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300 BCE

Let pn denote the nth prime number, so p1 = 2, p2 = 3, p3 = 5,
. . . .

Theorem (Euclid)
There are infinitely many primes. In other
words, if π(x) := #{p ≤ x : p prime}, then
π(x)→∞ as x →∞.

There are at this point seemingly infinitely many
proofs of this theorem. Euclid’s theorem
suggests there might be something to be
gained by studying the sequence of gaps

dn := pn+1 − pn.
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Twin primes

The sequence {dn} begins
1,2,2,4,2,4,2,4,6,2,6,4,2,4,6,6,2,6,4,2,6,4,6,8, . . .
(OEIS A001223)

It was noticed many moons ago that dn = 2 appears to appear
infinitely often.

Recall: A pair of prime numbers {p,p + 2} is called a twin prime
pair.

Twin prime pairs: {3, 5}, {5, 7}, {11, 13}, {17,
19}, {29, 31}, {41, 43}, {59, 61}, {71, 73}, . . .

Twin prime conjecture: There are infinitely
many twin prime pairs.
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What is a large prime gap?
It is clear that the smallest gap size we can hope to achieve
infinitely often is dn = 2; i.e.,

lim inf
n→∞

dn ≥ 2.

What is the largest gap size we can hope to see infinitely often?

Theorem (Folk L. Ore)
For each N, there is a pair of consecutive primes separated by a
distance of at least N. In other words, lim supn→∞ dn =∞.

Proof.
We can explicitly construct a large prime-free zone. Indeed, as
long as N ≥ 2, there are no primes among the N − 1 consecutive
integers N! + 2, . . . ,N! + N. So if pn is the largest prime ≤ N! + 1,
then pn+1 ≥ N! + N + 1, and dn ≥ N.
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Large and large. What is large?
How large a gap did we just construct? Let X = N! + N. Then
there are no primes in (X − (N − 1),X ].

How big is N vs. X? Notice that

log X ≈ log N! =
N∑

j=1

log j ≈
∫ N

1
log t dt ≈ N log N.

Consequently,

log log X ≈ log N log N ≈ log N,

and so
N =

N log N
log N

≈ log X
log log X

.
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What is large? Ctd.

Dotting i ’s and crossing t ′s yields a proof of the following
proposition:

Proposition
Let ε > 0. Along a sequence of X →∞, the interval
(X − (1− ε) log X

log log X ,X ] is prime-free.

So we get a gap near X of size > (1− ε) log X
log log X .

Theorem (Prime number
theorem; Hadamard and de la
Vallée Poussin, 1899)
As X →∞, we have
π(X ) ∼ X/ log X.
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Calibrating our expectations
As a consequence of the prime number theorem, one can show
that as X →∞, ∑

pn≤X

dn = pπ(X)+1 − 2 ∼ X ,

and thus
1

π(x)

∑
pn≤X

dn ∼
X

X/ log X
= log X .

Consequence: Thus, looking at primes up to X , the average
distance to the next prime is ≈ log X . So the “large” gap of size
≈ log X/ log log X was actually a small gap.

Remark
Most primes p ≤ X exceed X/(log X )2 (say), and so log X ≈ log p.
So the gap from p to the next prime is ≈ log p on average.
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Asking the right question

All of this suggests that instead of asking about lim inf dn and
lim sup dn, it makes most sense to ask about the normalized prime
gaps, defined by

dn

log pn
.

From the average value statement on the preceding slide, one has
that

lim sup
dn

log pn
≥ 1 and lim inf

dn

log pn
≤ 1.

Questions
Is lim sup dn

log pn
=∞? is lim inf dn

log pn
= 0?

9 of 57



Large gaps

Backlund (1929) got lim sup dn
log pn

≥ 2 and Brauer–Zeitz (1930) got
lim sup dn

log pn
≥ 4.

Theorem (Westzynthius, 1931)
Yes, lim sup dn

log pn
=∞. In fact,

lim sup
dn

log n · log3 n/ log4 n
> 0.

Theorem (Ricci, 1934)
lim sup

dn

log n · log3 n
> 0.
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Large gaps

Theorem (Erdős, 1935)
lim sup

dn

log n · log2 n/(log3 n)2 > 0.

Theorem (Rankin, 1938)
lim sup

dn

log n · log2 n · log4 n/(log3 n)2 > 0.

