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Abstract. Fix an elliptic curve E/Q. For each prime p of good reduction, let ap =
p + 1 − #E(Fp). A well-known theorem of Hasse asserts that |ap| ≤ 2

√
p. We say that

p is a champion prime for E if ap = −b2√pc, that is, #E(Fp) is as large as allowed by
the Hasse bound. Analogously, we call p a trailing prime if ap = b2√pc. In this note, we
study the frequency of champion and trailing primes for CM elliptic curves. Our main
theorem is that for CM curves, both the champion primes and trailing primes have counting
functions ∼ 2

3πx
3/4/ log x, as x→∞. This confirms (in corrected form) a recent conjecture

of James–Tran–Trinh–Wertheimer–Zantout.

1. Introduction

Let E/Q be an elliptic curve. For each prime p of good reduction, a 1933 theorem of
Hasse gives that #E(Fp) = p+ 1− ap for some integer ap (the trace of Frobenius) satisfying
|ap| ≤ 2

√
p. Thinking of p + 1 as the “main term” and ap as the “error”, it is natural to

ask how the normalized error terms ap
2
√
p

are distributed in [−1, 1]. The limiting distribution

takes different forms depending on whether or not E has complex multiplication (CM). The
following classical result gives the answer in the CM case.

Theorem A (Hecke [8, 9], Deuring [4, 5, 6, 7]). Suppose that E is an elliptic curve over Q
with complex multiplication. Then ap = 0 for asymptotically half of all primes p. Moreover,
for each subinterval [α, β] ⊆ [−1, 1],

lim
x→∞

1

π(x)
#

{
p ≤ x :

ap
2
√
p
∈ [α, β] \ {0}

}
=

1

2π

∫ β

α

dt√
1− t2

.

The non-CM case lies much deeper. The correct conjecture was formulated independently in
the 1960s by Mikio Sato and John Tate. It was finally resolved only in the last decade, in a
series of papers by (various subsets of) Barnet-Lamb, Clozel, Geraghty, Harris, Shepherd-
Barron, and Taylor, culminating in [1].

Theorem B (Sato–Tate “Conjecture”). Let E be an elliptic curve over Q without complex
multiplication. Then for each subinterval [α, β] ⊆ [−1, 1],

lim
x→∞

1

π(x)
#

{
p ≤ x :

ap
2
√
p
∈ [α, β]

}
=

2

π

∫ β

α

√
1− t2 dt.

This paper is a continuation of investigations begun in [13] into primes landing at the
extreme tail of these distributions. We call a prime p of good reduction a champion prime
if ap = −b2√pc and a trailing primes if ap = b2√pc. We lump the champion primes and
trailing primes together under the label extremal primes. The terminology reflects the fact
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that champion primes (respectively trailing primes) have #E(Fp) as large (respectively, as
small) as allowed by the Hasse bound.

Extrapolating from the probability distributions in Theorem A and B, one can formulate a
convincing heuristic prediction for the count of extremal primes p ≤ x. This is worked out in
[13]. It is suggested there that in the CM case, this count is

∼ 4

3π
x3/4/ log x, 1

as x→∞, while in the non-CM case the argument in [13] can be corrected to show that the
count should be

∼ 16

3π
x1/4/ log x.

Moreover, these probabilistic arguments suggest that the extremal primes should be asymp-
totically split 50-50 between the two types.

The authors of [13] attack this problem in the CM case. Assuming the Riemann Hypothesis
for certain Hecke L-functions, they prove that the total count of extremal primes p ≤ x (with
champion and extremal primes counted together) is indeed ∼ 4

3π
x3/4/ log x, provided that E

has CM by a maximal order in an imaginary quadratic field K 6= Q(
√
−1),Q(

√
−3).

Our primary goal here is to remove the reliance on RH. Our method also allows us to
separate the counts of champion and trailing primes and to remove the restrictions on the
CM order.

Theorem 1. Let E/Q be any CM elliptic curve. The number of trailing primes p ≤ x is

∼ 2

3π
x3/4/ log x,

as x→∞. The same asymptotic formula holds for the number of champion primes p ≤ x.

At present, we do not see how to prove the existence of infinitely many extremal primes for
a single non-CM elliptic curve over Q. However, in the master’s thesis of Jason Hedetniemi
[10, 11], it is shown that 100% of elliptic curves E/Q possess some champion prime. In fact,
for each fixed A, the method shows that asymptotically 100% of curves possess at least A
extremal primes of both types. We refer the reader to the original papers for the precise
definition of “100%” in these statements.

In broad strokes, the proof of Theorem 1 uses the same strategy as [13]; the problem is
reduced to counting prime elements of imaginary quadratic fields that lie in certain narrow
sectors of the complex plane. However, we are able to sidestep the dependence on GRH by
appealing to an unconditional theorem of Maknys [16], which he proved using zero density
estimates.

