefull part exceeding $y / 2$. If $e=1$, then $q \| m^{\prime}$ with $q \equiv-1\left(\bmod P^{+}\left(d^{\prime}\right)\right)$. Hence, these m make a contribution to the inner sum bounded by

$$
\begin{array}{r}
\frac{1}{d^{\prime}}\left(\sum_{\substack{r>y / 2 \\
\text { squarefull }}} \sum_{\substack{m^{\prime}<x \\
r \mid m^{\prime}}} \frac{1}{m^{\prime}}+\sum_{p \mid d^{\prime}} \sum_{\substack{q<x \text { prime } \\
q \equiv-1(\bmod p)}} \sum_{\substack{m^{\prime}<x \\
q \mid m^{\prime}}} \frac{1}{m^{\prime}}\right) \ll \frac{\log x}{d^{\prime}}\left(\sum_{\substack{r>y / 2 \\
\text { squarefull }}} \frac{1}{r}+\sum_{\substack{p \mid d^{\prime}}} \sum_{\substack{q<x \text { prime } \\
q \equiv-1(\bmod p)}} \frac{1}{q}\right) \\
\ll \frac{\log x}{d^{\prime}}\left(\frac{1}{\log x}+\sum_{p \mid d^{\prime}} \frac{\log x}{p}\right) \ll \frac{1}{d^{\prime}}+\frac{(\log x)^{2}}{d^{\prime}} \sum_{p \mid d^{\prime}} \frac{1}{p} \ll \frac{1}{d^{\prime}}+\frac{(\log x)^{2}}{d^{\prime}} \frac{1}{y} \ll \frac{1}{d^{\prime}} .
\end{array}
$$

Inserting these estimates back above, the right-hand side of (10) is seen to be

$$
\ll \frac{\log _{4} x}{\log x} \sum_{\substack{\text { squarefree } \\ p \mid d \Rightarrow p \in \mathcal{P} \\ \omega(d) \leq k}} \frac{1}{d} \sum_{\substack{d^{\prime} \mid d \\ d^{\prime}>1}} 1 \ll \frac{\log _{4} x}{\log x} \sum_{\substack{d \text { squarefree } \\ p \mid d \Rightarrow p \in \mathcal{P} \\ \omega(d) \leq k}} \frac{1}{d} \ll \frac{\left(\log _{2} x\right)^{O(1)}}{\log x} .
$$

Assembling the last several estimates yields (4), which completes the proof of Theorem 1.
Remark. As with most variants of Erdős-Kac, Theorem 1 remains valid if we count prime factors with multiplicity. Define $\omega^{\prime}(n)=\sum_{p^{k} \| n} k$. (We avoid the more familiar notation $\Omega(n)$, since Ω denotes our sample space.) It is shown in [Tro15] that, for a certain subset Ω^{\prime} of $(1, x]$ containing $(1+o(1)) x$ elements,

$$
\frac{1}{x} \sum_{n \in \Omega^{\prime}(x)}\left(\omega^{\prime}(s(n))-\omega(s(n))\right) \ll\left(\log _{3} x\right)^{2} .
$$

(See p. 133 of [Tro15].) It follows that away from a set of $o(x)$ elements of $(1, x]$, we have $\omega^{\prime}(s(n))-\omega(s(n))<(\log \log x)^{0.49}$ (say). Hence, the Erdős-Kac theorem for $\omega^{\prime}(s(n))$ is a consequence of the corresponding theorem for $\omega(s(n))$.

4. Other arithmetic functions

The astute reader will observe that many of the calculations above do not depend on properties specific to $s(n)$. In this section, we discuss how to adapt the previous argument for other arithmetic functions.
Let f be an integer-valued arithmetic function with $f(n)$ nonzero for $n>1$ and $|f(n)| \leq x^{O(1)}$ for all $n \leq x$. Assume that for all positive integers m and all primes P not dividing m, there are integers $a(m)$ and $b(m)$ such that $f(m P)=P a(m)+b(m)$, with $a(m), b(m)$ nonzero for $m>1$. Finally, assume that $|a(m)|,|b(m)| \leq x^{O(1)}$ for all $1<m \leq x$. (For $f(n)=s(n)$, we
have $0<s(n) \leq x^{2}$ when $1<n \leq x$, and $s(m P)=P s(m)+\sigma(m)$ for any positive integer m and any prime $P \nmid m$.) All symbols are defined as in Section 2, except that the random variable X_{p} is now equal to 1 if $p \mid f(n)$ and is 0 otherwise.
To obtain an Erdős-Kac-type result for $\omega(f(n))$, we follow the same general strategy as in the case $f(n)=s(n)$. By the method of moments, Lemma 2 and the analogue of Proposition 3 (once shown) will establish that $\tilde{X}=\frac{X-\mu}{\sigma}$ converges in distribution to the standard normal. Recall that $y=(\log x)^{2}$ and $z=x^{1 / \log _{3} x}$; then

