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The fundamental theorems of ZMT-ology

Theorem (Zhang for m = 2, Maynard–Tao for m > 2)
For each integer m ≥ 2, there is a finite number k0(m) with the
following property: Let H = {h1,h2, . . . ,hk} be an admisible
k-tuple with k ≥ k0(m). Here admissible means that

#{n mod p :
k∏

i=1

(n + hi) ≡ 0 (mod p)} < p

for every prime p. There are infinitely many n for which the list
n + h1, . . . ,n + hk contains at least m prime numbers.

Conjecture (Hardy–Littlewood)
Can take k0(m) = m.
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Theorem
For each integer m ≥ 2, there is a finite number k0(m) with the
following property: Let a1n + b1, . . . ,akn + bk be an admissible
colletion of linear polynomials with k ≥ k0(m). Here admissible
means that

#{n mod p :
k∏

i=1

(ain + bi) ≡ 0 (mod p)} < p

for every prime p. There are infinitely many n for which the list
a1n + b1, . . . ,akn + bk contains at least m prime numbers.

Conjecture (Dickson’s k -tuples
conjecture)
Can take k0(m) = m.
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B–F–T-B

Theorem (Banks–Freiberg–Turnage-Butterbaugh)
Suppose in the last theorem that all the ai coincide, say each
ai = A. Assume the sequence b1, . . . ,bk is monotonic. There are
infinitely many n for which the list An + b1, . . . ,An + bk contains at
least m consecutive prime numbers.
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Main idea of the proof.
Introduce extra congruence conditions on n forcing An + b
composite for each b between b1 and bk not among the bi .

Example
Suppose we really did know that every pair of admissible linear
forms assumed simultaneous prime values.

And say we wanted n and n + 6 to be consecutive primes.

Replace n with 15n + 1: we apply the result to 15n + 1 and
15n + 7.
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Proof and consequences

For each k , put dk = pk+1 − pk .

Conjecture (Erdős and Turán, 1948)
The sequence {dk} contains arbitrarily long (strictly) increasing
runs and arbitrarily long (strictly) decreasing runs.

Proof (BFTB).
Let’s treat the increasing case first. Given m, let k = k0(m), and
apply BFTB to the collection n + 2,n + 22, . . . ,n + 2k . Let’s check
admissibility.
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Checking admissibility: If p 6= 2, then

k∏
i=1

(n + 2i)

∣∣∣∣∣
n=0

6≡ 0 (mod p).

whereas if p = 2, then

k∏
i=1

(n + 2i)

∣∣∣∣∣
n=1

6≡ 0 (mod p).

Thus, the list n + 2, . . . ,n + 2k contains at least m consecutive
primes. The sequence of gaps between them is increasing.

The decreasing case is similar, with the theorem applied to
n − 2, . . . ,n − 2k .
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Open problem: Show that there are infinitely many runs of
consecutive prime gaps in the order LOW HIGH LOW. In other
words, dk < dk+1 but dk+1 > dk+2.

(If I remember correctly...) C. Spiro has shown this would follow if
there is at least one m ≥ 4 with k0(m) < 2m.
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Shiu strings

Theorem (D.K.L. Shiu, 2000)
Each coprime residue class a mod q contains arbitrarily long runs
of consecutive primes.
These runs of primes are called “Shiu strings.”

Theorem (BFTB)
Shiu’s theorem is still true fourteen years later. Moreover, it
remains true even if one restricts the primes to lie in a bounded
length interval. (“Bounded” means bounded in terms of q and the
length of the run.)
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For the proof, again let m be given, and let k = k0(m).
We apply the BFTB theorem to a collection of the form

qn + a1, . . . ,qn + ak

where each ai ≡ a (mod q).

Why is there an admissible collection like this?

Choose each ai ≡ a (mod q). If p is an obstruction to
admissibility, then considering n = 0, we get p | a1 · · · ak .

Since
each (ai ,q) = 1, the prime p - q. So (qn + a1) · · · (qn + ak ) ≡ 0
(mod p) has at most k solutions mod p, and hence p ≤ k .

Consequence: We get admissibility if we choose each ai ≡ a
(mod q) to have no prime factors ≤ k .
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Some questions of Sierpiński
Let s(n) denote the sum of the decimal digits of n. For example,
s(2014) = 2 + 1 + 4 = 7. We can observe that

s(1442173) = s(1442191) = s(1442209) = s(1442227).

