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In memory of Eduard Wirsing, with appreciation and admiration.

Abstract. Let E(x, y) = #{n ≤ x : gcd(n, σ(n)) > y}. We collect known results about
the distribution of E(x, y) and establish a new, sharp estimate for E(x, y) when y grows
faster than any power of log log x but y = exp((log log x)o(1)). Taken together, these results
determine the order of magnitude of log(E(x, y)/x) whenever 1 ≤ y ≤ x1−ϵ.

1. Introduction

1.1. Perfect numbers. A natural number n is called perfect if σ(n) = 2n; equivalently, n
is perfect if n is the sum of its proper divisors. Perfect numbers appear already in Euclid’s
Elements (ca. 300 BCE), where it is shown that 2k−1(2k − 1) is perfect whenever 2k − 1 is
prime. Two thousand years later, Euler established a partial converse to Euclid’s theorem:
Every even perfect number is given by Euclid’s formula.

To this day, no odd perfect numbers are known, and deciding whether any exist stands as
perhaps the oldest unsolved problem in number theory. More modestly, one might hope to
show that if odd perfect numbers exist, at least there cannot be too many of them. To quantify
this, let V (x) denote the number of perfect numbers n ≤ x. (While even perfect numbers are
counted in V (x), the count of even perfect numbers in [1, x] is O(log x), which is dwarfed by
all of the upper bounds on V (x) to be discussed.) In 1933, Davenport [2] showed that n/σ(n)
has a continuous distribution function. That is, for each u ∈ [0, 1], the asymptotic density
of n with n/σ(n) ≤ u exists, and this density varies continuously with u. The continuity in
Davenport’s result implies that for any fixed real number µ, the n with n/σ(n) = µ make up
a set of density 0. In particular (µ = 1

2
), V (x) = o(x), as x → ∞. In 1954, Kanold gave a

more direct proof that V (x) = o(x) [10]. Kanold’s contemporaries seem to have viewed his
paper as throwing down the proverbial gauntlet, prompting a flurry of improved bounds for
V (x) over the next several years, collected in Proposition 1.

Proposition 1. We have the following upper bounds for V (x). All O-estimates are to be
understood as holding when x is sufficiently large.
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Researcher(s) Year Estimate

Volkmann [20] 1955 V (x) = O(x5/6)

Hornfeck [8] 1955 V (x) < x1/2 for all x > 0

Kanold [11] 1956 V (x) = o(x1/2), as x → ∞
Erdős [6] 1956 V (x) = O(x1/2−δ), for some δ > 0

Kanold [12] 1957 V (x) = O(x1/4 log x/ log log x)

Hornfeck and Wirsing [9] 1957 V (x) = Oϵ(x
ϵ); in fact, V (x) ≤ xO( log log log x

log log x
)

Wirsing [21] 1959 V (x) ≤ xO(1/ log log x)

Incredibly, Wirsing is still ‘winner and world champion’ as far as upper bounds on V (x):
Despite six decades of further investigations, we still have no proof that V (x) ≤ xϵ(x) for a
function ϵ(x) = o(1/ log log x).

It seems appropriate given the nature of this volume to sketch a version of Wirsing’s ingenious
argument. Suppose that n ≤ x is perfect, and suppose also that we have in hand a unitary
divisor1 d of n with d > 1. Then either σ(d) = 2d, in which case n = d, or d < σ(d) < 2d, in

which case 2d
σ(d)

has a lowest-terms denominator larger than 1. Since 2d
σ(d)

= σ(n/d)
n/d

, if we choose

p1 as the least prime dividing the denominator of 2d
σ(d)

(which, it should be noted, depends

only on d), then p1 divides n/d. We let e1 be the positive integer for which which pe11 ∥ n/d
and start the argument over with our unitary divisor d replaced by the new unitary divisor
dpe11 . We continue in the same way until our unitary divisor reaches n itself, at which point
we have discovered a factorization

n = dpe11 · · · pekk
where each pi is entirely determined by of d and the exponents ej for j < i. Then n itself is
determined by d and the exponent sequence e1, . . . ek. Wirsing takes d as the log x-smooth
part of n (which, as is not difficult to show, must exceed 1 once x is large), and he derives
his xO(1/ log log x) estimate by bounding above the number of choices for d and for the exponent
sequence e1, . . . , ek.

