Big doings with man gaps

The University of Georgia

Paul Pollack

AIM
Bounded gaps between primes

November 19, 2014

The fundamental theorems of ZMT-ology

Theorem (Zhang for $m=2$, Maynard-Tao for $m>2$)

For each integer $m \geq 2$, there is a finite number $k_{0}(m)$ with the following property: Let $\mathcal{H}=\left\{h_{1}, h_{2}, \ldots, h_{k}\right\}$ be an admisible k-tuple with $k \geq k_{0}(m)$. Here admissible means that

$$
\#\left\{n \bmod p: \prod_{i=1}^{k}\left(n+h_{i}\right) \equiv 0 \quad(\bmod p)\right\}<p
$$

for every prime p. There are infinitely many n for which the list $n+h_{1}, \ldots, n+h_{k}$ contains at least m prime numbers.

The fundamental theorems of ZMT-ology

Theorem (Zhang for $m=2$, Maynard-Tao for $m>2$)
For each integer $m \geq 2$, there is a finite number $k_{0}(m)$ with the following property: Let $\mathcal{H}=\left\{h_{1}, h_{2}, \ldots, h_{k}\right\}$ be an admisible k-tuple with $k \geq k_{0}(m)$. Here admissible means that

$$
\#\left\{n \bmod p: \prod_{i=1}^{k}\left(n+h_{i}\right) \equiv 0 \quad(\bmod p)\right\}<p
$$

for every prime p. There are infinitely many n for which the list $n+h_{1}, \ldots, n+h_{k}$ contains at least m prime numbers.

Conjecture (Hardy-Littlewood)
Can take $k_{0}(m)=m$.

Theorem

For each integer $m \geq 2$, there is a finite number $k_{0}(m)$ with the following property: Let $a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$ be an admissible colletion of linear polynomials with $k \geq k_{0}(m)$. Here admissible means that

$$
\#\left\{n \bmod p: \prod_{i=1}^{k}\left(a_{i} n+b_{i}\right) \equiv 0 \quad(\bmod p)\right\}<p
$$

for every prime p. There are infinitely many n for which the list $a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$ contains at least m prime numbers.

Theorem

For each integer $m \geq 2$, there is a finite number $k_{0}(m)$ with the following property: Let $a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$ be an admissible colletion of linear polynomials with $k \geq k_{0}(m)$. Here admissible means that

$$
\#\left\{n \bmod p: \prod_{i=1}^{k}\left(a_{i} n+b_{i}\right) \equiv 0 \quad(\bmod p)\right\}<p
$$

for every prime p. There are infinitely many n for which the list $a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$ contains at least m prime numbers.

Conjecture (Dickson's k-tuples conjecture)
Can take $k_{0}(m)=m$.

B-F-T-B

Theorem (Banks-Freiberg-Turnage-Butterbaugh)
Suppose in the last theorem that all the a_{i} coincide, say each $a_{i}=A$. Assume the sequence b_{1}, \ldots, b_{k} is monotonic. There are infinitely many n for which the list $A n+b_{1}, \ldots, A n+b_{k}$ contains at least m consecutive prime numbers.

Main idea of the proof.

Introduce extra congruence conditions on n forcing $A n+b$ composite for each b between b_{1} and b_{k} not among the b_{i}.

Example

Suppose we really did know that every pair of admissible linear forms assumed simultaneous prime values.

And say we wanted n and $n+6$ to be consecutive primes.
Replace n with $15 n+1$: we apply the result to $15 n+1$ and $15 n+7$.

Proof and consequences

For each k, put $d_{k}=p_{k+1}-p_{k}$.
Conjecture (Erdős and Turán, 1948)
The sequence $\left\{d_{k}\right\}$ contains arbitrarily long (strictly) increasing runs and arbitrarily long (strictly) decreasing runs.

Proof (BFTB).

Let's treat the increasing case first. Given m, let $k=k_{0}(m)$, and apply BFTB to the collection $n+2, n+2^{2}, \ldots, n+2^{k}$. Let's check admissibility.