Question (Sierpiński, 1961)
Given m, are there infinitely many m-tuples of
consecutive primes pn, . . . ,pn+m−1 with

s(pn) = s(pn+1) = · · · = s(pn+m−1)?

Answer (Thompson and P.): Yes.
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We sketch the proof. We let k = k0(m). We seek an admissible
collection of the form

10`n + b1, 10`n + b2, . . . , 10`n + bk ,

where 0 < b1 < b2 < · · · < bk < 10` and s(b1) = · · · = s(bk ) = s,
say.

Given such a collection, BFTB says we get at least m consecutive
primes, each of which has digit sum s(n) + s.

How do we ensure admissibility?
If p is an obstruction to admissibility, then p | b1 · · · bk .
Moreover, either p | 10 or p ≤ k .

Consequence: We get admissibility if we choose each bi coprime
to 10 and all primes p ≤ k .

12 of 35



Can we choose distinct positive integers b1, . . . ,bk coprime to
10
∏

p≤k p and all possessing the same digit sum?

Yes, by a direct elementary argument.

OR: Using a 2009 result of Mauduit and Rivat, one can actually
pick the bi to be primes. Their result shows there are “many”
`-digit primes p with s(p) = s, for all integers s “near” the expected
mean sum-of-digits 9

2`. (More precisely, they prove a “local central
limit theorem” for sums of digits of primes.)
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Another question of Erdős

Let σ(·) be the usual sum-of-divisors function, so σ(n) =
∑

d |n d .

Question
If σ(a) = σ(b), what can be said about the ratio a/b?

Example
σ−1(8960) = {3348,5116,5187,6021,7189,7657}.

Conjecture (Erdős, 1959)
Nothing. More precisely, the set of ratios {a/b : σ(a) = σ(b)} is
dense in R>0.

Theorem (P.)
Erdős’s conjecture is true.
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In this talk we focus on a special case.

Theorem
For every B, there is a pair of integers a and b with σ(a) = σ(b)
and a/b > B.

The proof uses ideas of Schinzel, who proved this special case
assuming Dickson’s conjecture.

Proof.
Let k = k0(2).
Notice that the ratio σ(m)/m gets arbitrarily large as m ranges
over the natural numbers, since

σ(m)/m =
∑
d |m

1
d
,

and the harmonic series diverges.
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Now choose integers a1, . . . ,ak where each

σ(a1)/a1 > B,
σ(a2)/a2 > B · σ(a1)/a1,

...
σ(ak )/ak > B · σ(ak−1)/ak−1.

Consider the admissible collection σ(a1)n − 1, . . . , σ(ak )n − 1.
For infinitely many n, at least two of σ(a1)n− 1, . . . , σ(ak )n− 1 are
prime, say

pi = σ(ai)n − 1 and pj = σ(aj)n − 1.
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For infinitely many n, at least two of σ(a1)n− 1, . . . , σ(ak )n− 1 are
prime, say

pi = σ(ai)n − 1 and pj = σ(aj)n − 1.

We can assume n is large enough that these primes are bigger
than any of a1, . . . ,ak .

Notice σ(piaj) = σ(ai)σ(aj)n = σ(pjai).
The ratio

pjai

piaj
=

pj

pi
· ai

aj
=
σ(aj)n − 1
σ(ai)n − 1

· ai

aj

>
1
2σ(aj)n
σ(ai)n

· ai

aj
1 =

1
2
σ(aj)/aj

σ(ai)/ai
≥ B

2
.
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Bounded gaps between primes in special sets

Say a set of primes q1,q2, . . . has the bounded gaps property if
lim infn→∞ qn+m − qn <∞, for every m.

Theorem (Thorner)
Chebotarev sets have the bounded gaps property.

Example

• The set of primes p ≡ 1 (mod 3) for which 2 is a cube mod p
has the bounded gaps property.

• Fix a positive integer n. The set of primes expressible in the
form x2 + ny2 has the bounded gaps property.

Key input provided by an analogue of Bombieri–Vinogradov
proved by Murty–Murty.
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Theorem (Baker–Zhao)
Fix real numbers α and β with α > 1 and α irrational. Then the set
of primes of the form bαn + βc has the bounded gaps property.

cf. earlier work of Benatar and Chua–Park–Smith
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Artin’s primitive root conjecture

Conjecture (Artin, 1927)
Fix g not a square and 6= −1. There are
infinitely many primes p for which g is a
primitive root mod p.