$$
\frac{\omega(f(\cdot))-\mu}{\sigma}=\tilde{X}+\frac{X^{(s)}}{\sigma}+\frac{X^{(l)}}{\sigma}
$$

where $X^{(s)}=\sum_{p \leq y} X_{p}$ and $X^{(l)}=\sum_{z<p \leq x^{c}} X_{p}$, where $c>0$ is a constant such that $|f(n)| \leq x^{c}$ for all $n \leq x$.
As before, our task is to show that $\frac{X^{(s)}}{\sigma}$ and $\frac{X^{(l)}}{\sigma}$ converge to 0 in probability. The argument for $X^{(l)}$ is the same, with the exponent 2 replaced by c. For $X^{(s)}$, we again hope to use Markov's inequality coupled with an upper bound for $\mathbb{E}\left[X^{(s)}\right]$ of size $o\left(\sqrt{\log _{2} x}\right)$, analogous to Lemma 4. The argument there yields, in this case,

$$
\mathbb{E}\left[X^{(s)}\right] \ll \log _{3} x \log _{4} x+\frac{\log _{4} x}{\log x} \sum_{p \leq y} \sum_{\substack{m \leq x \\ p \mid a(m) \text { and } p \mid b(m)}} \frac{1}{m} .
$$

Thus, the aim is to show that

$$
\sum_{p \leq y} \sum_{\substack{m \leq x \\ p \mid a(m) \text { and } p \mid b(m)}} \frac{1}{m}=o\left(\frac{\sqrt{\log _{2} x}}{\log _{4} x} \log x\right)
$$

We now turn our attention to the analogue of Proposition 3. Say that m is d-compatible if for every $p \mid d$, either p divides both $a(m)$ and $b(m)$ or p divides neither; and m is d-ideal if $\operatorname{gcd}(d, a(m) b(m))=1$. Equivalently, m is d-ideal if m is d-compatible and $\operatorname{gcd}(d, a(m))=1$. Tracing through the argument in Section 3, we see that few of the calculations depend on specific properties of $f(n)$; in fact, the analogue of Proposition 3 is established if

$$
\sum_{\substack{d \text { squarefree } \\ p \mid d \Rightarrow p \in \mathcal{P} \\ \omega(d) \leq k}} \sum_{\substack{1<m<x \\ d<\text { compat } \\ \text { not } d \text {-ideal }}} \frac{(d, a(m))}{m d} \ll\left(\log _{2} x\right)^{O(1)} .
$$

We summarize the above discussion in the following proposition.
Proposition 5. Suppose $f(n)$ is an integer-valued arithmetic function with $f(n)$ nonzero when $n>1$ and $|f(n)| \leq x^{O(1)}$ for all $n \leq x$. Suppose also that for every positive integer m, there are $a(m)$ and $b(m)$ such that

$$
f(m P)=P a(m)+b(m) \text { for all primes } P \text { not dividing } m,
$$

and that

$$
|a(m)|,|b(m)| \leq x^{O(1)} \quad \text { whenever } m \leq x
$$

Suppose also that $a(m), b(m)$ are nonzero whenever $m>1$. Then, if

$$
\begin{equation*}
\sum_{p \leq y} \sum_{\substack{m \leq x \\ p \mid a(m) \\ \text { and } p \mid b(m)}} \frac{1}{m}=o\left(\frac{\sqrt{\log _{2} x}}{\log _{4} x} \log x\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\substack{d \text { squarefree } \\ p \mid d \Rightarrow p \in \mathcal{P} \\ \omega(d) \leq k}} \sum_{\substack{1<m<x \\ d-c o m p a t \\ \text { not d-ideal }}} \frac{(d, a(m))}{m d} \ll\left(\log _{2} x\right)^{O(1)}, \tag{12}
\end{equation*}
$$

