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Abstract

In 1901, von Koch showed that the Riemann Hypothesis is equivalent to the assertion
that ∑

p≤x
p prime

1 =

∫ x

2

dt
log t

+ O(
√

x log x).

We describe an analogue of von Koch’s result for polynomials over a finite prime field
Fp: For each natural number n, write n in base p, say

n = a0 + a1 p + · · · + ak pk,

and associate to n the polynomial a0 + a1T + · · · + akT k ∈ Fp[T ]. We let πp(X) denote
the number of irreducible polynomials encoded by integers n < X, and prove a formula
for πp(X) valid with an error term analogous to that in von Koch’s theorem. Our result
is unconditional, and is grounded in Weil’s Riemann Hypothesis for function fields.
We also investigate an asymptotic expansion for πp(X).
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1. Introduction

By 1797, Gauss had already proved1 one of the foundational results of the theory
of finite fields: Letting π(q; d) denote the number of one-variable monic irreducible

IThis material is based upon work supported by the National Science Foundation under agreement No.
DMS-0635607. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author and do not necessarily reflect the views of the National Science Foundation.

Email address: pppollac@illinois.edu (Paul Pollack)
1Actually Gauss stated his result only for prime q, but the argument carries over to the general case

without any changes.
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polynomials of degree d over Fq, we have (for all n ≥ 1)∑
d|n

dπ(q; d) = qn and so by inversion, π(q; n) =
1
n

∑
d|n

qdµ(n/d).

From these formulas we may easily deduce that

qd

d
− 2

qd/2

d
≤ π(q; d) ≤

qd

d
. (1)

(Slightly sharper estimates are given in [1, Exercises 3.27, 3.28].) In fact, Gauss drafted
an entire section 8 of his Disquisitiones Arithmeticae devoted to what we now recog-
nize as the theory of finite fields. Owing to considerations of size, this section was cut
from the published version; Gauss intended to present this material in a second volume,
which unfortunately never appeared (see [2]).

For someone versed in the modern theory of prime numbers, there is a striking
resemblance between Gauss’s result and the prime number theorem, which asserts that
with

π(x) := #{p ≤ x : p prime},

we have
π(x) ∼

x
log x

as x→ ∞. (2)

Indeed, (1) implies that π(q; d) ∼ qd/d whenever qd → ∞, and the expression qd/d
has the shape X/ logq X, where X = qd and logq(·) denotes the logarithm to the base
q. The purpose of this note is to draw attention to some more subtle and lesser-known
analogies between π(x) and π(q; d).

To motivate what follows, let us recall another early discovery of Gauss. In an
1849 letter to Encke, Gauss describes how (as a boy of around 16 years of age) he
observed that the primes near a large number x occur with a ‘density’ which is roughly
1/ log x. This observation motivates the conjecture that π(x) is approximately given by
the logarithmic sum of x, defined by

ls(x) :=
∑

2≤n≤x

1
log n

.

A straightforward partial summation shows that ls(x) is asymptotic to x/ log x as x →
∞; thus, by (2), ls(x) is a good first order approximation to π(x). It is now known that
in fact ls(x) is a much better approximation to π(x) than x/ log x. In 1901, von Koch
[3] established the following result, which in particular shows that the Gauss approx-
imation ls(x) is accurate up to a ‘square root error term’, provided that the Riemann
Hypothesis is true:

Theorem A (von Koch). The Riemann Hypothesis is equivalent to the estimate

π(x) = ls(x) + O(
√

x log x) as x→ ∞.
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Our first goal in this paper is to establish an analogue of von Koch’s result for
polynomials over a finite field. For the sake of simplicity, we work initially over Fp,
where p is prime. Notice that the nonnegative integers are in bijection with the one-
variable polynomials over Fp via the correspondence

an pn + an−1 pn−1 + · · · + a1 p + a0 ←→ anT n + an−1T n−1 + · · · + a1T + a0,

where the integer represented on the left-hand side is assumed written in its base p
expansion (so that 0 ≤ ai < p). If the integer a corresponds to the polynomial A, we
will write ‖A‖ = a. For an interval of real numbers I, we define

πp(I) := #{P ∈ Fp[T ] : ‖P‖ ∈ I and P is irreducible},

and we set
πp(X) := πp([0, X)).