Checking admissibility: If $p \neq 2$, then

$$
\left.\prod_{i=1}^{k}\left(n+2^{i}\right)\right|_{n=0} \not \equiv 0 \quad(\bmod p)
$$

whereas if $p=2$, then

$$
\left.\prod_{i=1}^{k}\left(n+2^{i}\right)\right|_{n=1} \not \equiv 0 \quad(\bmod p)
$$

Thus, the list $n+2, \ldots, n+2^{k}$ contains at least m consecutive primes. The sequence of gaps between them is increasing.

The decreasing case is similar, with the theorem applied to $n-2, \ldots, n-2^{k}$.

Open problem: Show that there are infinitely many runs of consecutive prime gaps in the order LOW HIGH LOW. In other words, $d_{k}<d_{k+1}$ but $d_{k+1}>d_{k+2}$.

(If I remember correctly...) C. Spiro has shown this would follow if there is at least one $m \geq 4$ with $k_{0}(m)<2^{m}$.

Shiu strings

Theorem (D.K.L. Shiu, 2000)
Each coprime residue class a mod q contains arbitrarily long runs of consecutive primes.
These runs of primes are called "Shiu strings."

Shiu strings

Theorem (D.K.L. Shiu, 2000)
Each coprime residue class a mod q contains arbitrarily long runs of consecutive primes.
These runs of primes are called "Shiu strings."
Theorem (BFTB)
Shiu's theorem is still true fourteen years later. Moreover, it remains true even if one restricts the primes to lie in a bounded length interval. ("Bounded" means bounded in terms of q and the length of the run.)

For the proof, again let m be given, and let $k=k_{0}(m)$. We apply the BFTB theorem to a collection of the form

$$
q n+a_{1}, \ldots, q n+a_{k}
$$

where each $a_{i} \equiv a(\bmod q)$.
Why is there an admissible collection like this?
Choose each $a_{i} \equiv a(\bmod q)$. If p is an obstruction to admissibility, then considering $n=0$, we get $p \mid a_{1} \cdots a_{k}$.

For the proof, again let m be given, and let $k=k_{0}(m)$.
We apply the BFTB theorem to a collection of the form

$$
q n+a_{1}, \ldots, q n+a_{k}
$$

where each $a_{i} \equiv a(\bmod q)$.
Why is there an admissible collection like this?
Choose each $a_{i} \equiv a(\bmod q)$. If p is an obstruction to admissibility, then considering $n=0$, we get $p \mid a_{1} \cdots a_{k}$. Since each $\left(a_{i}, q\right)=1$, the prime $p \nmid q$. So $\left(q n+a_{1}\right) \cdots\left(q n+a_{k}\right) \equiv 0$ $(\bmod p)$ has at most k solutions $\bmod p$, and hence $p \leq k$.

For the proof, again let m be given, and let $k=k_{0}(m)$.
We apply the BFTB theorem to a collection of the form

$$
q n+a_{1}, \ldots, q n+a_{k}
$$

where each $a_{i} \equiv a(\bmod q)$.
Why is there an admissible collection like this?
Choose each $a_{i} \equiv a(\bmod q)$. If p is an obstruction to admissibility, then considering $n=0$, we get $p \mid a_{1} \cdots a_{k}$. Since each $\left(a_{i}, q\right)=1$, the prime $p \nmid q$. So $\left(q n+a_{1}\right) \cdots\left(q n+a_{k}\right) \equiv 0$ $(\bmod p)$ has at most k solutions $\bmod p$, and hence $p \leq k$.

Consequence: We get admissibility if we choose each $a_{i} \equiv a$ $(\bmod q)$ to have no prime factors $\leq k$.

Some questions of Sierpiński

Let $s(n)$ denote the sum of the decimal digits of n. For example, $s(2014)=2+1+4=7$. We can observe that

$$
s(1442173)=s(1442191)=s(1442209)=s(1442227) .
$$

Some questions of Sierpiński

Let $s(n)$ denote the sum of the decimal digits of n. For example, $s(2014)=2+1+4=7$. We can observe that

$$
s(1442173)=s(1442191)=s(1442209)=s(1442227)
$$

Question (Sierpiński, 1961)

Given m, are there infinitely many m-tuples of consecutive primes p_{n}, \ldots, p_{n+m-1} with

$$
s\left(p_{n}\right)=s\left(p_{n+1}\right)=\cdots=s\left(p_{n+m-1}\right) ?
$$

Some questions of Sierpiński

Let $s(n)$ denote the sum of the decimal digits of n. For example, $s(2014)=2+1+4=7$. We can observe that

$$
s(1442173)=s(1442191)=s(1442209)=s(1442227)
$$

Question (Sierpiński, 1961)

Given m, are there infinitely many m-tuples of consecutive primes p_{n}, \ldots, p_{n+m-1} with

$$
s\left(p_{n}\right)=s\left(p_{n+1}\right)=\cdots=s\left(p_{n+m-1}\right) ?
$$

Answer (Thompson and P.): Yes.