Wirsing’s results in [21] extend somewhat beyond an upper bound on V (x). What is actually
shown is that every equation σ(n) = λn has at most xO(1/ log log x) solutions n ≤ x, once x ≥ 3,
where the implied constant is independent of λ. The independence of the bound on λ can be
crucial in applications (such as Lemma 8 below; another example is the main result of the
recent paper [15]). One easy consequence of this uniformity is that the number of n ≤ x that
are multiply perfect — meaning that σ(n)/n ∈ Z — is also bounded by xO(1/ log log x).

1.2. The distribution of gcd(n, σ(n)). The just mentioned consequence of Wirsing’s the-
orem for multiply perfect numbers can be read as saying that there are very few n with
gcd(n, σ(n)) as large as possible. In this note we are interested more generally in the distri-
bution of gcd(n, σ(n)) as n ranges through the integers in [1, x].

1meaning, d | n and gcd(d, n/d) = 1
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It was Erdős who opened up this line of investigation. In [5], Erdős shows that the number
of n ≤ x with gcd(n, σ(n)) = 1 is ∼ e−γx/ log log log x, as x → ∞, where γ is the Euler–
Mascheroni constant.2 In §2, we present a souped-up version of Erdős’s argument, proving
that the count of n ≤ x with gcd(n, σ(n)) = m is ∼ e−γx/m log log log x, uniformly for
m ≤ (log log x)1/4.

Larger values of gcd(n, σ(n)), but still of size bounded by a power of log log x, were considered
by Erdős in [6]. To ease notation, define

E(x, y) = #{n ≤ x : gcd(n, σ(n)) > y}.

Theorem 4 of [6] asserts the existence of a continuous function D(u), strictly decreasing on
(0,∞), such that for each positive real number u,

(1) E(x, (log log x)u) ∼ D(u)x,

as x → ∞. While the proof is omitted in [6], details appear in later joint work with Luca and
Pomerance [7] where it is shown that

(2) D(u) = e−γ

∫ ∞

u

ρ(t) dt,

with ρ(u) the Dickman function from ‘smooth number’ theory: the solution on (0,∞) to
the difference delay equation ρ′(u) = −ρ(u−1)/u for u > 1, with ρ(u) = 1 for 0 < u ≤ 1. The
relation (1) is a consequence of another result of [7], of independent interest, that gcd(n, σ(n))
is the log log x-smooth part of n for all but o(x) values of n ≤ x.3 Though not stated explicitly
there, the argument in [7] establishes that the asymptotic relation (1) holds uniformly in u,
for u restricted to any compact subinterval of (0,∞).

Another claim of [6], again stated without proof (see Theorem 3 there and the subsequent
remarks), is that E(x, y) undergoes a phase transition as y grows beyond y = (log x)o(1). A
corrected version of this claim is established in [14], where it is shown that the true threshold
is y = exp((log log x)o(1)).

Proposition 2 (see Theorems 1.1 and 1.2 in [14]). If x → ∞ and y = exp((log log x)o(1)),
then

E(x, y) > x/yo(1),

while for each β > 0 there is a constant c = c(β) > 0 with

E(x, y) < x/yc whenever y > exp((log log x)β) and x is large.

As an illustration of the second half of Proposition 2, if y > exp((log log x)1/3), one can deduce
from the proofs in [14] that E(x, y) < xy−1/1000 once x is sufficiently large. The shape of the
upper bound — x divided by a constant power of y — is best possible, up to the precise
constant, since it is shown in [14, Theorem 1.4] that E(x, y) > x/y1+o(1) when x → ∞ and
2 ≤ y ≤ x1−ϵ (for any fixed ϵ > 0).

2Erdős states his result for gcd(n, φ(n)) rather than gcd(n, σ(n)), but the argument for σ(n) is very similar.
See also [17].

3These results of [7] are stated for φ(n), but the proofs for σ(n) are essentially the same.
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The above results give only weak information about E(x, y) when y tends to infinity faster
than any power of log log x but y = exp((log log x)o(1)). Our main theorem addresses this
missing range.

