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SMALL GAPS: A SHORT SURVEY
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300 BCE

Let pn denote the nth prime number, so p1 = 2, p2 = 3, p3 = 5,
. . . .

Theorem (Euclid)
There are infinitely many primes. In other
words, if π(x) := #{p ≤ x : p prime}, then
π(x)→∞ as x →∞.

Proof.
Suppose otherwise. Suppose p1, . . . ,pn is the
complete list, and let P := p1 · · · pn + 1. P
leaves a remainder of 1 when divided by each
pi , and so has no prime divisor. But every
integer > 1 has a prime divisor.
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Twin primes

Once we know that there are infinitely many primes, one wants to
know where they fall on the number line. One way to get a handle
on this is to look at the gap sequence.

Call the nth prime gap dn, so that

dn = pn+1 − pn.

The sequence {dn} begins

1,2,2,4,2,4,2,4,6,2,6,4,2,4,6,6,2,6,4,2,6,4,6,8, . . .

(OEIS A001223)

It was noticed many moons ago that dn = 2 appears to appear
infinitely often.
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Recall: A pair of prime numbers {p,p + 2} is called a twin prime
pair.

Twin prime pairs: {3, 5}, {5, 7}, {11, 13}, {17, 19}, {29, 31},
{41, 43}, {59, 61}, {71, 73}, . . .

Twin prime conjecture: There are infinitely many twin prime
pairs.

No one knows precisely when this very natural conjecture was
made. The term twin prime itself is relatively recent, having been
introduced by Stäckel in 1916 (in German: “Primzahlzwilling”). But
the conjecture itself is surely centuries older.
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A desperate professor, a brilliant student and a
2000-year-old math problem collide in this thriller about
ambition, ego and the nature of genius.
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Combining work of Goldston–Pintz–Yildirim (2005) with
groundbreaking new results on how primes are distributed in
arithmetic progressions, Zhang proved a startlingly strong
approximation to the twin prime conjecture.

Theorem (Y. Zhang, April 2013)
There are infinitely many values of n for which dn < 70 · 106.
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Theorem (J. Maynard, November
2013)
dn ≤ 600 infinitely often.

The method used by Maynard was discovered almost
simultaneously by Tao. Their results were refined in work of the
Polymath8b team, who showed that

dn ≤ 246

infinitely often.
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Polymath8b also improved the known results on gaps between
primes two apart in the sequence of primes, instead of
consecutive. For example, they showed that infinitely often this
gap is at most

398130.
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(MORE) BIG DOINGS
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Primes and periodicity

Consider the following chart of the numbers 1–26 arranged into 2
rows:

1 3 5 7 9 11 13 15 17 19 21 23 25
2 4 6 8 10 12 14 16 18 20 22 24 26

Let’s color in the primes.
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Primes and periodicity

Consider the following chart of the numbers 1–26 arranged into 2
rows:

1 3 5 7 9 11 13 15 17 19 21 23 25
2 4 6 8 10 12 14 16 18 20 22 24 26

The second row has only the prime 2; every other prime appears
in the first row.

There’s no mystery about why this is the case: Prime numbers are
odd!

What if we try more than two rows?
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With 6 rows, the chart now looks like ...

1 7 13 19 25 31 37 43 49 55 61 67 73
2 8 14 20 26 32 38 44 50 56 62 68 74
3 9 15 21 27 33 39 45 51 57 63 69 75
4 10 16 22 28 34 40 46 52 58 64 70 76
5 11 17 23 29 35 41 47 53 59 65 71 77
6 12 18 24 30 36 42 48 54 60 66 72 78

Again, let’s color in the primes.
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In this case, there are only two rows with more than one prime.
In the second, fourth, and sixth row, the numbers all have a factor
of 2. And in the third row, they all have a factor of 3.
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In general, if we arrange the natural numbers into n rows, if the
row number has a common factor with n, so will every number in
the row. Those rows can contain at most one prime.

For the other rows, there’s no reason they couldn’t contain many
primes. Call such rows admissible.

Theorem (Dirichlet, 1837)
Every admissible row contains infinitely many primes.
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Dirichlet’s theorem answers a very natural question about how the
primes fall into these rows. But it’s not the end of the story.

Example
Let’s go back to our arrangement into six rows, where the
admissible rows were the first and fifth.

The pair 5,7 is a pair of consecutive primes where the first is from
row 5 and the second is from row 1.

This happens again: 11,13. And again: 17,19.

Does this happen infinitely often?

Yes, we have to switch back and forth like this infinitely often,
since both rows contain infinitely many primes.
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Example
This easy question suggests a harder question.

The primes 23 and 29 are a pair of consecutive primes both from
the fifth row. This happens again: 53 and 59.

Does it happen infinitely often?