Theorem (Hooley, 1967)
GRH for Dedekind zeta functions implies Artin’s conjecture.

Theorem (P.)
Assume GRH for Dedekind zeta functions. The set of primes p
with g as a primitive root has the bounded gaps property.
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Sketch of Hooley’s proof

For simplicity, we consider only g = 2.
We look for such primes p ≤ N. Let W = 4

∏
p≤D0

p, where
D0 = log log log N.

First, we hit the problem with the W-trick:
Fix p ≡ ν mod W , so that p ≡ 3 (mod 8) (so 2 is not a square
mod p) and p − 1 has no odd prime factors ≤ D0.

There are ≈ π(N)/φ(W ) such p ≤ N.
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If 2 is not a primitive root mod p, then for some prime `,

p ≡ 1 (mod `) and 2
p−1
` ≡ 1 (mod p). (P`)

From 1., we must have ` > D0. Consider three ranges of
remaining `:

D0 < ` < N1/2/ log3 N

N1/2/ log3 N ≤ ` < N1/2 log3 N

` ≥ N1/2 log3 N.
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We will show that the number of p possessing P` for ` in each of
these three ranges is o(π(N)/φ(W )).

Range I: D0 < ` < N1/2/ log3 N
Reinterpret P` as a splitting condition: it says p splits completely in
Q(ζ`,

√̀
2). By GRH Chebotarev, the number of such p ≤ N is

1
`(`− 1)

π(N) + O(N1/2 log N).

Summming over ` gives a bound

� π(N)

D0
+ N/(log N)2 = o(π(N)/φ(W )).
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Range II: N1/2/ log3 N ≤ ` < N1/2 log3 N

From P`, keep only the condition that p ≡ 1 (mod `).
By Brun–Titchmarsh, the number of such p ≤ N is

� π(N)

`
.

Summing on ` in our range gives

� π(N) · log log N
log N

,

which is o(π(N)/φ(W )).
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Range III: ` ≥ N1/2 log3 N

P` implies that p divides 2j − 1, where

j =
p − 1
`

< N1/2/ log3 N.

For each j < N1/2/ log3 N, we count the number of such p.
This is O(j).

Summing on j gives O(N/ log6 N) such p.
This is o(π(N)/φ(W )).
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Maynard–Tao-ification

Fix an admissible set {h1, . . . ,hk}.
We look for primes p among n + h1, . . . ,n + hk belonging to P̃:
primes with 2 as a primitive root.

We W -trick-it-out:
Let W = 4

∏
p≤D0

p.
Choose ν (mod W ) so that whenever n ≡ ν (mod W ),
• each n + hi is coprime to W ,
• each n + hi ≡ 3 (mod 8),
• each n + hi − 1 has no odd prime factors ≤ D0.

This can be done if 8 divides every hi .

26 of 35



Maynard–Tao-ification

Fix an admissible set {h1, . . . ,hk}.
We look for primes p among n + h1, . . . ,n + hk belonging to P̃:
primes with 2 as a primitive root.

We W -trick-it-out:
Let W = 4

∏
p≤D0

p.
Choose ν (mod W ) so that whenever n ≡ ν (mod W ),
• each n + hi is coprime to W ,
• each n + hi ≡ 3 (mod 8),
• each n + hi − 1 has no odd prime factors ≤ D0.

This can be done if 8 divides every hi .

26 of 35



Maynard’s method depends on making S2/S1 large, where

S1 =
∑

N≤n<2N
n≡ν (mod W )

w(n),

S2 =
∑

N≤n<2N
n≡ν (mod W )

(
k∑

i=1

1n+hi prime)w(n).

Let P̃ be the primes with 2 as a primitive root.

Claim: S̃2 :=
∑

N≤n<2N
n≡ν (mod W )

(∑k
i=1 1n+hi∈P̃

)
w(n) obeys the same

asymptotic as S2.
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Looking at the difference S2 − S̃2, it is enough to make∑
N≤n<2N

n≡ν (mod W )

(1n+hi prime − 1n+hi in P̃)w(n)

small, for each fixed 1 ≤ i ≤ k . Fix i = k (notational convenience).

If p = n + hk is prime but 2 is not a primitive root, then p has P` for
some `.