In 1963, Rankin showed that the lim sup was ≥ eγ . In 1990, Maier
and Pomerance (GO DAWGS) improved this by a factor of
1.31256 · · · . In 1996, Pintz got up to 2eγ .
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All good things . . .

Erdős Problem ($10000 prize)
Prove that
lim sup

dn

log n · log2 n · log4 n/(log3 n)2 =∞.

Breaking news: Two solutions to Erdős’s problem have recently
been announced. The first is by Kevin Ford, Ben Green, Sergei
Konyagin, and Terence Tao — their preprint appeared on the
arXiv on August 20. The second solutions is by James Maynard,
and appeared on the arXiv on August 21. The work was done
independently and the methods of proof are different.
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Cast of characters

Ford, Green, Konyagin, Tao, and Maynard
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What’s the truth? I mean, really...

In 1936, Harald Cramér suggested a
statistical model for the primes:

We flip an infinite sequence of biased coins
C2,C3,C4, . . . , where Cn comes up heads
with probability 1/ log n.

Each infinite sequence of coin flips gives us
a set of random primes, namely those n for
which Cn comes up heads.

Theorem
Fix ε > 0. With probability 1, the random primes satisfy
π̃(x) =

∫ x
2

dt
log t + O(x1/2+ε). Here π̃(x) is the counting function.

This is consistent with our expectations of the actual sequence of
primes, assuming the Riemann Hypothesis.
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Theorem (Cramér)
With probability 1, we have

lim sup
n→∞

d̃n

(log n)2 = 1,

where d̃n is the analogue of dn for our sequence of random
primes.
Cramér conjectured that the same should be true for actual
primes.

However, work of Maier on the distribution of
primes in short intervals shows that
Cramér’s model is not always reliable.

Conjecture (Granville, ≈ 1995?)

lim sup
n→∞

d̃n

(log n)2 ≥ 2e−γ .
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Most people seem to believe that dn = O((log n)2+ε).

Even the Riemann Hypothesis would not be of much help here.
On RH, one can show (also noted by Cramér) that

dn = O(p1/2
n log pn).

This RH-conditional result is not much better than we can already
show unconditionally. We know (Baker–Harman–Pintz, 2001) that

dn � p
1
2+

1
40

n .
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Small gaps

The first person to prove a nontrivial result about small gaps
between primes was Viggo Brun, circa 1915.

Let π2(x) = #{p ≤ x : p,p + 2 prime}.

Theorem (Brun, 1919)
For all large enough values of x, we have
π2(x) < 100 x

(log x)2 .

As a corollary, Brun deduced that the sum(
1
3
+

1
5

)
+

(
1
5
+

1
7

)
+

(
1

11
+

1
13

)
+ · · · <∞.

We do not even know the left-hand sum to a single decimal place!
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To appreciate Brun’s result, one should recall what we expect for
the true behavior of π2(x).

Conjecture (Hardy &
Littlewood, 1923)
As x →∞, we have

π2(x) ∼ S
x

(log x)2 , where

S = 2
∏
p>2

(
1− 1

(p − 1)2

)
.

Brun’s method is important precisely because — in this and many
related problems — it gives an upper bound that is correct up to a
constant factor.
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Small normalized prime gaps
For a start, we would like to know that

lim inf
n→∞

dn

log pn
< 1.

It would seem that Brun is of no help to us, since he gives us an
upper bound on how often gaps occur, rather than a lower
bound. This turns out to be mistaken.

Proposition (Erdős)
Fix ε > 0. Then

#{x/2 < pn ≤ x : (1− ε) log pn < dn < (1 + ε) log pn}
#{x/2 < pn ≤ x}

≤ K ε

for some absolute constant K .
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Theorem (Erdős, 1940)
lim inf

dn

log pn
< 1.

Proof.
Let us suppose that from some point on, dn > (1− ε) log pn. We
will show that if ε is chosen sufficiently small, we reach a
contradiction. Hence, lim inf dn

log pn
≤ 1− ε.

What is the average of dn over primes pn ∈ (X/2,X ]? PNT implies
it is ∼ log X .

By assumption, there are only two kinds of primes like this, those
with dn/ log pn ∈ (1− ε,1 + ε) and those with
dn/ log pn ∈ (1 + ε,∞).
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By assumption, there are only two kinds of pn, those with
dn/ log pn ∈ (1− ε,1 + ε) and those with dn/ log pn ∈ (1 + ε,∞).

