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Abstract. In a 1737 paper, Euler gave the first proof that the sum of the
reciprocals of the prime numbers diverges. That paper can be considered as
the founding document of analytic number theory, and its key innovation — so-
called Euler products — are now ubiquitous in the field. In this note, we probe
Euler’s claim there that “the sum of the reciprocals of the prime numbers” is
“as the logarithm” of the sum of the harmonic series. Euler’s argument for
this assertion falls far short of modern standards of rigor. Here we show how
to arrange his ideas to prove the more precise claim that
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1. Introduction

Analytic number theory is one area of mathematics whose birthday can be spec-
ified with pinpoint accuracy: April 25, 1737. On that date, Euler presented a
paper titled Variae observationes circa series infinitas (Various observations about
infinite series) to the St. Petersburg Academy [2]. Of the many theorems in this
paper, undoubtedly the most famous is the following seminal result.

Euler’s Theorem 19. The sum of the reciprocals of the prime numbers,
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is infinitely great but is infinitely times less than the sum of the harmonic series
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And the sum of the former is as the logarithm of the sum of the latter.

To a modern reader, Euler’s handling of infinite quantities in this statement is
puzzling. What does he mean when he writes that one infinite quantity is “infinitely
many times less” than another? The claim that former is “as the logarithm” of the
latter, far from helping to clarify matters, only contributes to the confusion.

One attempt to make sense of Euler’s claims brings in the idea of partial sums.
Euler knew well that
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⇡ log x (indeed, his eponymous constant � measures
the limiting error in this approximation [1]). So when Euler claims that “the sum
of the reciprocals of the prime numbers” is “as the logarithm” of the sum of the
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harmonic series, perhaps he is suggesting that for large values of x,
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⇡ log log x. (1)

Here and below, p always denotes a prime variable. If (1) is what Euler meant (as
hypothesized by Sandifer [9, Chap. 33, p. 194], Weil [14, Chap. 3, p. 266], and
others), then he was indeed correct. In 1874, Mertens [5] showed that the di↵erence
between the left and right-hand sides of (1) tends, as x ! 1, to the finite limit
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However, Mertens was working more than a century after Euler, and his methods
were very di↵erent. For instance, Mertens’ argument depends crucially on a result
of Legendre [4, pp. 8–10] describing how n! decomposes as a product of primes.
Abel’s method of partial summation also makes an appearance. Both of these
innovations date to the early 19th century. So what could Euler, working in 1737,
actually have known about the sum of prime reciprocals?

We review Euler’s argument in §2 below. On the face of it, his proof — while
su�cient to establish the divergence of the prime harmonic series — does not give
any quantitative result in the direction of (1). It is natural to wonder whether Euler
could have proved a version of (1) with the methods at his disposal. The object of
this note is to give a simple proof, inspired by Euler, of the following estimate.

Theorem 1. For all x > e4, we have
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Theorem 1 sharpens a result of Pétermann [7], who gave a proof by “Eulerian”
methods of the same inequality with 6 replaced by log log log x + C for a certain
constant C. An estimate of roughly the same quality as Pétermann’s, proved by a
di↵erent elementary method, was obtained earlier by Treiber [13].

2. Euler’s proof of Theorem 19

For real s > 1, put ⇣(s) =
P1

n=1
1
n

s and P (s) =
P

p
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s . It is usual to refer to

⇣(s) as the Euler–Riemann zeta function and to P (s) as the prime zeta function.
The following proposition and its proof represent a modernized version of Euler’s
argument for his Theorem 19.

Proposition 2. For all real s > 1, we have 0 < log ⇣(s)� P (s) < 1
2 .

Proof. We use the famous “Euler factorization” of the Riemann zeta function (see
[2, Theorem 8]). According to this result, we have for all s > 1 that
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(Euler only considers integral s, but his argument goes through without any changes
for real s > 1.) We now take the natural logarithm of both sides. Recalling that
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Since s > 1, we have
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which with (2) gives the desired estimate. ⇤

To obtain Theorem 19, Euler throws caution to the wind and sets s = 1 in
Proposition 2. His conclusion is that the sum of the reciprocals of the primes,
which is P (1), di↵ers by a bounded amount from the logarithm of the sum of the
harmonic series, which is log ⇣(1).

It is not hard to turn Euler’s proof into a rigorous demonstration that the sum
of the reciprocals of the primes diverges. Indeed, suppose for a contradiction that
P (1) converges. Then the above argument shows that ⇣(s) has a finite limit as
s # 1, contradicting the divergence of ⇣(1).

On the other hand, it seems clear that Euler’s proof does not yield a quantitative
form of (1) in any obvious way. Euler’s (amended) argument gives us information
about limiting behavior as s # 1, while to make (1) precise requires knowing about
limiting behavior as x ! 1. To have any hope of proving (1), a bridge needs to
be built between these two worlds.

3. Proof of Theorem 1

To prove Theorem 1, we supplement Proposition 2 with the following simple
bounds for ⇣(s).