We sketch the proof. We let $k=k_{0}(m)$. We seek an admissible collection of the form

$$
10^{\ell} n+b_{1}, \quad 10^{\ell} n+b_{2}, \quad \ldots, \quad 10^{\ell} n+b_{k},
$$

where $0<b_{1}<b_{2}<\cdots<b_{k}<10^{\ell}$ and $s\left(b_{1}\right)=\cdots=s\left(b_{k}\right)=s$, say.

Given such a collection, BFTB says we get at least m consecutive primes, each of which has digit sum $s(n)+s$.
How do we ensure admissibility?
If p is an obstruction to admissibility, then $p \mid b_{1} \cdots b_{k}$.
Moreover, either $p \mid 10$ or $p \leq k$.
Consequence: We get admissibility if we choose each b_{i} coprime to 10 and all primes $p \leq k$.

Can we choose distinct positive integers b_{1}, \ldots, b_{k} coprime to $10 \prod_{p \leq k} p$ and all possessing the same digit sum?

Yes, by a direct elementary argument.
OR: Using a 2009 result of Mauduit and Rivat, one can actually pick the b_{i} to be primes. Their result shows there are "many" ℓ-digit primes p with $s(p)=s$, for all integers s "near" the expected mean sum-of-digits $\frac{9}{2} \ell$. (More precisely, they prove a "local central limit theorem" for sums of digits of primes.)

Another question of Erdős

Let $\sigma(\cdot)$ be the usual sum-of-divisors function, so $\sigma(n)=\sum_{d \mid n} d$.
Question
If $\sigma(a)=\sigma(b)$, what can be said about the ratio a / b ?
Example
$\sigma^{-1}(8960)=\{3348,5116,5187,6021,7189,7657\}$.

Another question of Erdős

Let $\sigma(\cdot)$ be the usual sum-of-divisors function, so $\sigma(n)=\sum_{d \mid n} d$.
Question
If $\sigma(a)=\sigma(b)$, what can be said about the ratio a / b ?
Example
$\sigma^{-1}(8960)=\{3348,5116,5187,6021,7189,7657\}$.
Conjecture (Erdős, 1959)
Nothing. More precisely, the set of ratios $\{a / b: \sigma(a)=\sigma(b)\}$ is dense in $\mathbb{R}_{>0}$.

Theorem (P.)
Erdős's conjecture is true.

In this talk we focus on a special case.

Theorem

For every B, there is a pair of integers a and b with $\sigma(a)=\sigma(b)$ and $a / b>B$.

The proof uses ideas of Schinzel, who proved this special case assuming Dickson's conjecture.
Proof.
Let $k=k_{0}(2)$.
Notice that the ratio $\sigma(m) / m$ gets arbitrarily large as m ranges over the natural numbers, since

$$
\sigma(m) / m=\sum_{d \mid m} \frac{1}{d},
$$

and the harmonic series diverges.

Now choose integers a_{1}, \ldots, a_{k} where each

$$
\begin{aligned}
& \sigma\left(a_{1}\right) / a_{1}>B \\
& \sigma\left(a_{2}\right) / a_{2}>B \cdot \sigma\left(a_{1}\right) / a_{1} \\
& \vdots \\
& \sigma\left(a_{k}\right) / a_{k}>B \cdot \sigma\left(a_{k-1}\right) / a_{k-1}
\end{aligned}
$$

Now choose integers a_{1}, \ldots, a_{k} where each

$$
\begin{aligned}
& \sigma\left(a_{1}\right) / a_{1}>B \\
& \sigma\left(a_{2}\right) / a_{2}>B \cdot \sigma\left(a_{1}\right) / a_{1} \\
& \vdots \\
& \sigma\left(a_{k}\right) / a_{k}>B \cdot \sigma\left(a_{k-1}\right) / a_{k-1}
\end{aligned}
$$