Theorem 3. If x → ∞ and u := log y
log log log x

→ ∞, with y ≤ exp((log log x)o(1)), then

(3) E(x, y) = x exp (− (1 + o(1))u log u) .

We also prove a somewhat weaker estimate in the wider range y ≤ exp((log log x)1−ϵ).

Theorem 4. Fix ϵ > 0. If x → ∞ and u := log y
log log log x

→ ∞, with y ≤ exp((log log x)1−ϵ),

then

(4) x exp (− (1 + o(1))u log u) ≤ E(x, y) ≤ x exp (− (1/7 + o(1))u log u) .

We do not know if (3) holds in the entire range of Theorem 4.

The function D(u), as defined in (2), can be shown to satisfy D(u) = exp(−(1 + o(1))u log u)
as u → ∞ (cf. the arguments of §3). Thus Theorems 3 and 4 assert that weaker versions of
(1) hold in extended ranges of y. For the lower bounds, and for the upper bound when y is
small, we prove Theorems 3 and 4 by borrowing ideas from the proof of (1). For larger values
of y, we obtain the upper bounds by adapting the method used by Erdős in [6] to bound the
counts of perfect and multiperfect numbers. These arguments of Erdős were also the basis of
much of the work in [14].

In [14], Wirsing’s theorem is used to deduce that 1
x

∑
n≤x gcd(n, σ(n)) ≤ xO(1/

√
log log x). (This

result is quoted as Lemma 8 below.) Thus if y tends to infinity faster than any power of

x1/
√
log log x, then E(x, y) < x/y1+o(1). That requirement on y is surely too stringent; it would

be very interesting to know the true threshold for y after which the savings of y1+o(1) ‘kicks
in’. Perhaps it suffices for log y to grow faster than any power of log log x. Perhaps even
y > exp((log log x)1+ϵ) is enough? It follows from Theorem 4 that y > exp((log log x)1−ϵ) is
not sufficient.

A word on notation. We write A ≳ B to mean A ≥ (1 + o(1))B; naturally, A ≲ B means
B ≳ A. The letters p and ℓ (but not q) are reserved for primes.

2. The frequency of n with gcd(n, σ(n)) = m

In this section we prove the claim made in the introduction that

(5) #{n ≤ x : gcd(n, σ(n)) = m} ∼ e−γ x

m log log log x
,

as x → ∞, uniformly for m ≤ (log log x)1/4. We have not seen this result in the literature, but
the method of proof follows [5] and [7] closely. The argument is included for completeness,
and to clear ground for the proofs of Theorems 3 and 4 in §3.

The following lemma is due to Pomerance (see [16, Theorem 3] and its application on p. 221
there).
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Lemma 5. For all x ≥ 3 and each positive integer d ≤ x, the number of n ≤ x for which
d ∤ σ(n) is O(x/(log x)1/φ(d)). Here the implied constant is absolute.

Put

(6) Z :=
log log x

2 log log log x
,

and let

(7) L = lcm {d : 1 ≤ d ≤ Z}.

Let m be a divisor of L not exceeding x1/2. (This certainly allows all m ≤ (log log x)1/4, once
x is large. The extra generality will be useful later.)

We consider n ≤ x of the form n = mq, where every prime dividing q exceeds Z. Performing
inclusion-exclusion over the primes dividing Z, one finds that there are ∼ x

m

∏
ℓ≤Z(1− 1/ℓ) ∼

e−γx/m log log log x such n. By Lemma 5, the number of these n for which σ(q) is not divisible
by L is

≪ x

m

∑
d≤Z

(log (x/m))−1/φ(d) ≪ x

m

∑
d≤Z

(log x)−1/Z ≤ x

m log log x
,

which is o(x/m log log log x). Hence, there are ∼ e−γx/m log log log x values n = mq ≤ x with
q having all prime divisors greater than Z and with σ(q) divisible by L. All of these n are
such that m | gcd(n, σ(n)).

From now on, we assume that m ≤ (log log x)1/4.