Gauss’s formula (1) can be read as the assertion that the ‘density’ of irreducibles
among all polynomials of degree d is roughly 1/d. In analogy with the definition of ls,
define

lsp(X) :=
∑
‖ f ‖<X

deg f>0

1
deg f

.

Our main result is the following:

Theorem 1. Let p be a prime and X ≥ p. Suppose that pn ≤ X < pn+1. Then

πp(X) = lsp(X) + O(npn/2+1),

where the O-constant is absolute.

Notice that the inside of the O-term is �p
√

X log X, in exact analogy with von Koch’s
theorem. Our result is unconditional, owing to Weil’s proof of the Riemann Hypothesis
for function fields.

The estimate of von Koch alluded to before is usually written in the form

π(x) =

∫ x

2

dt
log t

+ O(
√

x log x).

This is equivalent to the preceding formulation, since the right-hand integral, tradi-
tionally denoted li(x), differs by a bounded amount from the sum

∑
2≤n≤x 1/ log n. In

seeking to approximate li(x), one is led, via repeated integration by parts, to the ap-
proximation

li(x) =
x

log x
+ 1!

x

log2 x
+ 2!

x

log3 x
+ · · · + r!

x

logr+1 x
+ Or

(
x

logr+1 x

)
, (3)

valid for every r ≥ 1. (This is one of the canonical examples of an asympotic series; for
background see, e.g., [4, Chapter 1.5].) Since the difference between π(x) and li(x) is
known, unconditionally, to be Or(x/ logr x) for every r (see [5, Chapter 18]), it follows
that π(x) has the same asymptotic expansion (3).

It is natural to wonder if there is an analogue of formula (3) for πp(X). This is, in
fact, the case:
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Theorem 2. Let p be a prime. Let X be an integer with X ≥ p2, and let n be the natural
number with pn ≤ X < pn+1. For each r ≥ 2, we have

πp(X) =
X
n

+

r∑
k=2

(1 − 1/p)Ap,k
pn

nk + O

npn/2+1 + Ap,r+2
pn

nr+1 +
p
n

r∑
k=1

Ap,k

 .
Here the implied constant is absolute, and the Ap,k are defined by

Ap,k :=
∞∑

m=1

mk−1

pm−1 .

Since for a fixed k, the constants Ap,k are decreasing in p, Theorem 2 implies that
whenever X ≥ p2,

πp(X) =
X
n

+

r∑
k=2

(1 − 1/p)Ap,k
pn

nk + Or

(
pn

nr+1

)
.

In particular (taking, say, r = 2), we obtain the following result, which should be
viewed as a version of the prime number theorem for polynomials that holds with
some uniformity:

Corollary. We have πp(X) ∼ X/ logp X whenever logp X → ∞.

That Theorem 2 is really the correct analogue of (3) will emerge from an estimate
for Ap,k proved as Lemma 7 below.

2. Preliminary results on irreducibles with prescribed leading coefficients

LetP be the (multiplicative) monoid of monic polynomials over Fq. For each l ≥ 0,
we define a relation Rl on P by saying that A ≡ B (mod Rl) if A and B have the same
first l next-to-leading coefficients. Here if A = T n + an−1T n−1 + · · · + a0, its first l next-
to-leading coefficients are an−1, . . . , an−l, with the understanding that ai = 0 for i < 0.
Thus T 6 + 3T 4 − T 3 + T + 1 and T 2 + 3 are congruent modulo R2 but not modulo R3.

In the terminology of [6], Rl is a congruence relation on P, i.e., an equivalence
relation satisfying

A ≡ B mod Rl ⇒ AC ≡ BC mod Rl for all A, B,C ∈ P.