Consider the admissible collection $\sigma\left(a_{1}\right) n-1, \ldots, \sigma\left(a_{k}\right) n-1$. For infinitely many n, at least two of $\sigma\left(a_{1}\right) n-1, \ldots, \sigma\left(a_{k}\right) n-1$ are prime, say

$$
p_{i}=\sigma\left(a_{i}\right) n-1 \quad \text { and } \quad p_{j}=\sigma\left(a_{j}\right) n-1
$$

For infinitely many n, at least two of $\sigma\left(a_{1}\right) n-1, \ldots, \sigma\left(a_{k}\right) n-1$ are prime, say

$$
p_{i}=\sigma\left(a_{i}\right) n-1 \quad \text { and } \quad p_{j}=\sigma\left(a_{j}\right) n-1
$$

We can assume n is large enough that these primes are bigger than any of a_{1}, \ldots, a_{k}.

For infinitely many n, at least two of $\sigma\left(a_{1}\right) n-1, \ldots, \sigma\left(a_{k}\right) n-1$ are prime, say

$$
p_{i}=\sigma\left(a_{i}\right) n-1 \quad \text { and } \quad p_{j}=\sigma\left(a_{j}\right) n-1
$$

We can assume n is large enough that these primes are bigger than any of a_{1}, \ldots, a_{k}.

Notice $\sigma\left(p_{i} a_{j}\right)=\sigma\left(a_{i}\right) \sigma\left(a_{j}\right) n=\sigma\left(p_{j} a_{i}\right)$.
The ratio

$$
\begin{aligned}
\frac{p_{j} a_{i}}{p_{i} a_{j}}=\frac{p_{j}}{p_{i}} \cdot \frac{a_{i}}{a_{j}} & =\frac{\sigma\left(a_{j}\right) n-1}{\sigma\left(a_{i}\right) n-1} \cdot \frac{a_{i}}{a_{j}} \\
& >\frac{\frac{1}{2} \sigma\left(a_{j}\right) n}{\sigma\left(a_{i}\right) n} \cdot \frac{a_{i}}{a_{j}} 1=\frac{1}{2} \frac{\sigma\left(a_{j}\right) / a_{j}}{\sigma\left(a_{i}\right) / a_{i}} \geq \frac{B}{2}
\end{aligned}
$$

Bounded gaps between primes in special sets

Say a set of primes q_{1}, q_{2}, \ldots has the bounded gaps property if $\liminf _{n \rightarrow \infty} q_{n+m}-q_{n}<\infty$, for every m.
Theorem (Thorner)
Chebotarev sets have the bounded gaps property.

Bounded gaps between primes in special sets

Say a set of primes q_{1}, q_{2}, \ldots has the bounded gaps property if $\liminf _{n \rightarrow \infty} q_{n+m}-q_{n}<\infty$, for every m.

Theorem (Thorner)

Chebotarev sets have the bounded gaps property.

Example

- The set of primes $p \equiv 1(\bmod 3)$ for which 2 is a cube $\bmod p$ has the bounded gaps property.
- Fix a positive integer n. The set of primes expressible in the form $x^{2}+n y^{2}$ has the bounded gaps property.

Bounded gaps between primes in special sets

Say a set of primes q_{1}, q_{2}, \ldots has the bounded gaps property if $\liminf _{n \rightarrow \infty} q_{n+m}-q_{n}<\infty$, for every m.
Theorem (Thorner)
Chebotarev sets have the bounded gaps property.

Example

- The set of primes $p \equiv 1(\bmod 3)$ for which 2 is a cube $\bmod p$ has the bounded gaps property.
- Fix a positive integer n. The set of primes expressible in the form $x^{2}+n y^{2}$ has the bounded gaps property.

Key input provided by an analogue of Bombieri-Vinogradov proved by Murty-Murty.

Theorem (Baker-Zhao)
Fix real numbers α and β with $\alpha>1$ and α irrational. Then the set of primes of the form $\lfloor\alpha n+\beta\rfloor$ has the bounded gaps property.
cf. earlier work of Benatar and Chua-Park-Smith

Artin's primitive root conjecture

Conjecture (Artin, 1927)
Fix g not a square and $\neq-1$. There are infinitely many primes p for which g is a primitive root $\bmod p$.