Let us show that almost all of the n constructed above have gcd(n, σ(n)) = m. If m is a proper
divisor of gcd(n, σ(n)), then ℓ | gcd(n, σ(n)) for some prime ℓ > Z. Since Z > σ(m), it must
be that this prime ℓ divides gcd(q, σ(q)). We may assume q is squarefree; otherwise n has
squarefull part at least Z2, and the number of such n is O(x/Z), which is o(x/m log log log x).
Thus there are primes ℓ, p > Z dividing q with p ≡ −1 (mod ℓ). The number of such q ≤ x/m
for which ℓ > Z ′ := log log x · log log log x is

(8) ≪ x

m

∑
ℓ>Z′

∑
p≤x

p≡−1 (mod ℓ)

1

pℓ
≪ x

m

∑
ℓ>Z′

log log x

ℓ2
≪ x

m(log log log x)2
,

which is also o(x/m log log log x). (We used here that
∑

p≤x, p≡−1 (mod ℓ) 1/p ≪ (log log x)/ℓ,

which follows from the Brun–Titchmarsh theorem by partial summation.) If instead ℓ ∈
(Z,Z ′], write q = ℓq′. Since q′ ≤ x/mℓ and q′ is free of prime factors up to Z, there are
≪ x/mℓ log log log x possibilities for q′ given ℓ. Summing on ℓ ∈ (Z,Z ′] shows that there are
o(x/m log log log x) integers n = mq of this kind as well. Collecting our results we arrive at
the lower bound implicit in (5).

To prove the upper bound, suppose gcd(n, σ(n)) = m, and write n = mq. It suffices to show
that, with o(x/m log log log x) exceptions, q is free of prime factors below Z. Write q = q1q2,
where every prime dividing q1 divides m and gcd(q2,m) = 1. If q1 > m2(log log log x)3,
then n has a squarefull divisor larger than m2(log log log x)3, putting n in a set of size
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o(x/m log log log x). So we may suppose that q1 ≤ m2(log log log x)3. We may also suppose
that L | σ(q2), since the number of exceptional q is

≪
∑
q1

∑
d≤Z

x/mq1
(log(x/mq1))1/φ(d)

≪ x

m

∑
q1

1

q1

∑
d≤Z

(log x)−1/Z ≪ x

m log log x
.

Since mq1 < Z and L | σ(q2) | σ(n), we see that mq1 | gcd(n, σ(n)) = m, forcing q1 = 1. Thus,
q = q2; that is, q is prime to m. If q has a prime factor p ≤ Z, then p ∤ m, and pm | L (since
both p,m | L). But then pm | gcd(n, σ(n)), contradicting that gcd(n, σ(n)) = m.

3. Proof of Theorem 3

3.1. Preliminaries concerning smooth numbers. We begin by collecting certain state-
ments from ‘smooth number’ theory that will prove useful momentarily.

Let Ψ(X, Y ) denote the count of Y -smooth n ≤ X, and let Ψ2(X, Y ) denote the same count
restricted to squarefree n. Fix ϵ > 0. It is known that whenever X, Y → ∞ with U := logX

log Y
→

∞ and Y ≥ (logX)1+ϵ, we have

X exp(−(1 + o(1))U logU) ≤ Ψ2(X, Y ) ≤ Ψ(X, Y ) ≤ X exp(−(1 + o(1))U logU),

where U := logX/ log Y . Here the upper bound follows from [3, Theorem 2] while the lower
bound is a consequence of the lower bound on Ψ(X, Y ) in [1, Theorem 3.1] combined with
[13, Théorème 2], which estimates the ratio Ψ(X, Y )/Ψ2(X, Y ). See also [4, Théorème 2.1].

Recall also that

(9) Ψ(X, Y ) ∼ Xρ(U) if X, Y → ∞ with X ≥ Y ≥ exp((log logX)2);

furthermore,

(10) ρ(U) = exp(−(1 + o(1))U logU), as U → ∞, and

(11) ρ(U + 1) ∼ ρ(U)

U logU
, as U → ∞.

For proofs of (9)–(11), see Chapter III.5 of [19]; the relation (11) is proved by combining
equations (5.48) and (5.62) there.

