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300 BCE
Let pn denote the nth prime number, so p1 = 2, p2 = 3, p3 = 5,
. . . .

Theorem (Euclid)
There are infinitely many primes. In other
words, if π(x) := #{p ≤ x : p prime}, then
π(x)→∞ as x →∞.

There are at this point seemingly infinitely many
proofs of this theorem. Euclid’s theorem
suggests there might be something to be
gained by studying the sequence of gaps

dn := pn+1 − pn.
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Twin primes

The sequence {dn} begins
1,2,2,4,2,4,2,4,6,2,6,4,2,4,6,6,2,6,4,2,6,4,6,8, . . .
(OEIS A001223)

It was noticed many moons ago that dn = 2 appears to appear
infinitely often.

A pair of prime numbers {p,p + 2} is called a twin prime pair.

Twin prime pairs: {3, 5}, {5, 7}, {11, 13}, {17, 19}, {29, 31},
{41, 43}, {59, 61}, {71, 73}, . . .

Twin prime conjecture: There are infinitely many twin prime
pairs.
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A desperate professor, a brilliant student and a
2000-year-old math problem collide in this thriller about
ambition, ego and the nature of genius.
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What counts as progress towards the twin primes
conjecture?

Think statistically: What is the average gap between primes
p ∈ (x ,2x ]?

Prime number theorem (1899): As x →∞, the count of primes
in (x ,2x ] is ∼ x/ log x . In other words,

lim
x→∞

#{p : x < p ≤ 2x}
x/ log x

= 1.

Thus, the average gap between primes p ∈ (x ,2x ] is ∼ log x .
Notice: log x ∼ log p for p ∈ (x ,2x ].
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In particular, one gets that

lim inf
n→∞

dn

log pn
≤ 1.

We’ll call this the trivial result. A nontrivial result is any
improvement on this upper bound.

Theorem (Erdős, 1940)
lim inf

dn

log pn
< 1.

One does not win by very much. Using Erdős’s argument, Ricci
showed in 1954 that lim inf dn

log pn
≤ 15

16 .
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Landmark results

Theorem (Bombieri and Davenport,
1966)
lim inf

dn

log pn
≤ 0.46650 . . ..

Theorem (Maier, 1988)
lim inf

dn

log pn
≤ 0.2486 . . ..
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A new hope

(YPG)

Theorem (Goldston, Pintz,
and Yıldırım, 2005)
lim inf

dn

log pn
= 0.

BUT WAIT, THERE’S MORE!

Any improvement in the level of
distribution of the primes would
imply that lim inf dn <∞— i.e.,
infinitely many pairs of primes
that lie in a bounded length
interval.
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An aside: Primes in arithmetic progressions

Let q ∈ N. There are q residue classes: 1, 2, 3, . . . , q mod q.

If a and q share a common factor, then this factor is shared by
every element of the residue class. So there is at most one prime
in the class a mod q.

Here is an illustration for q = 6:

1 7 13 19 25 31 37 43 49 55 61 67 73
2 8 14 20 26 32 38 44 50 56 62 68 74
3 9 15 21 27 33 39 45 51 57 63 69 75
4 10 16 22 28 34 40 46 52 58 64 70 76
5 11 17 23 29 35 41 47 53 59 65 71 77
6 12 18 24 30 36 42 48 54 60 66 72 78
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Let φ(q) denote the number of residue classes a mod q where
gcd(a,q) = 1. For example, φ(6) = 2, corresponding to the two
classes 1 mod 6 and 5 mod 6.

Theorem (Dirichlet, 1837)
Each of the φ(q) coprime residue classes
contains infinitely many primes.

Example
Take q = 10000 and a = 9999. There are infinitely many primes
that end with the digits 9999.
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Things even out

Once you realize that things even out, its like a light being
turned on in your head, then being turned off, then being
turned to “dim.” – Jack Handey

In fact, each coprime residue class eventually gets its fair share of
primes. The number of primes p ≤ x landing in each of the φ(q)
residue classes is

∼ π(x)
φ(q)

(the prime number theorem for progressions, 1899).