2. Proof of Theorem 1

Let K be an imaginary quadratic field. We write wK for the number of roots of unity in
K, and we let hK denote the class number of K. By a prime of OK , we mean an element
$ ∈ OK that generates a prime ideal. We say $ lies above the rational prime p when $ | p.
For a nonzero element µ ∈ OK , we set ϕ(µ) = #(OK/µOK)×. The following equidistribution
result is due to Maknys [16].

1The factor of #O×
K in the statement of [13, Conjecture 2.2] should be replaced with the constant 2.
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Proposition 2. Let K be an imaginary quadratic field. Fix µ, ν ∈ OK with µ 6= 0 and with
ν mod µ an invertible residue class. As x→∞,∑

$ prime
N$ prime

x<N$≤x+x0.735
$≡ν (mod µ)
θ1<arg$<θ2

1 ∼ wK
hKϕ(µ)

· θ2 − θ1
2π

· x
0.735

log x
,

when 2π ≥ θ2 − θ1 > x−0.265. Here the estimate is uniform in the θi.

Remarks. Maknys claims that in place of the exponents 0.735 and −0.265, one can take any
fixed constants larger than 11

16
and 11

16
− 1, respectively. It was noted by Heath-Brown in

Math Reviews that Maknys’s argument is mistaken, and that when corrected, 11
16

becomes

(221 +
√

201)/320 = 0.7349 . . . . We have used these corrected values above. (Improved values
of the constants, such as those of [18], have no effect on our final result.)

Note that Maknys states his result as an estimate for certain sums of Λ(α), where Λ is the
OK-analogue of the von-Mangoldt function, but it is routine to transition from this to the
prime counting estimate in Proposition 2.

We now set up for the proof of Theorem 1. Let E/Q be a fixed elliptic curve with CM
by an order O in the imaginary quadratic field K. There is a canonical Q-rational isogeny
φ : E → E ′, where E ′ has CM by the maximal order OK (see, for instance, [2, Proposition
25]). Then ap(E) = ap(E

′) for all but finitely many primes p. Thus, it suffices to prove
Theorem 1 for E ′ replacing E. Said differently, we can (and do) assume that O = OK . Note
that since E is defined over Q, the CM field K is one of the nine imaginary quadratic fields
of class number 1, i.e., OK is a principal ideal domain.

Let p be a prime of good reduction for E. By a criterion of Deuring [3], if p ≥ 5, then
ap = 0 if and only if p is inert or ramified in K. So if p is extremal for E and p ≥ 5, then p is
split in K. For each split prime p, there is a prime $ ∈ OK with $ | p and

(1) p+ 1− ap = N($ − 1).

However, an arbitrary prime $ lying above p need not satisfy (1); in fact, each prime ideal
above p possesses a unique generator $ for which (1) holds.

This generator $ can be specified in terms of congruence conditions. To illustrate what
is meant here, consider the example of the curve E : y2 = x3 − x. This E has CM by Z[i].
If p ≡ 1 (mod 4) is prime, and $ ∈ Z[i] lies above p, then (1) holds precisely when $ ≡ 1
(mod (1 + i)3) (cf. [12, Theorem 5, p. 307]; this example is closely related to the final entry
in Gauss’s mathematical diary). An entirely analogous result holds for all elliptic curves over
Q with OK-CM: There is a nonzero µ in OK , along with invertible residue classes ν1, . . . , νr
(mod µ), such that for each split prime p coprime to µ and each prime $ above p, (1) holds
if and only if

(2) $ ≡ ν1, . . . , νr−1, or νr (mod µ).

(We can, and do, assume that this list is irredundant; i.e., the classes νi mod µ, for i =
1, 2, . . . , r, are distinct.) Given an elliptic curve E/Q with OK-CM, the exact congruence
conditions to be imposed in (2) can be computed from the point counting formulas collected
in Table 2 of [14]. (Carrying this out involves application of the biquadratic reciprocity law

Maknys's proof of this result is incomplete. See the "addendum" to the paper abstract on the website pollack.uga.edu. 
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in Z[i], the sextic reciprocity law in Z[e2πi/3], and the quadratic reciprocity law in Z.) For
more details, see the discussion in [17, §4].

Landau has shown that prime ideals are equidistributed in strict ray class groups [15].
From this, one can deduce that the count of prime elements $ satisfying (2) with N$ ≤ x is

∼ r
wK
ϕ(µ)

x

log x
,

as x→∞. However, from the last paragraph, each prime ideal of OK of sufficiently large
prime norm has a unique generator $ satisfying (2). Since the number of prime ideals of norm
not exceeding x having prime norm is ∼ x/ log x, as x→∞, it must be that r ·wK/ϕ(µ) = 1.
That is,

r = ϕ(µ)/wK .