Thus there is a well-defined quotient monoid P/Rl. Moreover, every element of P/Rl

is invertible: Indeed, if A(T ) is any monic polynomial and k is chosen so that qk > l,
then

A(T )(A(T )qk−1) = A(T )qk
= A(T qk

) ≡ 1 (mod Rl).

Thus P/Rl is an abelian group. Clearly #P/Rl = ql.
The following explicit formula for primes in congruence classes modulo Rl is a

consequence of Weil’s Riemann Hypothesis. It is a special case (the case when M = 1)
of [7, Lemma 1]:
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Lemma 1. Let A be a monic polynomial. Then

ql
∑

Q j≡A (mod Rl)
deg Q j=n

deg Q = qn −
∑
χ

χ̄(A)
a(χ)∑
i=1

βi(χ)n,

where the left-hand sum is over monic irreducible Q and χ runs over all characters
modulo Rl. Moreover, a(χ) ≤ l for all χ, and each |βi(χ)| ≤ q1/2.

From this formula we can easily deduce the following theorem concerning primes
in ‘progressions’ modulo Rl:

Lemma 2. Let l be a nonnegative integer. The number of monic irreducibles of degree
n belonging to a prescribed residue class modulo Rl is

1
n

qn−l + O
(
(l + 1)

qn/2

n

)
.

Proof. The right-hand side of Lemma 1 differs from qn by an error which is bounded
in absolute value by ql · l · qn/2, so that∑

Q j≡A (mod Rl,M )
deg Q j=n

deg Q = qn−l + O(lqn/2).

The terms of the sum for which j > 1 contribute

≤
∑
d|n
d<n

dπ(q; d) ≤
∑
d|n
d<n

qd ≤ 2qn/2,

where we use the upper bound on π(q; d) from (1). Hence

n
∑

Q≡A (mod Rl)
deg Q=n

1 = qn−l + O
(
(l + 1)qn/2

)
.

Now divide by n.

3. Proof of Theorem 1

For the proof of Theorem 1 we may (and do) assume that X is an integer. Suppose
that pn ≤ X < pn+1, and write

X = an pn + an−1 pn−1 + · · · + a1 p + a0,

with each 0 ≤ ai < p. Then we have the easy decomposition

πp(X) = πp([0, pn)) + πp([pn, an pn)) +

n∑
j=1

πp

([∑n

i= j
ai pi,

∑n

i= j−1
ai pi

))
. (4)

We treat each of the three terms of (4) separately.
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Lemma 3. We have

πp([0, pn)) = (p − 1)
n−1∑
m=1

pm

m
+ O(p(n+1)/2/n).

Proof. Clearly πp([0, pn)) = (p − 1)
∑n−1

m=1 π(p; m). Now put in the estimate π(p; m) =

pm/m + O(pm/2/m); the lemma follows once we show that∑
1≤m≤n−1

pm/2

m
�

p(n−1)/2

n
.

This latter estimate is trivial if n ≤ 3, so suppose that n ≥ 4. The terms with m < 3
contribute� p � p(n−1)/2/n to the sum. For 3 ≤ m < n − 1, the ratio

pm/2/m
p(m+1)/2/(m + 1)

≤
m + 1

m
p−1/2 ≤

4
3

2−1/2 < 1,

and so ∑
3≤m≤n−1

pm/2

m
�

p(n−1)/2

n − 1
�

p(n−1)/2

n
.

So the estimate holds in this case also.

Lemma 4. We have

πp([pn, an pn)) = (an − 1)
pn

n
+ O(pn/2+1/n).

Proof. The left-hand side counts the number of irreducibles of degree n with leading
coefficient one of 1, 2, . . . , an − 1, so again by (1),

πp((pn, an pn]) = (an − 1)
(

pn

n
+ O(pn/2/n)

)
= (an − 1)

pn

n
+ O(pn/2+1/n).