Theorem 1 is true with $f(n)$ in place of $s(n)$.
4.1. The sum of prime divisors. For each positive integer n, let $\beta(n):=\sum_{p \mid n} p$ denote the sum of the prime divisors of n. If $1<n \leq x$, then $0<\beta(n) \leq n \leq x$. If P is a prime not dividing the integer m, then

$$
\beta(m P)=P+\beta(m) .
$$

We apply Proposition 5 , with $f(n)=\beta(n), a(m)=1$, and $b(m)=\beta(m)$. Since $a(m)=1$, one quickly observes that the sums on the left-hand sides of (11) and (12) are empty. Thus, Theorem 1 holds with $\beta(n)$ in place of $s(n)$. The same argument applies, verbatim, with $\beta(n)$ replaced by $A(n)=\sum_{p^{k} \| n} k p$, where prime factors are summed with multiplicity. For other work on the value distribution of $\beta(n)$ and $A(n)$, see [Hal70, Hal71, Hal72, AE77, Pol14, Gol17].
4.2. A shifted divsior function. Let $f(n)=n+\tau(n)$, where $\tau(n)$ denotes the number of divisors of n. Then if $n \leq x, f(n)<x^{O(1)}$ trivially. If P is a prime not dividing the positive integer m, then

$$
f(m P)=m P+\tau(m P)=P m+2 \tau(m),
$$

so $a(m)=m$ and $b(m)=2 \tau(m)$ in this case. For $m \leq x$, the largest exponent appearing in the prime factorization of m, and hence the largest prime divisor of $\tau(m)$, is $\ll \log x$. This means there is no value of m that is d-compatible but not d-ideal, since every prime $p \mid d$ satisfies $p>(\log x)^{2}$. Equation (12) is therefore satisfied, since the sum is empty.

Equation (11) is handled nearly as easily. Ignoring the condition $p \mid b(m)$ in the inner sum, the left-hand side of (11) is at most

$$
\begin{equation*}
\sum_{p \leq y} \sum_{\substack{m \leq x \\ p \mid m}} \frac{1}{m} \ll \log x \sum_{p \leq y} \frac{1}{p} \ll \log x \log _{3} x=o\left(\frac{\sqrt{\log _{2} x}}{\log _{4} x} \log x\right) \tag{13}
\end{equation*}
$$

as desired. Thus, by Proposition 5, Theorem 1 holds with $f(n)=n+\tau(n)$ in place of $s(n)$. Similar arguments apply to $n-\tau(n)$ and $n \pm \omega(n)$. The functions $n-\tau(n)$ and $n-\omega(n)$ appear in work of Luca [Luc05]; for each of these two functions, he shows that the range is missing infinitely many positive integers.
4.3. The cototient function. Let $f(n)=n-\varphi(n)$, where (as above) $\varphi(n)$ is Euler's totient function. (See [Erd73, BS95, FL00, GM05, PY14, PP16] for studies of the range of $n-\varphi(n)$.) Note that $0<f(n)<n$ for $n>1$ and, if P is a prime not dividing m,

$$
f(m P)=P m-\varphi(P m)=P m-(P-1) \varphi(m)=P(m-\varphi(m))+\varphi(m)
$$

We apply Proposition 5 with $f(n)=n-\varphi(n), a(m)=m-\varphi(m)$, and $b(m)=\varphi(m)$. We first observe that equation (11) can be established as in (13), noting that if $p \mid a(m)$ and $p \mid b(m)$, then $p \mid a(m)+b(m)=m$. To show (12), use the argument surrounding (10), replacing $s(m)$ by $a(m)=m-\varphi(m)$ and $\sigma(m)$ by $b(m)=\varphi(m)$. The argument carries through with only the slightest of modifications. By Proposition 5, Theorem 1 holds with $f(n)=n-\varphi(n)$ in place of $s(n)$.

Several other applications of our method could be given, although some require slight changes to the framework. For example, fix an integer $a \neq 0$ and consider the shifted totient function $f(n)=\varphi(n)+a$. It is not hard to prove that the hypotheses of Proposition 5 are satisfied with $a(m)=\varphi(m)$ and $b(m)=-\varphi(m)+a$, with one exception: If $a>0$ is in the range of φ, then $b(m)$ will vanish at some $m>1$. However, it is still true that $b(m)$ is nonvanishing for all $m>m_{0}(a)$, and one can simply run our argument with the condition $n / P^{+}(n)>m_{0}(a)$ added to the definition of Ω.

Acknowledgements

We thank the referees for helpful comments and queries which led to improvements in the exposition.

