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ON THE PARITY OF THE NUMBER OF MULTIPLICATIVE

PARTITIONS AND RELATED PROBLEMS

PAUL POLLACK

(Communicated by Ken Ono)

Abstract. Let f(N) be the number of unordered factorizations of N , where
a factorization is a way of writing N as a product of integers all larger than
1. For example, the factorizations of 30 are

2 · 3 · 5, 5 · 6, 3 · 10, 2 · 15, 30,

so that f(30) = 5. The function f(N), as a multiplicative analogue of the
(additive) partition function p(N), was first proposed by MacMahon, and its
study was pursued by Oppenheim, Szekeres and Turán, and others.

Recently, Zaharescu and Zaki showed that f(N) is even a positive propor-
tion of the time and odd a positive proportion of the time. Here we show that
for any arithmetic progression amodm, the set of N for which

f(N) ≡ a(modm)

possesses an asymptotic density. Moreover, the density is positive as long
as there is at least one such N . For the case investigated by Zaharescu and
Zaki, we show that f is odd more than 50 percent of the time (in fact, about
57 percent).

1. Introduction

Let f(N) be the number of unordered factorizations of N , where a factorization
of N is a way of writing N as a product of integers larger than 1. For example,
f(12) = 4, corresponding to

2 · 6, 2 · 2 · 3, 3 · 4, 12.

(We adopt the convention that f(1) = 1.) The function f(N) is a multiplica-
tive analogue of the (additive) partition function p(N). Since its introduction by
MacMahon [19], several authors have investigated properties of f(N), such as its
maximal order (Oppenheim [23], corrected by Canfield et al. [5]), its average order
(Oppenheim [23], Szekeres and Turán [28], Luca et al. [16, Theorem 2]), and the
size of its image (Luca et al. [16, Theorem 1], Balasubramanian and Luca [3]).

Motivated by unsolved problems on the parity distribution of p(N) (see, e.g.,
[24], [2], [4], [22]), Zaharescu and Zaki [30] showed that f(N) is even a positive
proportion of the time (in the sense of asymptotic lower density) and odd a positive
proportion of the time. Up to 107, about 57 percent of the values of f(N) are odd,
but the arguments of [30] do not suffice to show that there is a limiting proportion
of N for which f(N) is odd.
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Our purpose in this paper is to fill this gap. Our method applies not only to the
parity of f(N) but to the distribution of f(N) modulo m for any modulus m.

Theorem 1.1. Let a and m be any integers with m ≥ 1. Then

lim
x→∞

1

x
#{N ≤ x : f(N) ≡ a (mod m)}

exists. In other words, the set of N for which f(N) ≡ a (mod m) possesses a
natural density. Moreover, if there is a single N with f(N) ≡ a (mod m), then
this density is positive.

The proof of Theorem 1.1 is effective, in that it yields an algorithm for calculating
these densities. As an example, we show at the end of §2.3 that the N with f(N)
odd comprise a set of density > 50%, so that f is not uniformly distributed modulo
2.

It seems safe to conjecture that the densities appearing in Theorem 1.1 are always
positive; we have verified this for every modulus m ≤ 1000 (see the remark near
the end of §2.3). This conjecture would follow from a well-known conjecture in the
theory of partitions, that p(n) hits every residue class to every modulus infinitely
often (see [21] for the origin of this conjecture and [1] for recent progress). Indeed,
for each prime power pn, we have f(pn) = p(n).