3.2. Lower bounds in Theorems 3 and 4. We shall prove that E(x, y) ≥ x exp(−(1 +
o(1))u log u) whenever u = log y/ log log log x → ∞ and y ≤ exp((log log x)1−ϵ).

To start off, assume that u ≥ log log log log x; that is, y ≥ (log log x)log log log log x.

Let Z and L be as defined in (6) and (7). Consider n of the form n = mq, where m ∈ (y, x1/2]
is both squarefree and Z-smooth, and where q ≤ x/m has all prime factors exceeding Z. By
our work in §3, for each m there are ∼ e−γx/m log log log x corresponding values of q, and
this remains true if we also require that L divides σ(q). Then m | L | σ(q) | σ(n), so that
gcd(n, σ(n)) ≥ m > y. Moreover, the number of n produced this way is

∼ e−γ x

log log log x

∑
m∈(y,x1/2]
m Z-smooth

µ2(m)

m
.
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Since exp(u log u) ≥ (log log log x)log log log log log x, the denominator log log log x has the shape
exp(o(u log u)). Thus, it suffices to bound the sum from below by exp(−(1 + o(1))u log u).

Put U = log y/ logZ, so that U ≲ (log log x)1−ϵ/ log log log x. We fix δ > 0 and define
y′ = y exp(δU logU). Then y′ ≤ exp((log log x)1−ϵ+o(1)). Letting U ′ = log y′/ logZ, we see
that

U ′ − U =
δU logU

logZ
≲ δ(1− ϵ)U.

Hence, U ′ ≲ (1 + δ(1− ϵ))U and U ′ logU ′ ≲ (1 + δ(1− ϵ))U logU . Thus,

Ψ2(y
′, Z)

Ψ2(y, Z)
≥ Ψ2(y

′, Z)

Ψ(y, Z)
≥ y′

y
exp(U logU − U ′ logU ′ + o(U logU)),

which is at least exp((δϵ+ o(1))U logU), and hence (eventually) larger than 2. Therefore,∑
m∈(y,x1/2]
m Z-smooth

µ2(m)

m
≥

∑
m∈(y,y′]

m Z-smooth

µ2(m)

m
≥ 1

y′
(Ψ2(y

′, Z)−Ψ2(y, Z))

≥ 1

2y′
Ψ2(y

′, Z) ≥ exp(−(1 + o(1))U ′ logU ′).

Since U ′ ≲ (1 + δ(1 − ϵ))U and U ∼ u, we conclude that
∑

m∈(y,x1/2], m Z-smooth µ
2(m)/m is

eventually larger than exp(−(1 + δ)u log u). But δ > 0 was arbitrary, and so∑
m∈(y,x1/2]
m Z-smooth

µ2(m)

m
≥ exp(−(1 + o(1))u log u),

as desired.

A more careful argument is required when y ≤ (log log x)log log log log x.

We consider n ≤ x of the form n = mq, where m is a divisor of L from the interval (y, x1/2], q
has all prime factors exceeding Z, and L | σ(q). Each such n has gcd(n, σ(n)) ≥ m > y, and
our earlier arguments show that the number of such n ≤ x is

(12) ∼ e−γ x

log log log x

∑
m|L

y<m≤x1/2

1

m
,

as x → ∞.

The sum on m in (12) is majorized by the sum over all Z-smooth m ∈ (y, x1/2]. In fact, these
two sums are quite close. To see this, observe that if m is Z-smooth but m ∤ L, then there is
a prime power pe ∥ m with p ≤ Z but pe > Z (forcing e > 1). Thus m = m0m1, where m0 is
squarefull and larger than Z, and m1 is Z-smooth. But the reciprocal sum of all such m is at
most ∑

m0>Z
squarefull

1

m0

∑
m1

Z-smooth

1

m1

=

(∏
ℓ≤Z

(1− 1/ℓ)−1

) ∑
m0>Z

squarefull

1

m0

≪ logZ√
Z

≪ 1

(log log x)1/3
.
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Turning to the analogous sum over Z-smooth m, we have that∑
m Z-smooth
y<m≤x1/2

1

m
≥

∑
m Z-smooth
y<m≤yZ

1

m
≥ −Ψ(y, Z)

y
+

∫ yZ

y

Ψ(v, Z)

v2
dv.