Theorem (Hooley, 1967)
GRH for Dedekind zeta functions implies Artin's conjecture.

Theorem (P.)

Assume GRH for Dedekind zeta functions. The set of primes p with g as a primitive root has the bounded gaps property.

Sketch of Hooley's proof

For simplicity, we consider only $g=2$.
We look for such primes $p \leq N$. Let $W=4 \prod_{p \leq D_{0}} p$, where
$D_{0}=\log \log \log N$.
First, we hit the problem with the W-trick:
Fix $p \equiv \nu \bmod W$, so that $p \equiv 3(\bmod 8)($ so 2 is not a square $\bmod p)$ and $p-1$ has no odd prime factors $\leq D_{0}$.

There are $\approx \pi(N) / \phi(W)$ such $p \leq N$.

If 2 is not a primitive root $\bmod p$, then for some prime ℓ,

$$
p \equiv 1 \quad(\bmod \ell) \quad \text { and } \quad 2^{\frac{p-1}{\ell}} \equiv 1 \quad(\bmod p)
$$

From 1., we must have $\ell>D_{0}$. Consider three ranges of remaining ℓ :

$$
\begin{aligned}
D_{0} & <\ell<N^{1 / 2} / \log ^{3} N \\
N^{1 / 2} / \log ^{3} N & \leq \ell<N^{1 / 2} \log ^{3} N \\
\ell & \geq N^{1 / 2} \log ^{3} N
\end{aligned}
$$

We will show that the number of p possessing P_{ℓ} for ℓ in each of these three ranges is $O(\pi(N) / \phi(W))$.

Range I: $D_{0}<\ell<N^{1 / 2} / \log ^{3} N$
Reinterpret P_{ℓ} as a splitting condition: it says p splits completely in $\mathbb{Q}\left(\zeta_{\ell}, \sqrt[\ell]{2}\right)$. By GRH Chebotarev, the number of such $p \leq N$ is

$$
\frac{1}{\ell(\ell-1)} \pi(N)+O\left(N^{1 / 2} \log N\right)
$$

We will show that the number of p possessing P_{ℓ} for ℓ in each of these three ranges is $O(\pi(N) / \phi(W))$.

Range I: $D_{0}<\ell<N^{1 / 2} / \log ^{3} N$
Reinterpret P_{ℓ} as a splitting condition: it says p splits completely in $\mathbb{Q}\left(\zeta_{\ell}, \sqrt[\ell]{2}\right)$. By GRH Chebotarev, the number of such $p \leq N$ is

$$
\frac{1}{\ell(\ell-1)} \pi(N)+O\left(N^{1 / 2} \log N\right) .
$$

Summming over ℓ gives a bound

$$
\ll \frac{\pi(N)}{D_{0}}+N /(\log N)^{2}=o(\pi(N) / \phi(W)) .
$$

Range II: $N^{1 / 2} / \log ^{3} N \leq \ell<N^{1 / 2} \log ^{3} N$
From P_{ℓ}, keep only the condition that $p \equiv 1(\bmod \ell)$. By Brun-Titchmarsh, the number of such $p \leq N$ is

$$
\ll \frac{\pi(N)}{\ell}
$$

Summing on ℓ in our range gives

$$
\ll \pi(N) \cdot \frac{\log \log N}{\log N}
$$

which is $o(\pi(N) / \phi(W))$.

Range III: $\ell \geq N^{1 / 2} \log ^{3} N$
P_{ℓ} implies that p divides $2^{j}-1$, where

$$
j=\frac{p-1}{\ell}<N^{1 / 2} / \log ^{3} N .
$$

For each $j<N^{1 / 2} / \log ^{3} N$, we count the number of such p. This is $O(j)$.

Summing on j gives $O\left(N / \log ^{6} N\right)$ such p. This is $o(\pi(N) / \phi(W))$.

Maynard-Tao-ification

Fix an admissible set $\left\{h_{1}, \ldots, h_{k}\right\}$.
We look for primes p among $n+h_{1}, \ldots, n+h_{k}$ belonging to $\tilde{\mathcal{P}}$: primes with 2 as a primitive root.

Maynard-Tao-ification

Fix an admissible set $\left\{h_{1}, \ldots, h_{k}\right\}$.
We look for primes p among $n+h_{1}, \ldots, n+h_{k}$ belonging to $\tilde{\mathcal{P}}$: primes with 2 as a primitive root.