Let us summarize briefly the approach of Zaharescu and Zaki. If N is squarefree,
then f(N) depends only on the number ω(N) of primes dividing N , not on N itself.
In fact, writing n = ω(N), we see easily that f(N) is the nth Bell number. (Recall
that the nth Bell number is the number of ways to partition an n-element set into
nonempty subsets.) It is known (see, e.g., [29]) that the Bell numbers are purely
periodic modulo 2 with period 3, and so f(N) is a function of the residue class of
n mod 3. It is also known (see Lemma 2.2 below, and cf. [7]) that on squarefree
numbers, ω(N) is uniformly distributed modulo 3. Since the sequence 〈Bn〉 of Bell
numbers begins B0 = 1, B1 = 1, B2 = 2, it follows that f(N) is odd for 2/3 of the
squarefree numbers (a set of density 4/π2) and f(N) is even for 1/3 of them (a set
of density 2/π2). The constants 4/π2 and 2/π2 improve the lower density bounds
claimed in [30], which are obtained by more intricate elementary arguments.

To show that the set of N for which f(N) is even possesses a density, it is no
longer acceptable to limit one’s attention to squarefree values of N . To proceed,
we split up the natural numbers N according to their squarefull part M (i.e., their
largest squarefull divisor). For each fixed M , we show that the parity of f(N)
is a purely periodic function of ω(N). It follows, as before, that a well-defined
proportion of these N have f(N) even. Then (as is easy to justify) the density of
N with f(N) even is obtained by summing the densities obtained for each squarefull
number M . The most difficult part of the argument is establishing the periodicity,
which leads us to study congruence properties of certain generalizations of the Bell
numbers.

We conclude the paper with remarks concerning the analogous problems for
g(N), the number of ordered factorizations of N .

Notation. Most of our notation is standard. A possible exception is τk(n) (the
k-fold Piltz divisor function), which denotes the number of ways of writing n as
an ordered product of k natural numbers. We always reserve the letter p for a
prime variable. We write 1S for the indicator function of a set or statement S;
e.g., 13|n is the characteristic function of the multiples of 3, and τ0(n) = 1n=1. The
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Landau–Bachmann Big Oh and little oh notation, as well as the associated symbols
“�” and “�”, appear with their standard meanings. We use the term period of a
sequence to refer to any multiple of the minimal period length.

2. Unordered factorizations

2.1. Preliminaries for the proof of Theorem 1.1. The following result of a
type established by Halász (cf. [9]) appears in a stronger, more quantitative form
in [10]. It is a useful criterion for a multiplicative function taking values in the unit
disc to have mean value zero.

Lemma 2.1. Let D be a closed, convex proper subset of the closed unit disc in C,
and assume that 0 ∈ D . Suppose that h is a complex-valued multiplicative function
satisfying |h(N)| ≤ 1 for all N ∈ N and h(p) ∈ D for all primes p. If the series

(1)
∑
p

1−
(h(p))
p

diverges, then h has mean value zero, i.e.,

lim
x→∞

1

x

∑
N≤x

h(N) = 0.

Lemma 2.2. Let m and M be fixed natural numbers. Then ω(N) is uniformly
distributed modulo m, as N runs over all squarefree natural numbers coprime to
M .

Proof. By a simple inclusion-exclusion (see, e.g., [15, §174]), the squarefree numbers
coprime to M have asymptotic density 6

π2

∏
p|M

p
p+1 > 0. With ζ denoting a fixed

mth root of unity, define h(N) := 1N squarefree1gcd(N,M)=1ζ
ω(N). By the standard

orthogonality relations, it suffices to show that h has mean value zero if ζ �= 1. Since
h(p) = 0 or h(p) = ζ, clearly 1−
(h(p)) �m 1, and so the sum (1) diverges. �
Lemma 2.3. Let M be a natural number. Suppose that p1, . . . , pn are distinct
primes not dividing M , where n ≥ 0. Then

f(Mp1 · · · pn) =
n∑

k=0

S(n, k)
∑
d|M

f(d)τk(M/d).

Here the numbers S(n, k) are Stirling numbers of the second kind (for back-
ground, see [6, Chapter 5]).