Let U = log y/ logZ. Then (writing v = Zw and recalling (9))∫ yZ

y

Ψ(v, Z)

v2
dv ∼ logZ

∫ U+1

U

ρ(w) dw;

clearly this integral over w has size at least ρ(U + 1), which is ∼ ρ(U)/U logU . Hence, the
initial integral over v has size ≳ ρ(U) logZ/U logU . On the other hand, Ψ(y, Z)/y ≲ ρ(U) =
o(ρ(U) logZ/U logU). Therefore,

(13)
∑

m Z-smooth
y<m≤x1/2

1

m
≳

ρ(U)

U logU
logZ ≳

ρ(U)

U logU
log log log x.

Since U ≲ log log log log x, we find that (log log x)−1/3 = o
(

ρ(U)
U logU

log log log x
)
. We may

thus conclude that the right side of (13) also serves as a lower bound on
∑

m|L, y<m≤x1/2 1/m.

Plugging this estimate into (12), we complete the proof by noting that ρ(U) = exp(−(1 +
o(1))U logU) = exp(−(1 + o(1))u log u) while eγ/(U logU) = exp(o(u log u)).

3.3. Upper bound in Theorem 4. We start by establishing a squarefree variant of the
upper bound in Theorem 4. Let

E∗(x, y) = #{squarefree n ≤ x : gcd(n, σ(n)) > y}.

We will show, under the same hypotheses on x, y as Theorem 4, that

(14) E∗(x, y) ≤ x exp

(
−
(
1

3
+ o(1)

)
u log u

)
.

The claimed upper bound for E(x, y) will be deduced from (14) at the end of this section.

Suppose first that u ≤ (log log log x)1/2. Let n ≤ x be squarefree with gcd(n, σ(n)) > y. We
can assume that gcd(n, σ(n)) has all of its prime factors at most

Z ′′ := (log log x) exp((log log log x)2/3).

Indeed, if ℓ | gcd(n, σ(n)) with ℓ > Z ′′, there must be a prime p | n for which p ≡ −1 (mod ℓ).
The number of n of this kind is (cf. (8)) bounded by

x
∑
ℓ>Z′′

1

ℓ

∑
p≡−1 (mod ℓ)

p≤x

1

p
≪ x

∑
ℓ>Z′′

log log x

ℓ2
≪ x

exp((log log log x)2/3)
,

which is dominated by x exp(−u log u) in this range of u. But if gcd(n, σ(n)) is Z ′′-smooth,
then n has a Z ′′-smooth divisor exceeding y. In this situation we can invoke the follow-
ing estimate of Tenenbaum, which is a special case of Exercise 293 on pp. 554–555 of [19].
(Alternatively, we could apply [18, Lemme 3].)
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Proposition 6. Let X ≥ Y ′ ≥ Y ≥ 2. The number of n ≤ X whose Y -smooth part exceeds
Y ′ is

≪ x exp(−V log V ) + x/Y ′1/2,

where V := log Y ′/ log Y .

Taking X = x, Y = Z ′′, and Y ′ = y in Proposition 6 bounds the number of n as above as
≪ x exp(−(1+o(1))u log u)+x/y1/2. Since y = (log log x)u > u2u, this is at most x exp(−(1+
o(1))u log u). So we have the upper bound (14) in this case, with the better constant 1
replacing 1

3
.

Suppose instead that u > (log log log x)1/2. For this case we need the following lemmas, proved
in [14].

Lemma 7 (see [14, Lemma 2.4]). There is an absolute constant C such that the following
holds. For each x ≥ 3 and each squarefree number d, the number of squarefree n ≤ x for
which d | σ(n) is at most

x

φ(d)
(Cω(d) log log x)ω(d).

Lemma 8 (see [14, Theorem 1.3]). For all T ≥ 3, we have∑
n≤T

gcd(n, σ(n)) ≤ T 1+O(1/
√
log log T ).

Remark. We do not require the full force of Lemma 8; we could get by with an upper bound
of T 1+o(1) for the same sum restricted to squarefree n. Such an estimate can be shown in a
simpler way (cf. the proof of the upper bound in Theorem 11 of [7]).