Let ρ be the proportion of primes pn ∈ (X/2,X ] which belong to
the former class. Erdős says ρ ≤ K ε. Since log pn & log X for
primes pn ∈ (X/2,X ], these primes make a contribution to the
average of

& ρ(1− ε) log X .

The proportion of primes of the second class is 1− ρ. the
contribution to the average from these primes is

& (1− ρ) · (1 + ε) log X .

Now we add.
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We find that the average value of dn, taken along primes
pn ∈ (X/2,X ], is

& (ρ(1− ε) + (1− ρ)(1 + ε)) log X
= (1 + (1− 2ρ)ε) log X
≥ (1 + (1− 2K ε)ε) log X .

If we suppose we had intially fixed ε < 1
2K , the constant in front of

log X is > 1.

But this contradicts that the average value is ∼ log X .

As shown by Ricci (1954), Erdős’s method leads to
lim inf dn

log pn
≤ 15

16 .
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Landmark results

Theorem (Bombieri and Davenport,
1966)
lim inf

dn

log pn
≤ 0.46650 . . ..

Theorem (Maier, 1988)
lim inf

dn

log pn
≤ 0.2486 . . ..
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A new hope

(YPG)

Theorem (Goldston, Pintz,
and Yıldırım, 2005)
lim inf

dn

log pn
= 0.

BUT WAIT, THERE’S MORE!

Any improvement in the level of
distribution of the primes would
imply that lim inf dn <∞— i.e.,
infinitely many pairs of primes
that lie in a bounded length
interval.
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An aside: Primes in arithmetic progressions

For your favorite integer q, one can ask: How are the primes
distributed among the residue classes modulo q?

In other words, instead of studying π(x), one can study

π(x ;q,a) := #{p ≤ x : p ≡ a (mod q)}.

This is only interesting when gcd(a,q) = 1, since otherwise there
is at most one prime p ≡ a (mod q).

Theorem (Dirichlet, 1837)
As long as gcd(a,q) = 1, the function
π(x ;q,a)→∞ as x →∞.
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As soon as the prime number theorem was proved, it was
recognized that its proof could be modified to prove that primes
were equidistributed in arithmetic progressions.

Specifically, fix a and q with gcd(a,q) = 1. Then as x →∞,

π(x ;q,a) ∼ π(x)
φ(q)

,

as x →∞. So in the long run, each progression gets its “fair
share” of primes.

But what if q isn’t fixed? Is π(x ;q,a) ∼ π(x)
φ(q) if q ≈ log x? q ≈ x1/2?

q ≈ x0.99?
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Define E(x ;q,a) = π(x ;q,a)− 1
φ(q)π(x).

Theorem (Siegel–Walfisz)
Fix A > 0. Whenever q ≤ (log x)A, we have

E(x ;q,a) = OA(x exp(−c
√

log x)).

Here c is a certain absolute positive constant.

So the asymptotic π(x ;q,a) ∼ π(x)
φ(q) holds if q ≤ (log x)A.

Theorem (assuming GRH for Dirichlet L-functions)
For all q ≤ x, we have

E(x ;q,a) = O(x1/2 log x).

This gives the asymptotic for q ≤ x
1
2−ε.
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Level of distribution
We say the primes have level of distribution θ if for each ε > 0
and each B > 0,∑

q≤xθ−ε
max

a mod q
gcd(a,q)=1

|E(x ;q,a)| �B
x

(log x)B .

If GRH holds, the primes have level of distribution θ = 1
2 .

Theorem (Bombieri–A. I. Vinogradov, 1965)
The primes have level of distribution θ = 1

2 .

θ = 1
2 was the thresshold value for GPY: If we only knew θ < 1

2 , we
could not prove lim inf dn

log pn
= 0. If θ > 1

2 , we get lim inf dn <∞.

Conjecture (Elliott–Halberstam, 1968)
Can take θ = 1.
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PART II: Zhang, Maynard, and Tao
(OH MY!)
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Theorem (Y. Zhang, April 2013)
We can take θ > 1

2 if we restrict to “smooth” moduli q (numbers q
with only small prime factors).

Corollary
lim infn→∞ dn < 70 · 106.
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Theorem (Maynard)
We have lim inf dn ≤ 600.

BUT WAIT, THERE’S MORE!

For each k, define the kth order gap
d (k)

n := pn+k − pn. We always have

lim inf
n→∞

d (k)
n <∞.

Similar results were discovered concurrently by Terry Tao.