It’s not so obvious anymore.
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Shiu strings

Theorem (D. K. L. Shiu, 2000)
Arrange the positive integers into n rows. Pick any admissible row.
There are infinitely many pairs of consecutive primes which land in
that row.

In fact, this is true not just for pairs of consecutives, but for triples,
quadruples, or tuples of any length.

Example
You can find 106 consecutive primes that all end in the digit 7.
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What is Shiu’s theorem doing in this talk?

The new work on bounded gaps gives another proof of Shiu’s
beautiful result. The proof is much simpler than the original
argument.

Moreover, the new methods give more than what Shiu was able to
show.

Example
We mentioned that there are infinitely many runs of consecutive
primes of length 106 that end in 7. These new methods imply that
a positive proportion of all primes start such a run (Maynard,
2014).
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Another question of Gauss

If p is a prime other than 2 or 5, the decimal expansion of 1
p is

purely periodic. For example,

1
3
= 0.333333 · · · = 0.3,

1
7
= 0.142857,

1
11

= 0.09, and
1

13
= 0.076923.

Questions
What is the length of the period here?

He knew it was always a divisor of p − 1. Sometimes it’s equal, as
when p = 7, and sometimes not (as in the other examples above).
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Questions (Gauss, ca. 1800)
Is the period of 1

p equal to p − 1 infinitely often?

Such primes have an interesting property: If you know the
expansion of 1

p , then you get the expansions of 2
p ,

3
p , . . . ,

p−1
p just

by shifting; e.g.,
1
7
= 0.142857

while
5
7
= 0.571428.

Gauss did extensive computations suggesting an affirmative
answer.
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In fact, it seems that about 37% of the primes have Gauss’s
property. Here’s a 51-digit example:

100000000000000000000000000000000000000000000000709.

Seek and ye shall find!

Nevertheless, Gauss’s guess is still unproved.

The problem is connected with the Generalized
Riemann Hypothesis, an unproved statement that is
nevertheless often assumed in number theoretic investigations.

20 of 26



Assuming the Generalized Riemann Hypothesis, Hooley showed
in 1967 that Gauss was right.

Using the machinery introduced by Maynard and Tao, and making
the same hypothesis, you can find infinitely many pairs, triples,
quadruples, etc., of consecutive primes all of which have Gauss’s
property. (Pollack 2014)
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Some questions of Sierpiński
Let s(n) denote the sum of the decimal digits of n. For example,
s(2014) = 2 + 1 + 4 = 7. We can observe that

s(1442173) = s(1442191) = s(1442209) = s(1442227).

Questions (Sierpiński, 1961)
Given m, are there infinitely many m-tuples of
consecutive primes pn, . . . ,pn+m−1 with

s(pn) = s(pn+1) = · · · = s(pn+m−1)?

Answer (Thompson and P.): Yes.
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Given m, are there infinitely many m-tuples of
consecutive primes pn, . . . ,pn+m−1 with

s(pn) = s(pn+1) = · · · = s(pn+m−1)?

Answer (Thompson and P.): Yes.
22 of 26



Other number systems

The Maynard–Tao work on gaps between primes can be ported
over to other settings, as long as those settings share enough
properties in common with the usual setting of positive integers.

Example
Define a B-number as a finite nonempty sequence of 0s and 1s,
with no leading 0s unless the string consists only of 0. Listing
strings by length, the first few examples are thus 0, 1, 10, 11, 101,
. . . . We define non-carry addition (+) and non-carry
multiplication (×) of B-numbers by the usual grade-school
algorithms for addition and multiplication but systematically
ignoring carries. For example, 1 + 1 = 0 with our definition.
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And...

1 0 1 0 1
+ 1 1 0 1

1 1 0 0 0
while

1 0 1 0 1
× 1 1 0 1

1 0 1 0 1
0 0 0 0 0

1 0 1 0 1
1 0 1 0 1
1 1 1 0 1 0 0 1

A prime B-number is one with more than one digit which cannot
be written as a non-carry product except as 1× itself or itself× 1.
For example, 10 and 11 are prime, but 11101001 is not.
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Questions
Is there a bounded gaps theorem for prime B-numbers?
Yes!

Theorem
There are infinitely many pairs of prime B-numbers which differ
only in their last 9 digits.
This is worked out by Castillo, Hall, Lemke Oliver, Thompson and
P. (2014).

Where do B-numbers come from? The multiplication on
B-numbers is the same as the multiplication on polynomials

adxd + · · ·+ a2x2 + a1x + a0

but with coefficients always reduced modulo 2. Similar theorems
hold if the coefficients are reduced modulo p for any fixed prime p.
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Much more could be said, and many more people’s work could be
mentioned (Banks, Freiberg, Turnage-Butterbaugh, Thorner,
Baker, . . . ), but now seems like a suitable place to stop.

THANK YOU!
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