

Not always buried deep

Lies, Damned Lies, and Typos (Errata) Last updated: July 27, 2020

p. 4, line below the first displayed equation: Replace " $2^i | (\mathbf{Z}/p\mathbf{Z})^{\times}$ " with " $2^i | \#(\mathbf{Z}/p\mathbf{Z})^{\times}$ ".

p. 8, Hacks's proof: The reference to the transcendence of π was a bit glib. Replace the last sentence of the proof with the following:

The known proofs of the transcendence of π rely fairly explicitly on the infinitude of primes, so it is somewhat dangerous to appeal to this result directly. However, a weaker result which does not rely in an obvious way on this fact, and which nevertheless suffices for the current application, appears as Exercise 6 (cf. [AZ04, Chapter 6, Theorem 2]).

p. 17, first display: The first strict inequality should be non-strict, i.e., should read $\frac{4A-1}{4} \geq \frac{7}{4}$.

p. 17, next-to-last centered equation: " $N(\alpha)$ " should be " $\mathcal{N}(\alpha)$ ".

p. 20, Figure 3: The slope of line e_2 is a bit off; e_2 should be the reflection of e_1 about the *y*-axis.

p. 22, Theorem 1.15: This result should be starred, since it is not proved in the text.

p. 25, line below (1.12): The degree condition should read "deg $R < \deg G$ ".

p. 26, Theorems 1.21 and 1.22: The way Theorem 1.21 is currently stated, $F = \Phi_m$ always satisfies the conclusion. Before the final sentence, one should add: "Conversely, p is a prime divisor of F whenever $p \mod m \in H$."

Theorem 1.22 should have the extra condition on F that infinitely many prime divisors p of F satisfy $p \equiv a \pmod{m}$.

p. 28, last line: It is claimed that Iwaniec's result (that $n^2 + 1$ is infinitely often a product of at most two primes) applies to every quadratic polynomial satisfying the conditions of

Hypothesis H. This was actually not established by Iwaniec, but it is true, as shown a few decades later by Lemke Oliver.

p. 30, first full paragraph: The claim that we know no even number a > 1 for which $a^{2^n} + 1$ is infinitely often composite is false; e.g., if a = 8, then

$$8^{2^{n}} + 1 = (2^{2^{n}} + 1)(2^{2^{n+1}} - 2^{2^{n}} + 1).$$

More generally, whenever a is a kth power for some odd k > 1, there is an analogous algebraic factorization. The correct claim is that no *other* such a are proved to have the stated property.

p. 43, hint to Ex. 35: Delete "with respect to the same prime".

p. 55, eq. (2.4): The first group of terms should read

$$\zeta^{g^0} + \zeta^{g^2} + \dots + \zeta^{g^{p-3}};$$

in other words, the final term $\zeta^{g^{p-1}}$ should not be there.

p. 58, penultimate step in (2.5): Replace the summand " ζ^{e} " with " ζ^{u} ".

In the second line of the next display: delete the 1 from the parenthesized expression " $1 + \zeta + \cdots + \zeta^{p-1}$ ".

p. 60, last two line: End the last display with a period (not a comma). Replace the last line with of the proof with "By Lemma 2.17, $0 \equiv j \pmod{e}$. But this contradicts our choice of j."

p. 62, proof of Theorem 2.18: Right below "we have," the expansion of η_0 should only go to $\zeta^{g^{p-3}}$, not $\zeta^{g^{p-1}}$.

p. 65, proof of Lemma 2.24: In the displayed equation, replace the condition of summation " $\alpha \in \mathbf{F}_p \setminus \{0, 1\}$ " with " $\alpha \in \mathbf{F}_p \setminus \{0, -1\}$ ".

p. 69, first two words: The reference should be to Theorem 2.26, not Theorem 7.5.

p. 83, Exercise 13: The condition on p should be that the order of 2 (mod p) is not divisible by 3, not the order of 3 (mod p).

p. 83, Exercise 14: In the first sentence, replace the conditions on p and q with "q = 4n+1 and p = 24n + 7". Throughout the problem, replace " $q \mid 2^p - 1$ " with " $p \mid 2^q - 1$ ".

p. 87, Table: There are 455,052,511 primes up to 10¹⁰, not 455,052,512.

p. 91, Lemma 3.9: We prove that " $\sum_{d|n} \Lambda(d) = \log n$ ", not " $\sum_{d|n} \Lambda(n) = \log n$ ".

p. 108, Exercise 12(a): There is a "p" missing from the inside of the product.

p. 116, Exercise 34: The "O(1/n)" in the claim should be should be " $O(1/n^2)$ ". In other words, you should show that $\prod_{\deg P \le n} (1 - 1/|P|) = e^{-\gamma}/n + O(1/n^2)$.

p. 127, Theorem 4.2: In (4.16), the condition " $\chi = \psi^{-1}$ " should read " $\chi = \psi$ ".

p. 143, Exercise 9: In (b), the term $\frac{1}{\phi(q)}$ in the displayed equation should be $\frac{1}{\phi(m)}$. The left-hand sum should be over $p \leq x$ with $p \equiv a \pmod{m}$.

p. 145, remark to Exercise 17: Remove the words "infinitely many" from the description of the Deshouillers–Iwaniec theorem.

p. 146, Exercise 21(d): Insert absolute value signs around the sum in the statement of the Pólya–Vinogradov inequality.

p. 147, remark: The result of Graham and Ringrose is that the least quadratic nonresidue modulo p is infinitely often $\gg (\log p)(\log \log \log p)$. The text incorrectly has $\log p \log \log p$.

p. 173, equation (6.21): Replace $2^{\log z}$ with $2^{\log x}$.

p. 180, remark: Replace "sum of the twin prime pairs past 10^{16} " with "sum over the twin prime pairs past 10^{16} ".

p. 223, equations (7.18): Change " $\sum_{ab=n} \mu(a) (\sum_{d|b} \Lambda(b))^2$ " to " $\sum_{ab=n} \mu(a) (\sum_{d|b} \Lambda(d))^2$ ".

p. 237, Exercise 3: The definition of F(s) in part (a) should read $F(s) := (-1)^k (P^{(k)}(s) + \zeta^{(k-1)}(s))$. (In other words, the "-" sign should be a "+" sign.)

p. 257, final paragraph: Replace "number $(\log x)$ -smooth" with "number of $(\log x)$ -smooth".

p. 258, end of proof of Theorem 8.4: Delete one occurrence of "most" in "number of perfect numbers $\leq x$ is at most most $x^{W/\log \log x}$ ".

Five lines from the bottom: "Supposing that p^e does exactly divide m^2 " should read "Supposing that p^e does exactly divide $\sigma(m^2)$ ".

p. 264, bottom of the proof of Lemma 8.19: Replace "the primes p_1, \ldots, p_{K+1} satisfy (8.15) ..." with "the primes p_0, \ldots, p_{K+1} satisfy (8.15) ...".

pp. 272–273: Exercise 29. Ignore the reference to Exercise 6.25. That estimate is only necessary to prove the quantitative result that for some $\delta > 0$, there are $\gg x^{\delta}$ values of $n \leq x$ for which $\sigma(n)$ is a square.

Acknowledgements

Thanks to everyone who pointed out errors, especially Lior Bary-Soroker, Rebecca Black, David Harden, Jackson Hopper, Mizan Khan, Mits Kobayashi, Adam Lizzi, Nathaniel Monson, Carl Pomerance, and Enrique Treviño.