We W-trick-it-out:
Let $W=4 \prod_{p \leq D_{0}} p$.
Choose $\nu(\bmod W)$ so that whenever $n \equiv \nu(\bmod W)$,

- each $n+h_{i}$ is coprime to W,
- each $n+h_{i} \equiv 3(\bmod 8)$,
- each $n+h_{i}-1$ has no odd prime factors $\leq D_{0}$.

This can be done if 8 divides every h_{i}.

Maynard's method depends on making S_{2} / S_{1} large, where

$$
\begin{aligned}
& S_{1}=\sum_{\substack{N \leq n<2 N \\
n \equiv \nu(\bmod w)}} w(n), \\
& S_{2}=\sum_{\substack{N \leq n<2 N \\
n \equiv \nu(\bmod w)}}\left(\sum_{i=1}^{k} \mathbf{1}_{n+n_{i}} \text { prime }\right) w(n) .
\end{aligned}
$$

Let $\tilde{\mathcal{P}}$ be the primes with 2 as a primitive root.
Claim: $\tilde{S}_{2}:=\sum_{\substack{N \leq n<2 N \\ n \equiv \nu(\bmod W)}}\left(\sum_{i=1}^{k} \mathbf{1}_{n+h_{i} \in \tilde{\mathcal{P}}}\right) w(n)$ obeys the same asymptotic as S_{2}.

Looking at the difference $S_{2}-\tilde{S}_{2}$, it is enough to make

$$
\sum_{\substack{N \leq n<2 N \\ n \equiv \nu \\(\bmod W)}}\left(\mathbf{1}_{n+h_{i} \text { prime }}-\mathbf{1}_{\left.n+h_{i} \text { in } \tilde{\mathcal{P}}\right) w(n)}\right.
$$

small, for each fixed $1 \leq i \leq k$. Fix $i=k$ (notational convenience).
If $p=n+h_{k}$ is prime but 2 is not a primitive root, then p has P_{ℓ} for some ℓ.

By our W-tricking, we know $\ell>D_{0}$.

Split into 4 ranges for ℓ :
I. $D_{0}<\ell \leq(\log N)^{100 k}$,
II. $(\log N)^{100 k}<\ell \leq N^{1 / 2}(\log N)^{-100 k}$,
III. $N^{1 / 2}(\log N)^{-100 k}<\ell \leq N^{1 / 2}(\log N)^{100 k}$,
IV. $N^{1 / 2}(\log N)^{100 k}<\ell$.

We estimate the contribution to $\sum_{n}\left(\mathbf{1}_{n+h_{k}}\right.$ prime $-\mathbf{1}_{n+h_{k}}$ in $\left.\tilde{\mathcal{P}}\right) w(n)$ from n with $p=n+h_{k}$ satisfying P_{ℓ} for an ℓ in each of these ranges.

Split into 4 ranges for ℓ :
I. $D_{0}<\ell \leq(\log N)^{100 k}$,
II. $(\log N)^{100 k}<\ell \leq N^{1 / 2}(\log N)^{-100 k}$,
III. $N^{1 / 2}(\log N)^{-100 k}<\ell \leq N^{1 / 2}(\log N)^{100 k}$,
IV. $N^{1 / 2}(\log N)^{100 k}<\ell$.

We estimate the contribution to $\sum_{n}\left(\mathbf{1}_{n+h_{k}}\right.$ prime $-\mathbf{1}_{n+h_{k}}$ in $\left.\tilde{\mathcal{P}}\right) w(n)$ from n with $p=n+h_{k}$ satisfying P_{ℓ} for an ℓ in each of these ranges.

Ranges II and and IV we treat by Cauchy-Schwarz, using that there are not too many $p \leq 3 N$ having P_{ℓ} for some ℓ in that range.

Example

For each ℓ, we get in II an upper bound $\ll \frac{N / \log N}{\ell(\ell-1)}+N^{1 / 2} \log N$, and summing on ℓ gives

$$
\ll N(\log N)^{-100 k}
$$

In other words,

$$
\sum_{n} \mathbf{1}_{p=n+h_{k}} \text { one of these primes } \ll N(\log N)^{-100 k}
$$

We now use the easy bound $\sum_{n} w(n)^{2} \ll N(\log N)^{20 k}$.
We get

$$
\sum_{n} \mathbf{1}_{p=n+h_{k}} \text { one of these primes } w(n)
$$

is negligible compared to S_{1} and S_{2}.