Polymath 8b: lim infn→∞ dn ≤ 246.
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The story behind the story

GPY, Zhang, and Maynard do not study dn directly.
Rather, they study a variant of the twin prime conjecture due to
Hardy and Littlewood, called the k-tuples conjecture.

Problem
Let H be a set of k integers, say a1, . . . ,ak . Under what conditions
on H do we expect that n + a1, . . . ,n + ak are simultaneously
prime infinitely often?

We need to rule out examples like n,n + 1, one of which is always
even, or n,n + 2,n + 4, one of which is always a multiple of 3.

Definition
We say H is admissible if #H mod p < p for all primes p.
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Conjecture (k -tuples conjecture)
If H is admissible, then there are infinitely many n with all n + hi
simultaneously prime.

The theorems of GPY, Maynard, and Zhang about prime gaps are
really corollaries of their results towards the k -tuples conjecture.

Theorem (Zhang)
There is a constant k0 so that if k ≥ k0, and H is an admissible
k-tuple, then infinitely often at least two of n + h1, . . . ,n + hk are
prime.

Theorem (Maynard)
Fix m ≥ 2. There is a constant k0(m) so that if k ≥ k0(m), and H
is an admissible k-tuple, then infinitely often at least m of
n + h1, . . . ,n + hk are prime.
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Maynard showed that one could take k0(2) = 105.

Hence, if we fix an admissible 105-tuple, say h1 < · · · < hk , then
infinitely often at least two of n + h1, . . . ,n + hk are prime, and so
infinitely often

pj+1 − pj ≤ hk − h1.

There is an example of such an H with hk − h1 = 600;

H = {0,10,12,24,28, . . . ,598,600}.

Hence,
lim inf
n→∞

dn ≤ 600.

Polymath8b: Can take k0(2) = 50.
Choosing a “narrow” admissible 50-tuple gives lim inf dn ≤ 246.

34 of 57



Maynard showed that one could take k0(2) = 105.

Hence, if we fix an admissible 105-tuple, say h1 < · · · < hk , then
infinitely often at least two of n + h1, . . . ,n + hk are prime, and so
infinitely often

pj+1 − pj ≤ hk − h1.

There is an example of such an H with hk − h1 = 600;

H = {0,10,12,24,28, . . . ,598,600}.

Hence,
lim inf
n→∞

dn ≤ 600.

Polymath8b: Can take k0(2) = 50.
Choosing a “narrow” admissible 50-tuple gives lim inf dn ≤ 246.
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Working with k0(m) instead of k0(2), one proves in an entirely
analogous way that

lim inf
n→∞

(pn+m − pn) <∞.

In fact, the LHS is exp(O(m)).

As promised, I will say nothing about Maynard’s proof except the
following: Before Maynard, the level of distribution θ = 1

2 was
thought of as a threshhold. Maynard showed that this
phenomenon is illusory. All of Maynard’s arguments go through
(up to changes in constants) with any θ > 0.
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BIG DOINGS WITH SMALL GAPS
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What have you done for me lately?
This progress on the k -tuples conjecture is certainly interesting
even if thought of only in terms of its consequences for prime
gaps.

BUT WAIT, THERE’S MORE.

The k -tuples conjecture (and a variant due to Dickson allowing
leading coefficients) has traditionally been a “working hypothesis”
in a number of investigations in elementary number theory. Many
theorems have been proved conditionally on the truth of this
conjecture.

The work of Maynard–Tao opens the door
towards the unconditional resolution of
some of these problems.
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Erdős, Turán, and the local behavior of prime gaps

Question
Are there infinitely many n with dn < dn+1?
Yes, trivially, because otherwise {dn} would be bounded.

Question
Are there infinitely many n with dn > dn+1?
Yes (E&T, 1948), but no longer so trivial.

Question (Erdős and Turán, 1948)
Are there infinitely many n with dn > dn+1 > dn+2? What about
dn < dn+1 < dn+2?
Yes to both, if (a variant of) the prime k -tuples is conjecture is true.
Yes to both, as a consequence of Maynard’s theorem.
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Theorem (Banks, Freiberg, Turnage-Butterbaugh, 2013)
For every k, one can find infinitely many n with
dn < dn+1 < · · · < dn+k , and infinitely many n with
dn > dn+1 > · · · > dn+k .
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Lemma (Banks–Freiberg–Turnage-Butterbaugh)
Fix m ≥ 2. There is a constant k0(m) so that if k ≥ k0(m), and H
is an admissible k-tuple, then infinitely often at least m of
n + h1, . . . ,n + hk are prime, and the primes among
n + h1, . . . ,n + hk are consecutive in the sequence of all primes.