Proof. Each unordered factorization of Mp1 · · · pn arises precisely once from the
following construction: Given 0 ≤ k ≤ n, choose an unordered factorization of
p1 · · · pn into k parts; this can be done in S(n, k) ways. Order the parts and call
them D1, . . . , Dk. Choose a divisor d of M , and choose any of the τk(M/d) ways
of writing M/d as a product of k natural numbers, say M/d = d′1d

′
2 · · · d′k. Then

the corresponding factorization of Mp1 · · · pn is obtained by appending to any of
the f(d) unordered factorizations of d the k-term factorization

(d′1D1)(d
′
2D2) · · · (d′kDk)

of Mp1 · · · pn/d. �
The following lemma is the key technical result used in the proof of Theorem 1.1.

As explained in §2.3, it is a special case of results of Mazouz [20].
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Lemma 2.4. Let a be any integer, and let q ≥ 1. Let m be a natural number.
Consider the sequence whose nth term, for n ≥ 0, is given by∑

0≤k≤n
k≡a (mod q)

S(n, k).

When reduced modulo m, this sequence is purely periodic.

Remark 2.5. If q = 1, then the sum considered in the lemma is the nth Bell number
Bn, and the statement of the lemma is contained in the results of [25] (see also [17]).

Finally, it is convenient to have a simple criterion for a union of disjoint sets to
have the expected asymptotic density.

Lemma 2.6. Let A1,A2,A3, . . . be a sequence of disjoint subsets of the natural
numbers with respective asymptotic densities d1, d2, d3, . . . . Suppose that as n → ∞,
the upper density of the set A (n) :=

⋃∞
i=n+1 Ai tends to zero. Then A :=

⋃∞
i=1 Ai

has asymptotic density d :=
∑∞

i=1 di.

Proof. Since A contains each finite union A(n) :=
⋃n

i=1 Ai, the lower density of A
is bounded below by d1 + · · · + dn and so (letting n → ∞) is at least as large as
d. Similarly, since A ⊂ A(n) ∪ A (n), the upper density of A is bounded above by
d1 + · · ·+ dn + o(1) and so is at most d (again, letting n → ∞). �

2.2. Proof of Theorem 1.1. Fix an arithmetic progression a mod m. Let 1 =
M1 < M2 < M3 < . . . be the sequence of squarefull integers, and define Ai as the
set of N with squarefull part Mi for which f(N) ≡ a (mod m). Clearly, the upper
density of A (n) =

⋃∞
i=n+1 Ai is bounded above by

∑∞
i=n+1

1
Mi

. We have

∞∑
i=1

1

Mi
=

∏
p

(
1 +

1

p2
+

1

p3
+ . . .

)
< ∞,

so that by Lemma 2.6, it suffices to show that each Ai has a natural density. For
the remainder of the argument we fix i and write M = Mi.

Each number N with squarefull part M has the form N = Mp1 · · · pn, where the
pj are distinct primes not dividing M and n = ω(N) − ω(M). The number f(N)
depends only on n and not the individual primes pj , so it makes sense to define

f̂(n) for n ≥ 0 by

(2) f̂(n) = f(Mp1p2 · · · pn).

It is sufficient to show that the reduction modulo m of the sequence 〈f̂(n)〉∞n=0 is
purely periodic; indeed, if the period length is R, then by Lemma 2.2, the set Ai

will have asymptotic density

(3)
6J

MRπ2

∏
p|M

p

p+ 1
, where J := #{0 ≤ j < R : f̂(j) ≡ a (mod m)}.

To expose the periodicity, observe that by Lemma 2.3,

(4) f̂(n) =

n∑
k=0

S(n, k)
∑
d|M

f(d)τk(M/d).
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Let

Ik :=
∑
d|M

f(d)τk(M/d)

denote the inner sum in (4). We claim that modulo m, the function Ik is purely
periodic as a function of k. Since M is fixed, the claim follows if we show that at
a fixed prime power pe, the function τk(p

e) is purely periodic modulo m. But

τk(p
e) =

(
e+ k − 1

e

)
=

k(k + 1) · · · (k + e− 1)

e!
,

and this is clearly purely periodic modulo m with period e!m. Let J be a period
of 〈Ik〉 mod m, and observe that from (4),

f̂(n) =

n∑
k=0

S(n, k)Ik ≡
∑

0≤j<J

Ij
∑

0≤k≤n
k≡j (mod J)

S(n, k) (modm).