References

[AE77] K. Alladi and Erdős, P., On an additive arithmetic function, Pacific J. Math. 71 (1977), 275-294.
[BHS05] W.D. Banks, G. Harman, and I.E. Shparlinski, Distributional properties of the largest prime factor, Michigan Math. J. 53 (2005), 665-681.
[Bil69] P. Billingsley, On the central limit theorem for the prime divisor functions, Amer. Math. Monthly 76 (1969), 132-139.
[Bil95] , Probability and measure, third ed., Wiley Series in Probability and Mathematical Statistics, John Wiley \& Sons, Inc., New York, 1995.
[BS95] J. Browkin and A. Schinzel, On integers not of the form $n-\varphi(n)$, Colloq. Math. 68 (1995), 55-58.
[Dav33] H. Davenport, Über numeri abundantes, S.-Ber. Preuß. Akad. Wiss., math.-nat. Kl. (1933), 830-837.
[EK40] P. Erdős and M. Kac, The Gaussian law of errors in the theory of additive number theoretic functions, Amer. J. Math. 62 (1940), 738-742.
[Erd73] P. Erdős, Über die Zahlen der Form $\sigma(n)-n$ und $n-\varphi(n)$, Elem. Math. 28 (1973), 83-86.
[FL00] A. Flammenkamp and F. Luca, Infinite families of noncototients, Colloq. Math. 86 (2000), 37-41.
[GM05] A. Grytczuk and B. Mędryk, On a result of Flammenkamp-Luca concerning noncototient sequence, Tsukuba J. Math. 29 (2005), 533-538.
[Gol17] D. Goldfeld, On an additive prime divisor function of Alladi and Erdős, Analytic number theory, modular forms and q-hypergeometric series, Springer Proc. Math. Stat., vol. 221, Springer, Cham, 2017, pp. 297-309.
[Hal70] R.R. Hall, On the probability that n and $f(n)$ are relatively prime, Acta Arith. 17 (1970), 169-183, corrigendum in 19 (1971), 203-204.
[Hal71] _ On the probability that n and $f(n)$ are relatively prime. II, Acta Arith. 19 (1971), 175-184.
[Hal72] _, On the probability that n and $f(n)$ are relatively prime. III, Acta Arith. 20 (1972), 267-289.
[HR00] G.H. Hardy and S. Ramanujan, The normal number of prime factors of a number n [Quart. J. Math. 48 (1917), 76-92], Collected papers of Srinivasa Ramanujan, AMS Chelsea Publ., Providence, RI, 2000, pp. 262-275.
[LLPSR] N. Lebowitz-Lockard, P. Pollack, and A. Singha Roy, Distribution mod p of Euler's totient and the sum of proper divisors, Michigan Math. J. (to appear).
[LP15] F. Luca and C. Pomerance, The range of the sum-of-proper-divisors function, Acta Arith. 168 (2015), 187-199.
[Luc05] F. Luca, On numbers not of the form $n-\omega(n)$, Acta Math. Hungar. 106 (2005), 117-135.
[Pol14] P. Pollack, Some arithmetic properties of the sum of proper divisors and the sum of prime divisors, Illinois J. Math. 58 (2014), 125-147.
[Pom18] C. Pomerance, The first function and its iterates, Connections in discrete mathematics, Cambridge Univ. Press, Cambridge, 2018, pp. 125-138.
[PP16] P. Pollack and C. Pomerance, Some problems of Erdős on the sum-of-divisors function, Trans. Amer. Math. Soc. Ser. B 3 (2016), 1-26.
[PPT18] P. Pollack, C. Pomerance, and L. Thompson, Divisor-sum fibers, Mathematika 64 (2018), 330-342.
[PY14] C. Pomerance and H.-S. Yang, Variant of a theorem of Erdős on the sum-of-proper-divisors function, Math. Comp. 83 (2014), 1903-1913.
[Tro15] L. Troupe, On the number of prime factors of values of the sum-of-proper-divisors function, J. Number Theory 150 (2015), 120-135.
[Tro20] , Divisor sums representable as the sum of two squares, Proc. Amer. Math. Soc. 148 (2020), 4189-4202.

Department of Mathematics, University of Georgia, Athens, GA 30602
Email address: pollack@uga.edu

Department of Mathematics, Mercer University, 1501 Mercer University Drive, Macon, GA 31207

Email address: troupe_lt@mercer.edu