Lemma 3. For all s > 1, we have 1 < (s� 1)⇣(s) < s.

Proof. Since t

�s is strictly decreasing for t � 1, we see that
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for every positive integer n. Summing on n gives ⇣(s)�1 <
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Multiplying through by s� 1 completes the proof. ⇤

Combining Proposition 2 and Lemma 3 yields the following key estimate.

Lemma 4. For all real s 2 (0, 1
2 ),
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Proof. Proposition 2 shows that� 1
2 < P (s+1)�log ⇣(s+1) < 0. On the other hand,

Lemma 3 shows that 1 < s⇣(s + 1) < 3
2 , so that 0 < log ⇣(s + 1) � log 1

s

< log 3
2 .

Adding these inequalities, and using that log 3
2 < ( 32 � 1) = 1

2 , completes the
proof. ⇤
Proof of Theorem 1. We assume throughout that x > e4. If � is a bounded function
defined on the interval [0, 1], we set

⌃(�;x) =
X

p

1/p

p

1/ log x

· �(p�1/ log x).

Notice that for the function

�0(t) :=

(
1/t if 1/e  t  1,

0 if 0  t < 1/e,

we have

⌃(�0;x) =
X

px

1

p

.

The idea of the proof is to replace �0 by linear polynomials � which dominate it
from above and below. Let �(t) = `0 + `1t. Then
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Since x > e4, we have 2
log x
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2 ; so from Lemma 4,
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We now prove Theorem 1 by making specific choices for �, illustrated in Figure 1.

• Upper bound: Take �(t) = �

(U)(t) := �et + (e + 1), so that the line
(t,�(t)) passes through (1/e, e) and (1, 1). Since the graph of 1/t is concave
up on [1/e, 1], it follows that �

(U)(t) � �0(t) when 1/e  t  1. Since
�

(U)(t) > e > 0 for 0  t < 1/e, we also have �

(U)(t) � �0(t) in that range.
So from (3),
X

px

1

p

= ⌃(�0;x)  ⌃(�(U);x)  log log x+
e + 1

2
+ e

✓
1

2
+ log 2

◆

< log log x+ 6.

• Lower bound: Take �(t) = �
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passes through (1/e, 0) and (1, 1). Since �
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So from (3) again,
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Figure 1. Graphs of the functions �(U), �(L), and �0 on [0, 1].

This completes the proof of Theorem 1. ⇤

Remarks.

(i) Being more careful about error terms, one can show that for any linear
polynomial �(t) = `0 + `1t satisfying �(1) = 1, we have

⌃(�;x) = log log x� `1 log 2� C + o(1),

where C :=
P

p
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k = 0.3157184520 . . . and o(1) denotes a quantity

that tends to zero as x ! 1. Choosing �(U) and �

(L) as before, we now find
that the constant 6 in Theorem 1 can be replaced with 2, provided that x
is assumed large enough. We have preferred to write the proof to optimize
readability rather than the final numerical result. In view of Mertens’ later
definitive work, numerical nitpicking seems pointless.

(ii) The chief novelty here is the upper bound. Indeed, it was observed already
by Sylvester in 1888 [10] (and perhaps by others earlier) that
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whenever x > 1. Now mimicking Euler’s argument for Theorem 19 gives
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where C is as in (i). (See [7, eq. (5)] and cf. [13, Satz 1].) This is superior
to our lower bound. In our defense, we find it appealing to deduce both
upper and lower estimates by a uniform method.
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4. Putting our proof in its place

The argument of the last section can be viewed as an elementary piece of Tauber-
ian reasoning. Roughly speaking, a Tauberian theorem is a device for converting
asymptotic information about weighted sums into asymptotic information valid
when the weights have been removed or replaced. The first result in this direction
was proved by Tauber in 1897 [11]: Suppose that
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that na
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! 0 as n ! 1. Then
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n=0 an = A.

In many applications to number theory, the weights to be stripped o↵ are not of
the form z

n but instead of the form n

�s; in other words, they come from Dirichlet
series, not power series. Making obvious changes to the proof of Theorem 1, we
arrive at the following simple Tauberian result for Dirichlet series with logarithmic
singularities.

Proposition 5. Suppose that the function F is given for real s > 1 by a convergent

Dirichlet series
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remains bounded. Then as x ! 1, the di↵erence
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Theorem 1 corresponds to the case F (s) = log ⇣(s).
More sophisticated Tauberian theorems imply finer results about the distribution

of primes. In fact, Tauberian theory furnishes what is arguably the simplest known
approach to the prime number theorem. See, for example, the remarkably pithy
expository article of Zagier [15], which is based on work of Newman [6] and Korevaar
[3]. For further discussion of the role of Tauberian theorems in analytic number
theory, the reader is invited to consult the comprehensive monographs of Postnikov
(see especially [8, Chapter 1]) and Tenenbaum [12, Chapter II.7].
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