But by Lemma 2.4, for each fixed j, the remaining inner sum taken modulo m is

purely periodic in n. Hence, f̂(n) is also purely periodic modulo m.
It remains to prove the last assertion of Theorem 1.1. Suppose that f(N) ≡ a

(mod m), and let M be the squarefull part of N . Write M = Mi. In the notation
of (3), we have J > 0, and so the density of Ai is positive.

2.3. Proof of Lemma 2.4 (sketch). Recall (see, e.g., [6, §3.3]) that the one-
variable Bell polynomials Bn(x) are defined by the formal identity

(5)
∞∑

n=0

Bn(x)
tn

n!
= e(e

t−1)x

or, equivalently but more explicitly, by Bn(x) =
∑n

k=0 S(n, k)x
k. (Thus, the nth

Bell number Bn is given by Bn(1).) Now given a fixed arithmetic progression
a mod q, as in Lemma 2.4, the orthogonality relations for additive characters show
that ∑

0≤k≤n
k≡a (mod q)

S(n, k) =
1

q

∑
ω : ωq=1

ω−aBn(ω).

So to prove the assertion of Lemma 2.4 that the left-hand side here is purely pe-
riodic modulo m, it is enough to show that for each fixed qth root of unity ω, the
sequence 〈Bn(ω)〉∞n=0 is purely periodic taken modulo qm. (Here the congruences
are understood as holding in the ring Z[ω] of integers of Q[ω].)

This is a special case of the results of Mazouz [20, §2], who studies p-adic prop-
erties of the numbers B(n, λ, ω) defined by the exponential generating function∑

n≥0

B(n, λ, ω)tn/n! = eλt+ω(et−1).

Here λ and ω are elements of (the Tate field) Cp, algebraic over Qp, and assumed
to satisfy |λ|, |ω| ≤ 1. When λ = 0 and |ω| = 1, his results [20, §3, (1)–(3)] imply
that the sequences 〈B(n, 0, ω)〉∞n=0 are purely periodic modulo every power of p.1

To obtain the claimed pure periodicity of 〈Bn(ω)〉∞n=0 mod qm (and an explicit

1The reference [20] contains some misprints; in case (2) of §3, the condition should be that the
trace is nonzero, while the trace should be assumed to vanish in case (3).
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Table 1. Some values of M and the associated functions f̂(n).
Here p and q are primes, and the pi are distinct primes not dividing
M .

M f̂(n) = f(Mp1 · · · pn)

1 Bn

p2 1
2
(Bn+2 +Bn+1 +Bn)

p3 1
6
(Bn+3 + 3Bn+2 + 5Bn+1 + 2Bn)

p4 1
24

(Bn+4 + 6Bn+3 + 17Bn+2 + 20Bn+1 + 21Bn)

p5 1
120

(Bn+5 + 10Bn+4 + 45Bn+3 + 100Bn+2 + 169Bn+1 + 44Bn)

p6 1
720

(Bn+6 + 15Bn+5 + 100Bn+4 + 355Bn+3 + 874Bn+2 + 869Bn+1 + 1045Bn)

p2q2 1
4
(Bn+4 + 2Bn+3 + 3Bn+2 + 2Bn+1 + 3Bn)

expression for the period length), for each prime p dividing qm we view Q(ω) as
sitting inside Cp by completing Q(ω) at a prime lying above p.