The next lemma will be used to connect the distribution of extremal primes with the
distribution of primes in narrow sectors.

Lemma 3. Let $ ∈ OK be an element of norm p, where p is a rational prime with X ≤ p ≤
X +X3/4. If X exceeds a suitable absolute constant, and

(3) −(1−X−1/5)X−1/4 < arg($) < (1−X−1/5)X−1/4,

then 2<($) = b2√pc. In the opposite direction, if 2<($) = b2√pc, then

(4) −(1 +X−1/2)X−1/4 < arg($) < (1 +X−1/2)X−1/4.

Proof. Throughout, we write $ = a + bi. Suppose first that (3) holds. Then a > 0 and
b = a tan(arg($)). Recalling that tan(u) = u+O(u3) for u close to 0,

|b| = |a| · | tan(arg($))| ≤ |a| ·
(

1− 1

2
X−1/5

)
X−1/4,

once X is large. Hence,

b2 ≤ a2 ·X−1/2
(

1− 1

2
X−1/5

)
,

and

p = a2 + b2 ≤ a2
(

1 +X−1/2
(

1− 1

2
X−1/5

))
.

Thus,

a2 ≥ p

(
1 +X−1/2

(
1− 1

2
X−1/5

))−1
≥ p

(
1−X−1/2

(
1− 1

2
X−1/5

))
.

We recall the Taylor expansion (1− u)1/2 = 1− u
2
−
∑

n≥2
(1·3·...·(2n−3))un

2nn!
which yields for u

near 0, that (1− u)1/2 ≥ 1− u/2− u2. Thus we deduce from above that

a ≥ p1/2
(

1− 1

2
X−1/2

(
1− 1

2
X−1/5

)
− 1

4
X−1

)
= p1/2 − 1

2
(p/X)1/2

(
1− 1

2
X−1/5

)
− 1

4
p1/2X−1.
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Since p/X ≤ 1 +X−1/4, we have (p/X)1/2 ≤ 1 + 1
2
X−1/4, p1/2/X ≤ X−1/2 + 1

2
X−3/4 and for

X sufficiently large

a ≥ p1/2 − 1

2

(
1− 1

4
X−1/5

)
− 1

4

(
X−1/2 +

1

2
X−3/4

)
> p1/2 − 1

2
.

Thus,

2a > 2p1/2 − 1.

On the other hand, since p = a2 + b2, it is clear that 2a ≤ 2
√
p. Since 2a ∈ Z, it must be that

2a = b2√pc. This proves the first half of the lemma. The second half is similar but simpler.
In this case,

2a = b2√pc > 2
√
p− 1,

so that a >
√
p− 1

2
and

b2 = p− a2 < √p.
Thus,

|b|/a <
p1/4

p1/2 − 1
2

=
1

p1/4(1− 1
2p1/2

)
= p−1/4

∑
n≥0

1

(2p1/2)n

< p−1/4(1 + p−1/2) ≤ X−1/4(1 +X−1/2),

and

| arg($)| = arctan(|b|/a) < |b|/a < X−1/4(1 +X−1/2). �

Proof of Theorem 1. For the purpose of obtaining our asymptotic estimates, it is harmless to
throw away finitely many primes p. With this in mind, we fix a real number p0 = p0(E) ≥ 5
large enough to ensure that all primes p ≥ p0 are of good reduction for E, unramified in K,
and coprime to µ. (Here and below, µ, r, and the νi are as in (2).)

Suppose that p ≥ p0. We have already seen that if p is inert in K, then p is not extremal.
When p splits in K, there are two primes $ of norm p for which (1) holds, since each prime
ideal above p has precisely one generator $ satisfying (1). Moreover, a prime $ above p
satisfies (1) precisely when it satisfies (2).

Call a prime $ ∈ OK trailing-distinguished if

(i) N$ is prime,
(ii) $ ≡ ν1, . . . , νr−1 or νr mod µ (that is, (2) holds),

(iii) 2<($) = b2
√
N$c.

Let χtd denote the characteristic function of trailing-distinguished primes. Then

(5)
∑

p0≤p≤x
p trailing

1 =
1

2

∑
p0≤N$≤x

χtd($).