By our W -tricking, we know ` > D0.
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Split into 4 ranges for `:

I. D0 < ` ≤ (log N)100k ,
II. (log N)100k < ` ≤ N1/2(log N)−100k ,
III. N1/2(log N)−100k < ` ≤ N1/2(log N)100k ,
IV. N1/2(log N)100k < `.

We estimate the contribution to
∑

n(1n+hk prime − 1n+hk in P̃)w(n)
from n with p = n + hk satisfying P` for an ` in each of these
ranges.

Ranges II and and IV we treat by Cauchy–Schwarz, using that
there are not too many p ≤ 3N having P` for some ` in that range.

Example
For each `, we get in II an upper bound� N/ log N

`(`−1) + N1/2 log N,
and summing on ` gives

� N(log N)−100k .
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In other words,∑
n

1p=n+hk one of these primes � N(log N)−100k .

We now use the easy bound
∑

n w(n)2 � N(log N)20k .

We get ∑
n

1p=n+hk one of these primesw(n)

is negligible compared to S1 and S2.

Range IV is similarly easy.

30 of 35



In other words,∑
n

1p=n+hk one of these primes � N(log N)−100k .

We now use the easy bound
∑

n w(n)2 � N(log N)20k .

We get ∑
n

1p=n+hk one of these primesw(n)

is negligible compared to S1 and S2.

Range IV is similarly easy.

30 of 35



Range I: D0 < ` ≤ (log N)100k

To estimate ∑
n

1p=n+hk one of these primesw(n),

open up the sum. Have to estimate∑
`

∑
d,e

dk=ek=1

λdλe
∑

N≤n<2N
n≡ν (mod W )
[di ,ei ]|n+hi ∀i

1p=n+hk is prime, has P`
.

Inner sum has main term ≈ N/ log N
`(`−1)φ(W )

∏k
i=1[di ,ei ]

; error is under

control because outer sum on ` is small.
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Range I: D0 < ` ≤ (log N)100k

Inner sum has main term ≈ N/ log N
`(`−1)φ(W )

∏k
i=1[di ,ei ]

; error is under

control because outer sum on ` is small.

Summing the main term on ` works out similarly to S2, except we
gain a factor of ∑

`

1
`(`− 1)

over D0 < ` ≤ (log N)100k , and this is o(1).

So this is negligible compared to S1 and S2.
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Range III: N1/2(log N)−100k < ` ≤ N1/2(log N)100k

To estimate ∑
1p=n+hk one of these primesw(n),

replace
1p=n+hk one of these primes

with
1n+hk≡1 (mod `).

Opening it up gives a sum similar to S1, but we gain a factor of∑
N1/2(log N)−100k<`≤N1/2(log N)100k

1
`

= o(1).
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Further examples of Maynard-Tao–ification

Theorem (Thompson and P.)
For each function f among d(n), φ(n), σ(n), ω(n),Ω(n), one can
find arbitrarily long runs of consecutive primes p on which f (p − 1)
is increasing. Same for decreasing.

Theorem
There are arbitrarily long runs of primes p for which p − 1 is
squarefree.

Theorem (Baker and P.)
Assume GRH. Fix an elliptic curve E/Q. There are arbitrarily long
runs of primes p for which E(Fp) is cyclic.

34 of 35



Further examples of Maynard-Tao–ification

Theorem (Thompson and P.)
For each function f among d(n), φ(n), σ(n), ω(n),Ω(n), one can
find arbitrarily long runs of consecutive primes p on which f (p − 1)
is increasing. Same for decreasing.

Theorem
There are arbitrarily long runs of primes p for which p − 1 is
squarefree.

Theorem (Baker and P.)
Assume GRH. Fix an elliptic curve E/Q. There are arbitrarily long
runs of primes p for which E(Fp) is cyclic.

34 of 35



Further examples of Maynard-Tao–ification

Theorem (Thompson and P.)
For each function f among d(n), φ(n), σ(n), ω(n),Ω(n), one can
find arbitrarily long runs of consecutive primes p on which f (p − 1)
is increasing. Same for decreasing.

Theorem
There are arbitrarily long runs of primes p for which p − 1 is
squarefree.

Theorem (Baker and P.)
Assume GRH. Fix an elliptic curve E/Q. There are arbitrarily long
runs of primes p for which E(Fp) is cyclic.

34 of 35



Thank you very much!
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