Remark 2.7. It is the author’s opinion that Lemma 2.4 is of independent inter-
est. However, one may prove Theorem 1.1 without it: Starting from the relation
kS(n, k) = S(n+1, k)−S(n, k−1) (see [6, §5.3, Theorem A]), induction on r shows
that krS(n, k) is always expressible as an integer linear combination of terms of the
form S(n + c1, k − c2), where c1 and c2 are nonnegative integers. By linearity, if
h(x) is any polynomial, then

∑
k h(k)S(n, k) can be rewritten as a linear combi-

nation of Bell numbers of the form Bn+c. For fixed M , the terms Ik appearing in
the proof of Theorem 1.1 are polynomials in k with rational coefficients. Thus, the

function f̂(n) =
∑

k IkS(n, k) is a rational combination of terms of the form Bn+c;
see Table 1 for some examples.

Given such an expression for f̂ , the (pure) periodicity of f̂ modulo m, as well as
a period length, can be read off directly from the results of [25] on the classical Bell
numbers. These expressions are also useful for computation. For example, MAPLE
can compute that every residue class a mod m, with m ≤ 1000, is represented by

at least one of the sequences 〈f̂(n)〉3000n=0 , where M has one of the forms in Table 1.

Example 2.8 (the parity of f(N) revisited). To illustrate the effectivity of our
methods, we conclude by sketching a proof that f(N) is odd more than half of the
time. As already mentioned in the introduction, f(N) is odd for 2/3 of all squarefree
numbers N . We now calculate the corresponding proportion for numbers N of the
form p2N ′ or p3N ′, where p is a prime and N ′ is a squarefree number coprime to
p. Numbers of the first form correspond to the choice M = p2, in the notation of
Table 1. Using the corresponding formula in this table and the results of [25], we

may calculate that for these M , the function f̂(n) is purely periodic modulo 2, with
period 0, 0, 1, 0, 1, 0. So asymptotically 1/3 of the numbers N of the form p2N ′ have

f(N) odd. Similarly, taking M = p3, we find that f̂(n) is purely periodic mod 2
with period 1, 1, 1, 0, 0, 1. Thus, asymptotically 2/3 of the numbers N of the form
p3N ′ have f(N) odd. It follows that the density of N for which f(N) is odd is at
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least

2

3

(
6

π2

)
+

1

3

(
6

π2

∑
p

1

p(p+ 1)

)
+

2

3

(
6

π2

∑
p

1

p2(p+ 1)

)
= 0.52165 . . . .

More extensive calculations show that to the nearest tenth of a percent, f(n) is odd
57.1 percent of the time.

3. Ordered factorizations

Let g(N) denote the number of ordered factorizations of N , so that now two
factorizations are considered different whenever the order of the factors is different.
Thus, g(N) is to additive compositions what f(N) is to additive partitions. For
example, g(12) = 8, corresponding to the eight ordered factorizations

2 · 2 · 3, 2 · 3 · 2, 3 · 2 · 2, 3 · 4, 4 · 3, 2 · 6, 6 · 2, 12.

While a formula for g in terms of the prime factorization of N appears in 19th-
century work of MacMahon [18, §2], the study of g(N) as a function of N (instead
of the factorization pattern of N) is due to Kalmár, who investigated its average
order ([12], [13]). The maximal order of g(N) has been the subject of recent work
by Luca and Klazar [14] and by Deléglise et al. [8]. Just as with f(N), one can
ask about the parity distribution of g(N) or, more generally, its distribution in
arithmetic progressions.

The parity is easy to address: If we let G(s) be the formal Dirichlet series defined
by G(s) :=

∑∞
N=1 g(N)N−s, then

(6) G(s) =
∑
k≥0

⎛
⎝∑

d≥2

1

ds

⎞
⎠

k

=
1

2− ζ(s)
, where, as usual, ζ(s) :=

∞∑
N=1

1

Ns
.

Reducing modulo 2 in the ring of formal Dirichlet series with integer coefficients,
we find that

G(s) ≡ 1

ζ(s)
=

∏
p

(1− p−s) ≡
∏
p

(1 + p−s) =
∑

N squarefree

1

Ns
.