Lemma 5. For every 1 ≤ j ≤ n, we have

πp

([∑n

i= j
ai pi,

∑n

i= j−1
ai pi

))
= a j−1

p j−1

n
+ O

(
(n − j + 2)

pn/2+1

n

)
.

Proof. The left-hand side represents the number of degree-n primes whose first n− j+1
leading coefficients are an, an−1, . . . , a j, and whose T j−1-coefficient is one of the a j−1
values 0, 1, . . . , a j−1 − 1. For each fixed value of the T j−1-coefficient, the number of
such irreducibles is the same as the number of degree-n monic irreducibles belong-
ing to a certain prescribed congruence class modulo Rn− j+1. By Lemma 2, each such
congruence class contains

1
n

p j−1 + O
(
(n − j + 2)

pn/2

n

)
such irreducibles. Summing over the a j−1 possible coefficients of T j−1 yields the
lemma.
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Proof of Theorem 1. By (4) and Lemmas 3–5, we have

πp(X) = (an − 1)
pn

n
+

n∑
j=1

a j−1
p j−1

n
+ (p − 1)

n−1∑
m=1

pm

m

+ O(pn/2+1/n) + O

1
n

pn/2+1
∑

1≤ j≤n

(n − j + 2)

 .
Since

∑
1≤ j≤n(n − j + 2) � n2, we can collect the O-terms into an error of O(npn/2+1).

So simplifying, we obtain an estimate for πp(X) of

1
n

 n∑
i=0

ai pi − pn

 + (p − 1)
n−1∑
m=1

pm

m
+ O(npn/2−1)

=
X − pn

n
+ (p − 1)

n−1∑
m=1

pm

m
+ O(npn/2−1).

But the main term in this last expression is precisely
∑
‖ f ‖<X

deg f>0

1
deg f = lsp(X), as we see

upon grouping the contributions to this sum according to the degree of f .

Proof of Theorem 2

We require the following slight variant of a result of Lenskoi [8]:

Lemma 6. For each r ≥ 1 and n ≥ 2, we have

n−1∑
m=1

pm

m
=

r∑
k=1

Ap,k
pn−1

nk + O

1
n

r∑
k=1

Ap,k

 + O
(
Ap,r+2

pn−1

nr+1

)
,

where the O-constants are absolute and the constants Ap,k are defined as in the state-
ment of Theorem 2.

Proof. We largely follow Lenskoi. We have

1
pn−1

n−1∑
m=1

pm

m
=

n−1∑
m=1

1
mpn−1−m =

n−1∑
m=1

1
(n − m)pm−1

=

n−1∑
m=1

1
pm−1

∞∑
k=1

mk−1

nk =

∞∑
k=1

1
nk

n−1∑
m=1

mk−1

pm−1 .

We split this last expression into three parts:

∞∑
k=1

1
nk

n−1∑
m=1

mk−1

pm−1 =

r∑
k=1

1
nk

n−1∑
m=1

mk−1

pm−1 +

∞∑
k=r+1

1
nk

n−1∑
m=1

mk−1

pm−1

=

r∑
k=1

1
nk Ap,k −

r∑
k=1

1
nk

∞∑
m=n

mk−1

pm−1 +

∞∑
k=r+1

1
nk

n−1∑
m=1

mk−1

pm−1 .
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The first sum yields the main term in Lemma 6, and it remains to show that the latter
two contribute appropriately bounded error terms. The first double sum is just

r∑
k=1

1
nk

1
pn−1

∞∑
m=1

(m − 1 + n)k−1

pm−1 ≤
1
n

1
pn−1

r∑
k=1

∞∑
m=1

mk−1

pm−1 =
1
n

1
pn−1

r∑
k=1

Ap,k,

using
m − 1 + n

n
= 1 +

m − 1
n
≤ 1 + (m − 1) = m.