In other words,

$$
\sum_{n} \mathbf{1}_{p=n+h_{k} \text { one of these primes }}^{<} N(\log N)^{-100 k}
$$

We now use the easy bound $\sum_{n} w(n)^{2} \ll N(\log N)^{20 k}$.
We get

$$
\sum_{n} \mathbf{1}_{p=n+h_{k}} \text { one of these primes } w(n)
$$

is negligible compared to S_{1} and S_{2}.
Range IV is similarly easy.

Range I: $D_{0}<\ell \leq(\log N)^{100 k}$

To estimate

$$
\sum_{n} \mathbf{1}_{p=n+h_{k}} \text { one of these primes } w(n)
$$

open up the sum. Have to estimate

$$
\sum_{\ell} \sum_{\substack{\mathbf{d}, \mathbf{e} \\ d_{k}=e_{k}=1}} \lambda_{\mathbf{d}} \lambda_{\mathbf{e}} \sum_{\substack{N \leq n<2 N \\ n \equiv \nu \\(\bmod W) \\\left[d_{i}, e_{i}\right] \mid n+h_{i} \forall i}} \mathbf{1}_{p=n+h_{k} \text { is prime, has } P_{\ell}}
$$

Inner sum has main term $\approx \frac{N / \log N}{\ell(\ell-1) \phi(W) \prod_{i=1}^{k}\left[d_{i}, e_{i}\right]}$; error is under control because outer sum on ℓ is small.

Range I: $D_{0}<\ell \leq(\log N)^{100 k}$

Inner sum has main term $\approx \frac{N / \log N}{\ell(\ell-1) \phi(W) \prod_{i=1}^{k}\left[d_{i}, e_{i}\right]}$; error is under control because outer sum on ℓ is small.

Summing the main term on ℓ works out similarly to S_{2}, except we gain a factor of

$$
\sum_{\ell} \frac{1}{\ell(\ell-1)}
$$

over $D_{0}<\ell \leq(\log N)^{100 k}$, and this is $o(1)$.
So this is negligible compared to S_{1} and S_{2}.

Range III: $N^{1 / 2}(\log N)^{-100 k}<\ell \leq N^{1 / 2}(\log N)^{100 k}$

To estimate

$$
\sum \mathbf{1}_{p=n+h_{k}} \text { one of these primes } w(n)
$$

replace

$$
\mathbf{1}_{p=n+h_{k}} \text { one of these primes }
$$

with

$$
\mathbf{1}_{n+h_{k} \equiv 1} \quad(\bmod \ell) .
$$

Opening it up gives a sum similar to S_{1}, but we gain a factor of

$$
\sum_{N^{1 / 2}(\log N)^{-100 k}<\ell \leq N^{1 / 2}(\log N)^{100 k}} \frac{1}{\ell}=O(1) .
$$

Further examples of Maynard-Tao-ification

Theorem (Thompson and P.)

For each function f among $d(n), \phi(n), \sigma(n), \omega(n), \Omega(n)$, one can find arbitrarily long runs of consecutive primes p on which $f(p-1)$ is increasing. Same for decreasing.

Further examples of Maynard-Tao-ification

Theorem (Thompson and P.)

For each function f among $d(n), \phi(n), \sigma(n), \omega(n), \Omega(n)$, one can find arbitrarily long runs of consecutive primes p on which $f(p-1)$ is increasing. Same for decreasing.

Theorem
There are arbitrarily long runs of primes p for which $p-1$ is squarefree.

Further examples of Maynard-Tao-ification

Theorem (Thompson and P.)

For each function f among $d(n), \phi(n), \sigma(n), \omega(n), \Omega(n)$, one can find arbitrarily long runs of consecutive primes p on which $f(p-1)$ is increasing. Same for decreasing.

Theorem
There are arbitrarily long runs of primes p for which $p-1$ is squarefree.

Theorem (Baker and P.)
Assume GRH. Fix an elliptic curve E / \mathbb{Q}. There are arbitrarily long runs of primes p for which $E\left(\mathbb{F}_{p}\right)$ is cyclic.