Hence, g(N) is odd precisely when N is squarefree. The author owes this observa-
tion to F. Luca (private communication).

We now prove the g-analogue of the first half of Theorem 1.1.

Theorem 3.1. Let a and m be any integers with m ≥ 1. Then

lim
x→∞

1

x
#{N ≤ x : g(N) ≡ a (modm)}

exists. In other words, the set of N for which g(N) ≡ a (mod m) possesses a
natural density.

We imitate the proof of Theorem 1.1. As in that theorem, it is enough to show
that the density exists for the set of N with g(N) ≡ a (mod m) and possessing a
fixed squarefull part M . Define, in analogy with (2),

ĝ(n) := g(Mp1 · · · pn),
where the pi are distinct primes not dividing M . It suffices to show that ĝ(n),
taken modulo m, is eventually periodic. Indeed, that implies that for the N under
consideration, g(N) modulo m is an ultimately periodic function of ω(N), and we
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can apply Lemma 2.2 as before. (We can ignore the preperiod because the N for
which ω(N) is bounded comprise a set of density zero; see, e.g., [11, §22.11].)

So let us prove this periodicity property. Write g(N ; k) for the number of ordered
factorizations of N into exactly k parts, and call two factorizations counted in
g(N ; k) associates if one is a permutation of the other. The number of associates
of a given factorization is k!

e1!e2!···er ! , where e1, . . . , er are the multiplicities of the
repeated factors. For N with squarefull part M , we have

e1 + e2 + · · ·+ er ≤ Ω(M),

and so e1! · · · er! | Ω(M)!. Choosing k0 large enough that k0! is a multiple of
Ω(M)!m, it follows that for N with squarefull part M ,

g(N) =
∑
k

g(N ; k)

≡
∑

0≤k<k0

g(N ; k)(modm).

Hence,

ĝ(n) = g(Mp1 · · · pn) ≡
∑

0≤k<k0

g(Mp1 . . . pn; k)(modm).

Fix k with 0 ≤ k < k0. As formal Dirichlet series, we have
∑

N≥1 g(N ; k)N−s =

(ζ(s)− 1)k, and so

g(Mp1 · · · pn; k) =
k∑

j=0

(−1)k−j

(
k

j

)
τj(Mp1 · · · pn)

=
k∑

j=0

(−1)k−j

(
k

j

)
τj(M)jn.(7)

Taken modulo m, (7) represents an ultimately periodic function of n with period
length ϕ(m) (cf. [27, Theorem 8a, p. 261]). Since ĝ(n) mod m is a finite sum of
such terms, ĝ(n) is also ultimately periodic modulo m with period ϕ(m).

Example 3.2 (g(N) modulo 4). We have seen already that g(N) is odd if and
only if N is squarefree. We now determine g(N) modulo 4. We first suppose that
N is squarefree, which corresponds to taking M = 1. The proof of Theorem 3.1
will show that with M = 1 and m = 4, the sequence ĝ(n) mod m has the form
1, 1,−1, 1,−1, 1,−1, . . . , where the preperiod consists only of the first term ĝ(0) =
1. In other words, for squarefree N > 1, we have

(8) g(N) ≡ −μ(N)(mod 4).

We now use (8) to show that g(N) ≡ 2 (mod 4) precisely when N is the square
of a squarefree number larger than 1. Put G0(s) :=

∑
N≥1

N squarefree
g(N)N−s, so that

from (8),

(9) G0(s) ≡ 2− ζ(s)−1(mod 4).

Write G(s) = G0(s) + G1(s). It is sufficient to show that modulo 4, we have
G1(s) ≡ 2G2(s), where G2(s) is a Dirichlet series with integral coefficients whose
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reduction modulo 2 has coefficients supported precisely on the squares of the square-
free numbers m > 1. From (6) and (9), we obtain that

G1(s) = G(s)−G0(s) ≡ 2
ζ(s) + 1/ζ(s)

2− ζ(s)
(mod 4),

and modulo 2,

ζ(s) + 1/ζ(s)

2− ζ(s)
≡ 1+

1

ζ(s)2
= 1+

∏
p

(1−p−s)2 ≡ 1+
∏
p

(1+p−2s) ≡
∑

m squarefree
m>1

1

m2s
.