Thus, the distribution of primes eventually “evens out” over all the
coprime residue classes modulo q.
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The notion of level of distribution is about how large x has to be in
terms of q to see this “even”-ing out.

We expect that if q ≤ x1−ε for some fixed ε > 0, then the
distribution of p ≤ x among coprime residue classes modulo q is
asymptotically uniform.

The Extended Riemann Hypothesis would imply this for
q ≤ x1/2−ε. (Still weaker than the expected truth!)

The Bombieri–A.I. Vinogradov theorem says that we see this
even-ing out on average over q ≤ x1/2−ε.

GPY wanted to replace 1
2 − ε with 1

2 + δ, for some δ > 0.
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PART II: Zhang, Maynard, and Tao
(OH MY!)
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Theorem (Y. Zhang, April 2013)
One can prove a certain technically restricted version of the GPY
Hypothesis, still sufficient to give bounded gaps between primes.

Corollary
lim infn→∞ dn < 70 · 106.
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Theorem (Maynard)
We have lim inf dn ≤ 600.

BUT WAIT, THERE’S MORE!

For each k, define the kth order gap
d (k)

n := pn+k − pn. We always have

lim inf
n→∞

d (k)
n <∞.

Similar results were discovered concurrently by Terry Tao.

Polymath 8b: lim infn→∞ dn ≤ 246.
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The story behind the story

GPY, Zhang, and Maynard do not study dn directly.
Rather, they study a variant of the twin prime conjecture due to
Hardy and Littlewood, called the k-tuples conjecture.

Problem
Let H be a set of k integers, say a1, . . . ,ak . Under what conditions
on H do we expect that n + a1, . . . ,n + ak are simultaneously
prime infinitely often?

We need to rule out examples like n,n + 1, one of which is always
even, or n,n + 2,n + 4, one of which is always a multiple of 3.

Definition
We say H is admissible if #H mod p < p for all primes p.
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Conjecture (k -tuples conjecture)
If H is admissible, then there are infinitely many n with all n + hi
simultaneously prime.

The theorems of GPY, Maynard, and Zhang about prime gaps are
really corollaries of their results towards the k -tuples conjecture.

Theorem (Zhang)
There is a constant k0 so that if k ≥ k0, and H is an admissible
k-tuple, then infinitely often at least two of n + h1, . . . ,n + hk are
prime.

Theorem (Maynard)
Fix m ≥ 2. There is a constant k0(m) so that if k ≥ k0(m), and H
is an admissible k-tuple, then infinitely often at least m of
n + h1, . . . ,n + hk are prime.
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Maynard showed that one could take k0(2) = 105.

Hence, if we fix an admissible 105-tuple, say h1 < · · · < h105, then
infinitely often at least two of n + h1, . . . ,n + h105 are prime. So
infinitely often

pj+1 − pj ≤ h105 − h1.

There is an example of such an H with h105 − h1 = 600;

H = {0,10,12,24,28, . . . ,598,600}.

Hence,
lim inf
n→∞

dn ≤ 600.

Polymath8b: Can take k0(2) = 50.
Choosing a “narrow” admissible 50-tuple gives lim inf dn ≤ 246.
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PART III: THE REST OF THE
STORY
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The k -tuples conjecture (and a variant due to Dickson allowing
leading coefficients) has traditionally been a “working hypothesis”
in a number of investigations in elementary number theory. Many
theorems have been proved conditionally on the truth of this
conjecture.

The work of Maynard–Tao opens the door towards the
unconditional resolution of some of these problems.
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Erdős, Turán, and the local behavior of prime gaps

Question
Are there infinitely many n with dn < dn+1?
Yes, trivially, because otherwise {dn} would be bounded.

Question
Are there infinitely many n with dn > dn+1?
Yes (E&T, 1948), but no longer so trivial.