Rather than estimate the right-hand sum directly, it is more convenient to first consider a
weighted version. Put η = 0.735. Let x be a large real number, and for each prime $ with
N$ prime and x1/2 < N$ ≤ x, let

X ($) = {X ∈ R : X < N$ ≤ X +Xη}.
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Each X ($) is an interval of length ∼ (N$)η (as x→∞), uniformly in $. Thus,∑
x1/2<N$≤x

χtd($)(N$)η = (1 + o(1))
∑

x1/2<N$≤x

χtd($)

∫
X ($)

1 dX

= (1 + o(1))

∫ x

x1/2−xη/2

∑
X<N$≤X+Xη

x1/2<N$≤x

χtd($) dX.(6)

For the range of integration where x1/2 ≤ X ≤ x − xη, the first restriction on the sum
subsumes the second. Given such an X, we estimate∑

X<N$≤X+Xη

χtd($)

by applying Proposition 2 and Lemma 3. In both (3) and (4), the difference between the
bounds on arg($) is ∼ 2X−1/4. Applying Proposition 2, and summing over the r = ϕ(µ)/wK
residue classes νi (mod µ), gives∑

X<N$≤X+Xη

χtd($) ∼ 2X−1/4

2π

Xη

logX
.

We deduce that the contribution to the integral in (6) from the range x1/2 ≤ X ≤ x− xη is

∼ 1

π(η + 3/4)
· x

η+3/4

log x
.

The remaining X ∈ [x1/2 − xη/2, x] make up a set of measure � xη, while the integrand itself
is uniformly � xη. Thus, the neglected range makes a contribution to the integral of � x2η.
Since η < 3/4, this does not affect the asymptotic. We conclude that

(7)
∑

x1/2<N$≤x

χtd($)(N$)η ∼ 1

π(η + 3/4)
· x

η+3/4

log x
,

as x → ∞. On the left-hand side, we can delete the restriction that N$ > x1/2 without
altering the asymptotic, since the additional terms change the sum by only O(x1/2 · xη/2),
which is negligible. The weights (N$)η can now be removed by partial summation: Let
S(t) =

∑
N$≤t χtd($)(N$)η. Then∑
N$≤x

χtd($) =

∫ x

2−
t−η dS(t) =

1 + o(1)

π(η + 3/4)

x3/4

log x
+ η

∫ x

2

S(t)t−η−1 dt.

Moreover, ∫ x

2

S(t)t−η−1 dt =
1

π(η + 3/4)

∫ x

2

1 + o(1)

t1/4 log t
dt ∼ 1

π(η + 3/4)

(4/3)x3/4

log x
.

Collecting terms, ∑
N$≤x

χtd($) ∼ 1

π(η + 3/4)

(
1 +

4

3
η

)
x3/4

log x
=

4

3π
· x

3/4

log x
.

Substituting back into (5), we see that the count of trailing primes not exceeding x is
∼ 2

3π
x3/4/ log x, as claimed. The asymptotic for the count of champion primes is established
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analogously; the only difference is that it is now arg(−$) that is constrained by (3) and (4),
rather than arg($). �

Acknowledgements

Research of the second author is supported by NSF award DMS-1402268. We thank the
referee for a careful reading of the manuscript.

References

1. T. Barnet-Lamb, D. Geraghty, M. Harris, and R. Taylor, A family of Calabi-Yau varieties and potential
automorphy II, Publ. Res. Inst. Math. Sci. 47 (2011), 29–98.

2. P.L. Clark, B. Cook, and J. Stankewicz, Torsion points on elliptic curves with complex multiplication
(with an appendix by Alex Rice), Int. J. Number Theory 9 (2013), 447–479.

3. M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hansis-
chen Univ. 14 (1941), 197–272.

4. , Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins, Nachr. Akad. Wiss. Göttingen.
Math.-Phys. Kl. Math.-Phys.-Chem. Abt. 1953 (1953).

5. , Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins. II, Nachr. Akad. Wiss.
Göttingen. Math.-Phys. Kl. IIa. 1955 (1955), 13–42.

6. , Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins. III, Nachr. Akad. Wiss.
Göttingen. Math.-Phys. Kl. IIa. 1956 (1956), 37–76.

7. , Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins. IV, Nachr. Akad. Wiss.
Göttingen. Math.-Phys. Kl. IIa. 1957 (1957), 55–80.

8. E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, I,
Math. Z. 1 (1918), 357–376.

9. , Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, II,
Math. Z. 6 (1920), 11–51.

10. J. Hedetniemi, Champion primes for elliptic curves, Master’s thesis, Clemson University, May 2012.
11. J. Hedetniemi, K. James, and H. Xue, Champion primes for elliptic curves, Integers 14 (2014), paper no.

A53, 8 pages.
12. K. Ireland and M. Rosen, A classical introduction to modern number theory, second ed., Graduate Texts

in Mathematics, vol. 84, Springer-Verlag, New York, 1990.
13. K. James, B. Tran, M.-T. Trinh, P. Wertheimer, and D. Zantout, Extremal primes for elliptic curves, J.

Number Theory 164 (2016), 282–298.
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