This corresponds to the first O-term above. To estimate the remaining double sum,
notice that

∞∑
k=r+1

1
nk

n−1∑
m=1

mk−1

pm−1 =
1

nr+1

∞∑
s=0

1
ns

n−1∑
m=1

ms+r

pm−1

=
1

nr+1

n−1∑
m=1

mr

pm−1

1
1 − m/n

=
1

nr+1

n−1∑
m=1

mr

pm−1

(
1 +

m
n − m

)
.

Since m/(n − m) ≤ m, this is bounded above by

1
nr+1

n−1∑
m=1

mr

pm−1 +

n−1∑
m=1

mr+1

pm−1

 ≤ Ap,r+1 + Ap,r+2

nr+1 ≤ 2
Ap,r+2

nr+1 .

Multiplying through by pn−1, we obtain the second O-term in the estimate of the theo-
rem.

Proof of Theorem 2. We have already seen that Theorem 1 is just the statement that

πp(X) =
X − pn

n
+ (p − 1)

n−1∑
m=1

pm

m
+ O(npn/2+1). (5)

According to Lemma 6, we have

(p − 1)
n−1∑
m=1

pm

m
=

r∑
k=1

(1 − 1/p)Ap,k
pn

nk + O

 p
n

r∑
k=1

Ap,k

 + O
(
Ap,r+2

pn

nr+1

)
. (6)

Now the k = 1 term in the right-hand sum contributes exactly(1 − 1/p)
∞∑

m=1

1
pm−1

 pn

n
=

pn

n
.

So Theorem 2 follows upon inserting (6) into (5).

We now make good on our promise to show that Theorem 2 is a genuine analogue
of (3).
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Lemma 7. If p is a prime and k is a positive integer, then

Ap,k = p
(k − 1)!
(log p)k

(
1 + O

(
log p
√

k

))
.

Proof. By the Euler–Maclaurin summation formula, we have

Ap,k

p
=

∞∑
m=1

mk−1 p−m =

∫ ∞

0
tk−1 exp(−t log p) dt

+ O
(∫ ∞

0

∣∣∣∣∣ d
dt

(
tk−1 exp(−t log p)

)∣∣∣∣∣ dt
)
.

A change of variables gives a main term of precisely

Γ(k)
(log p)k =

(k − 1)!
(log p)k ,

while the unimodality of the original integrand ensures that the error term is

� max
t≥0

tk−1 exp(−t log p) = tk−1 exp(−t log p)
∣∣∣
t=(k−1)/ log p =

((k − 1)/e)k−1/(log p)k−1 �
(k − 1)!
(log p)k

log p
√

k
.

In the last line we have applied Stirling’s formula to estimate (k − 1)!.

The analogy between (3) and the result of Theorem 2 is clearest when X = pn is a
power of p. In this case, Theorem 2 asserts that

πp(X) =

r∑
k=1

(1 − 1/p)Ap,k
pn

nk + Or

(
pn

nr+1

)
,

where r ≥ 2 is an integer parameter at our disposal. By Lemma 7, the jth term in the
sum is

(p − 1)
( j − 1)!
(log p) j

pn

n j

(
1 + O

(
log p
√

j

))
= (p − 1)( j − 1)!

X
log j X

(
1 + O

(
log p
√

j

))
.

If j is large compared to log p, then it makes sense to say that the main term here is

(p − 1)( j − 1)!
X

log j X
.

This coincides with the jth term in the asymptotic expansion (3) of π(X), except for the
factor of p − 1. This factor can be attributed to πp(X) counting all primes irrespective
of their leading coefficient, whereas π(X) counts only positive primes.
Remark on the case of arbitrary finite fields. When q is not prime, then there is no
longer a canonical correspondence between the integers 0, 1, 2, . . . , q − 1 and the ele-
ments of Fq. However, if we pick any labeling of the elements of Fq by {0, 1, . . . , q−1}
in which 0 corresponds to 0, then all of our results remain true, with O-constants uni-
form in both q and the choice of labeling.
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