This shows that the second half of Theorem 1.1 does not hold for g. Indeed,
there are infinitely many N with g(N) ≡ 2 (mod 4), but the set of such N has
density zero.

Just as in the unordered case, it is sensible to ask for a classification of those
residue classes for which the density appearing in Theorem 3.1 is positive. The
following result is a first step towards answering this question.

Proposition 3.3. Suppose m is squarefree. If the progression a mod m contains
an even integer, then the density appearing in Theorem 3.1 is positive.

The condition that there be some even number N ≡ a (mod m) cannot be
removed. For example, there are no integers N for which g(N) ≡ 5 (mod 6).

Proof of Proposition 3.3. We start by observing that for all nonnegative integers h,

g(2h · 3) = (h+ 2)2h−1 =
1

23
(h+ 2)2h+2.

This follows by induction on h, via the recurrence relation g(N) =
∑

d|N,d<N g(d),

valid for N > 1.
We now prove the proposition for odd m, where the restriction on a is vacuous.

By a result of Rieger [26, Théorème 2], the sequence 〈h · 2h〉∞h=0 taken modulo m is
purely periodic and uniformly distributed among the residue classes mod m. Hence,
we may fix an h ≥ 2 with g(2h · 3) ≡ a (mod m). Put M := 2h. Then

ĝ(1) = g(Mp1) ≡ a(modm),

in the notation of the proof of Theorem 3.1. To show that the set of N with
f(N) ≡ a (mod m) has positive density, it is enough to argue that 〈ĝ(n)〉, which we
know is eventually periodic modulom, is periodic starting already from n = 1. From
(7), we have that ĝ(n) is congruent, modulo m, to an integer linear combination of
terms of the form jn. But m is squarefree; hence, for each fixed j ≥ 0, the sequence
〈jn〉 mod m is periodic starting already from n = 1. (This is obvious if m is prime,
and the general case follows from the Chinese remainder theorem.)

Now suppose that m = 2m′, where m′ is odd. Then 2 | a. By the argument in
the preceding paragraph, we can fix h ≥ 2 so that a positive proportion of numbers
N with squarefull part 2h satisfy f(N) ≡ a (mod m′). Since N is not squarefree,
these N also satisfy f(N) ≡ 0 ≡ a (mod 2). Hence, f(N) ≡ a (mod m). �
Remark 3.4. As suggested by the referee, one may also consider the distribution
in progressions of f(N) or g(N) when N itself is restricted to a fixed arithmetic
progression (cf. [30, §3]). It is not difficult to show that all of the conclusions
of Theorems 1.1 and 3.1 remain valid in this context. The key is the following
generalization of Lemma 2.2:
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Lemma 2.2′. Let m and M be natural numbers. Let A be an integer. Assume
that the arithmetic progression consisting of N ≡ A (mod M) contains at least one
squarefree number. (In this case, the set of squarefree N ≡ A (mod M) possesses a
positive asymptotic density [15, §174].) Then as N runs over the squarefree numbers
congruent to A (mod M), the values ω(N) are uniformly distributed modulo m.

In the case when A and M are relatively prime, one can prove this by a small
modification of the proof offered for Lemma 2.2, twisting the functions h appear-
ing in that argument by the Dirichlet characters modulo M . The case when
gcd(A,M) > 1 quickly reduces to this one.
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Simon Stevin 3 (1996), no. 4, 377–390. MR1418935 (97i:11016)
[21] M. Newman, Periodicity modulo m and divisibility properties of the partition function, Trans.

Amer. Math. Soc. 97 (1960), 225–236. MR0115981 (22:6778)
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