Question (Erdős and Turán, 1948)
Are there infinitely many n with dn > dn+1 > dn+2? What about
dn < dn+1 < dn+2?
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Theorem (Banks, Freiberg, Turnage-Butterbaugh, 2013)
For every k, one can find infinitely many n with
dn < dn+1 < · · · < dn+k , and infinitely many n with
dn > dn+1 > · · · > dn+k .
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Shiu strings

Theorem (D. K. L. Shiu, 2000)
Each of the φ(q) coprime arithmetic progressions modulo q
contains arbitrarily long runs of consecutive primes.

Example
There are 1010 consecutive primes all ending in the decimal digits
9999.

Banks, Freiberg, and Turnage-Butterbaugh have shown that the
Maynard–Tao methods give a much simpler proof of Shiu’s
theorem.
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In fact, the approach through Maynard–Tao is the “right” one,
because it gives much improved quantitative results.

Theorem (Maynard, 2014)
For a positive proportion of primes p, the run of 10000 primes
starting with p all end in the digit 9999.

Such a result was previously unknown even for runs of two
consecutive primes!
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Some questions of Sierpiński
Let s(n) denote the sum of the decimal digits of n. For example,
s(2014) = 2 + 1 + 4 = 7. We can observe that

s(1442173) = s(1442191) = s(1442209) = s(1442227).

Questions (Sierpiński, 1961)
Given m, are there infinitely many m-tuples of
consecutive primes pn, . . . ,pn+m−1 with

s(pn) = s(pn+1) = · · · = s(pn+m−1)?

Answer (Thompson and P.): Yes.
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Another question of Erdős

Let σ(·) be the usual sum-of-divisors function, so σ(n) =
∑

d |n d .

Questions
If σ(a) = σ(b), what can be said about the ratio a/b?

Example
σ−1(8960) = {3348,5116,5187,6021,7189,7657}.

Conjecture (Erdős, 1959)
Nothing. More precisely, the set of ratios {a/b : σ(a) = σ(b)} is
dense in R>0.

Theorem (P., 2014)
Erdős’s conjecture is true.
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Back to normalized prime gaps

Recall that the nth normalized prime gap was defined by pn+1−pn
log pn

.
GPY says 0 is a limit point. Westzynthius (1931) proved that∞ is
also a limit point. Let L denote the set of limit points.

Erdős and Ricci (mid 50s): µ(L) > 0.
Hildebrand and Maier (1988): µ(L ∩ [0,T ]) > cT for large T .
Pintz (2013): L ⊃ [0, c] for some c > 0.

Theorem (Banks–Freiberg–Maynard, 2014)
Given any 9 distinct real numbers β1 < · · · < β9, some βj − βi
belongs to L.

Corollary
At least 12.5% of the nonnegative reals belong to L.
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Maynard–Tao in other number systems

The Maynard–Tao work on gaps between primes can be ported
over to other settings, as long as those settings share enough
properties in common with the usual setting of positive integers.

Example
Define a B-number as a finite nonempty sequence of 0s and 1s,
with no leading 0s unless the string consists only of 0. Listing
strings by length, the first few examples are thus 0, 1, 10, 11, 101,
. . . . We define non-carry addition (+) and non-carry
multiplication (×) of B-numbers by the usual grade-school
algorithms for addition and multiplication but systematically
ignoring carries. For example, 1 + 1 = 0 with our definition.
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And...

1 0 1 0 1
+ 1 1 0 1

1 1 0 0 0
while

1 0 1 0 1
× 1 1 0 1

1 0 1 0 1
0 0 0 0 0

1 0 1 0 1
1 0 1 0 1
1 1 1 0 1 0 0 1

A prime B-number is one with more than one digit which cannot
be written as a non-carry product except as 1× itself or itself× 1.
For example, 10 and 11 are prime, but 11101001 is not.

Not-so-secret dictionary: The B-numbers are the polynomials
over F2, with the prime B-numbers corresponding to irreducibles.
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Questions
Is there a bounded gaps theorem for prime B-numbers?
Yes!

Theorem
There are infinitely many pairs of prime B-numbers which differ
only in their last 9 digits.

This is worked out by Castillo, Hall, Lemke Oliver,
Thompson and P. (2014).

More generally, we prove bounded gaps results for irreducible
polynomials over arbitrary finite fields.
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Thank you very much!
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