Apply the Lemma with a given large m, k = k0(m), and
H = {2,22, . . . ,2k0(m)}. (It is easy to check admissibility of H.)

Key idea: The distance from a power of 2 to a smaller power of 2
is < the distance to any larger power of 2.

We get m consecutive primes q1 < q2 < · · · < qm from among
{n + 2,n + 22, . . . ,n + 2k0}.
Then qj+1 − qj ≤ qj+2 − qj+1 for all j .

This gives increasing gaps. For decreasing gaps, replace H with
−H.
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Shiu strings

Theorem (D. K. L. Shiu, 2000)
Fix a coprime progression a mod q. For every m, one can find m
consecutive primes pn ≡ pn+1 ≡ · · · ≡ pn+m−1 ≡ a (mod q).

Theorem (Banks, Freiberg, Turnage-Butterbaugh)
Shiu’s theorem is still true fourteen years later. Moreover, it
remains true even if one restricts pn, . . . ,pn+m−1 to lie in a
bounded length interval. (“Bounded” means bounded in terms of q
and m.)
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Lemma (Banks, Freiberg, Turnage-Butterbaugh)
Let m ≥ 2. Let H be an admissible k-tuple, say H = {h1, . . . ,hk}.
Let g be a natural number with (g,h1 · · · ,hk ) = 1.

If k ≥ k0(m), and H is an admissible k-tuple, then infinitely often
at least m of gn + h1, . . . ,gn + hk are prime, and the primes
among gn + h1, . . . ,gn + hk are consecutive.

Proof of modified Shiu’s theorem.
Given m, let k = k0(m), and take integers h1, . . . ,hk all congruent
to a mod q for which {h1, . . . ,hk} is admissible. (It is an easy
exercise to show you can choose such an H.) Apply the lemma to
qn + h1, . . . ,qn + hk . We get ≥ m consecutive primes, all ≡ a
(mod q).
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Some questions of Sierpiński
Let s(n) denote the sum of the decimal digits of n. For example,
s(2014) = 2 + 1 + 4 = 7. We can observe that

s(1442173) = s(1442191) = s(1442209) = s(1442227).

Questions (Sierpiński, 1961)
Given m, are there infinitely many m-tuples of
consecutive primes pn, . . . ,pn+m−1 with

s(pn) = s(pn+1) = · · · = s(pn+m−1)?

Answer (Thompson and P.): Yes.
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Back to normalized prime gaps

Recall that the nth normalized prime gap was defined by pn+1−pn
log pn

.
At this point in the story, we know that 0 and∞ are limit points of
the sequence of normalized prime gaps. Let L denote the set of
limit points.

Erdős and Ricci (mid 50s): µ(L) > 0.
Hildebrand and Maier (1988): µ(L ∩ [1,T ]) > cT for large T .

Theorem (Banks–Freiberg–Maynard, 2014)
Given any 50 distinct real numbers β1 < · · · < β50, some βj − βi
belongs to L.

Corollary
More than 2% of the nonnegative reals belong to L.
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Maynard meets Chebotarev (spoiler: they get along)

Suppose that K/Q is a Galois extension. For each prime rational
p unramified in K , there is a well-defined Frobenius conjugacy
class Frobp ⊂ Gal(K/Q).

Let C be a union of conjugacy classes contained in Gal(K/Q). We
can consider the set

{p : Frobp ∈ C}.
A set of primes that arises in this fashion is called a Chebotarev
set.

Theorem (Chebotarev)
Every Chebotarev set of primes is infinite. In
fact, the proportion of primes belonging to
this set is precisely #C

#G , where
G = Gal(K/Q).
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Theorem (J. Thorner, 2013)
Every Chebotarev set of primes has the bounded gaps property.

This has many splendid consequences. For example, applying
Thorner’s theorem to the ring class field of Z[

√
−4n], one finds:

Corollary
Let n be a positive integer. Then the set of primes p of the form
x2 + ny2 has the bounded gaps property.

Key to Thorner’s proof is that Chebotarev sets of primes are still
well distributed in progressions (after excluding certain
well-understood moduli); one has an analogue of the
Bombieri–Vinogradov theorem due to Murty and Murty.
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A different number field generalization

One of these is not a real person!

