ERRATA TO "EXTREMAL PRIMES FOR ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION"

Maknys's argument for the equidistribution result quoted as Proposition 2 is incomplete. In its place, one can substitute the following estimate, which is within the reach of current technology.

Proposition 2^{\prime}. Let K be an imaginary quadratic field. Fix $\mu, \nu \in \mathcal{O}_{K}$ with $\mu \neq 0$ and with $\nu \bmod \mu$ an invertible residue class. As $x \rightarrow \infty$,

$$
\sum_{\substack{\varpi \text { prime } \\ N \varpi \\ \text { prime } \\ x<N \varpi \leq x+x / \log x \\ \varpi \equiv \nu \quad(\bmod \mu) \\ \theta_{1}<\arg \varpi<\theta_{2}}} 1 \sim \frac{w_{K}}{h_{K} \varphi(\mu)} \cdot \frac{\theta_{2}-\theta_{1}}{2 \pi} \cdot \frac{x / \log x}{\log x},
$$

when $2 \pi \geq \theta_{2}-\theta_{1}>x^{-0.251}$. Here the estimate is uniform in the θ_{i}.
Our proof requires only minor modifications (one should now define $\mathcal{X}(\varpi)=\{X \in \mathbb{R}: X<N \varpi \leq$ $X+X / \log X\})$. We thank Joshua Stucky for bringing this issue to our attention and for helpful correspondence.