Theorem (Castillo, Hall,
Lemke Oliver, Pollack,
Thompson, 2014)
Let K/Q be a number field.
There are infinitely many
pairs of prime elements
α1, α2 ∈ OK with

max
v infinite

|α1 − α2|v ≤ CK .

Here CK depends only on the
number of complex
embeddings of K .
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Primitive roots

In Art. 315–317 of his Disquisitiones, Gauss studies the decimal
expansion of the fractions a/p for 1 < a < p.

He notes that if 10 generates the group of units modulo p, then
a ≡ 10j (mod p) for some j , and so

a
p
≡ 10j · 1

p
in R/Z.

The expansion of the right-hand side is trivial to compute if one
has already has the expansion of 1

p .

Example
p = 7. Then 3 ≡ 10 (mod 7), and so 3

7 ≡ 10 · 1
7 in R/Z.

Indeed, 1
7 = 0.142857 and 3

7 = 0.428571.
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Question
Is 10 a primitive root mod p for infinitely many primes p?
Numerical experiments support the guess that 10 is a primitive
root for roughly 3/8 of the primes.

Hasse’s diary claims that the following conjecture was proposed
on September 27, 1927:

Conjecture (Artin)
Yes. In fact, the proportion of primes p for
which 10 is a primitive root exists and equals∏

p(1−
1

p(p−1)) ≈ 0.373956.

Moreover, an analogous holds with 10
replaced by any fixed integer g 6= −1 and
not a square.
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Artin’s heuristic
10 is a primitive root mod p iff there is no prime ` for which the
following holds:

` | p − 1 and 10
p−1
` ≡ 1 (mod p).

For p - 10`, the previous condition is equivalent
(Dedekind–Kummer) to saying

p splits completely in Q(ζ`,21/`);

for each `, this determines a Chebotarev set of primes with
density 1

`(`−1) . Assuming independence (corresponding to linear
disjointness) suggests a density of∏

`

(
1− 1

`(`− 1)

)
.
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Theorem (Hooley, 1967)
Assume the Generalized Riemann Hypothesis for Dedekind zeta
functions. Then Artin’s conjecture holds, even in quantitative form.

Theorem (P., 2014)
Assume the Generalized Riemann Hypothesis for Dedekind zeta
functions. For each fixed g 6= −1 and not a square, the set of
primes possessing g as a primitive root has the bounded gaps
property. Moreover, the primes in the bounded length interval can
be taken to be consecutive.

Forthcoming work (L. Troupe, 2014+): Variant for polynomials
over finite fields (unconditional!).
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Cyclic reductions of elliptic curves

Fix an elliptic curve E/Q. For each prime p of good reduction, we
can reduce E mod p to get a finite abelian group E(Fp). This is
not necessarily cyclic; in general,

E(Fp) ∼= Z/dpZ⊕ Z/epZ,

where dp | ep.
One can study dp and ep statistically, as p varies.

Question
Is dp = 1 for infinitely many p?
NO if E has full rational 2-torsion, since then
E(Fp) ⊃ Z/2Z⊕ Z/2Z.
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Modifying Hooley’s conditional proof of Artin’s conjecture, Serre
(1976) showed:

Theorem
Assume GRH. Assume E has an irrational 2-torsion point. Then
E(Fp) is cyclic infinitely often, and in fact this occurs for a positive
proportion of primes p.

If E has CM, the GRH assumption can be removed.

(Ram Murty , 1979 and a simpler proof by Cojocaru ,
2001.)

Without assuming GRH, one can still get infinitely many such p in
general, but one does not get the asymptotic formula (Gupta and
Ram Murty, 1990).
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Theorem (Baker and P., 2014)
Assume GRH. If E has an irrational 2-torsion point, then the set of
p for which E(Fp) is cyclic has the bounded gaps property.
Moreover, the primes here can be taken to be consecutive. If E
has CM, the assumption of GRH can be removed.
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Only problems, not solutions!

• Are there infinitely many pairs (or triples, quadruples, etc.) of
consecutive primes p belonging to a given Chebotarev set?
When K/Q is abelian, the answer is yes by Shiu.

• Are there infinitely many pairs of primes p and q with p − q
bounded and p,q incongruent mod 4?

• Are there infinitely many pairs of primes p,q with 3p − 2q
bounded?
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Thank you very much!
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