Let d = gcd(n, σ(n)), and observe that if n = de, then d | σ(d)σ(e), and so d
gcd(d,σ(d))

| σ(e).

We take cases according to the size of w := ω(d/ gcd(d, σ(d))). Suppose first that w ≤ 1
3
u.

Since n = de with e ≤ x/d and d
gcd(d,σ(d))

| σ(e), the number of possibilities for n given d is

bounded by

x

d · φ(d/ gcd(d, σ(d)))

(
C · 1

3
u log log x

) 1
3
u

.

Since u ≤ (log log x)1−ϵ, we have
(
C · 1

3
u log log x

) 1
3
u
< (log log x)

2
3
u = y

2
3 . Now we sum on d.

Using that d/ gcd(d,σ(d))
φ(d/ gcd(d,σ(d)))

≪ log log x = yo(1), we find that∑
d>y

squarefree

1

d · φ(d/ gcd(d, σ(d)))
≤ yo(1)

∑
d>y

gcd(d, σ(d))

d2
= y−1+o(1),

where the final sum on d was estimated using Lemma 8 and partial summation. So this case
contributes at most xy−1/3+o(1) values of n. Since y = (log log x)u > uu, this is acceptable.

Now suppose that w > 1
3
u. We can assume that d (and hence also d/ gcd(d, σ(d))) is y-smooth.

Indeed, a now familiar argument shows that the number of squarefree n ≤ x with gcd(n, σ(n))
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divisible by a prime exceeding y is is ≪ x log log x/y, which is x/y1+o(1) (remembering that
log log x = y1/u) and thus acceptable.

Viewing d′ = d/ gcd(d, σ(d)), the number of remaining n can be bounded, in terms of an
arbitrary parameter t > 1, by

x
∑

d′ squarefree
y-smooth
ω(d′)> 1

3
u

1

d′
≤ xt−u/3

∑
d′ squarefree
y-smooth

tω(d
′)

d′
= xt−u/3

∏
p≤y

(
1 +

t

p

)

≤ x exp
(
−u

3
log t+ t log log y +O(t)

)
.(15)

We choose t = u/ log u. Observe that log log y = log u + log log log log x < 3 log u (in this
range of y), so that

u log t

t log log y
≳

(log u)2

log log y
≳

1

3
log u,

which tends to infinity. Thus, t log log y = o(u log t), rendering the upper bound in (15) of size
at most x exp(−(1

3
+ o(1))u log u). This completes the proof of (14).

To transition from E∗ to E, let n be any integer in [1, x] with gcd(n, σ(n)) > y, and write
n = n0n1, where n0 is squarefree, n1 is squarefull, and gcd(n0, n1) = 1. Then (for x large)

y < gcd(n, σ(n)) ≤ gcd(n0, σ(n0)) gcd(n0, σ(n1)) gcd(n1, σ(n0)σ(n1))

≤ gcd(n0, σ(n0))σ(n1)n1 ≤ 2 gcd(n0, σ(n0))n
2
1 log log x.(16)

Thus, either (a) n1 > y2/7/ log log x or (b) n1 ≤ y2/7/ log log x and gcd(n0, σ(n0)) > y3/7.
The number of n ≤ x in case (a) is O(x(log log x)1/2/y1/7), which is at most x/y1/7+o(1) and
acceptable for (3). The number of n in case (b) is bounded by∑

n1≤y2/7,
n1 squarefull

E∗(x/n1, y
3/7).

As log (y3/7)/ log log(x/n1) ∼ 3
7
u, our bounds on E∗ yield

E∗(x/n1, y
3/7) ≤ x

n1

exp(−(1/7 + o(1))u log u),

uniformly for squarefull n1 ≤ y2/7. Since
∑

1/n1 ≪ 1, the upper bound in (3) follows.

Remark. A more elaborate version of the argument going from E∗ to E would lead to an
improvement (increase) of the constant 1/7 in (4). We have not pursued this, since we suspect
that (14) itself is not optimal.

3.4. Upper bound in Theorem 3. We first argue that the bound (14) can be improved to

(17) E∗(x, y) ≤ x exp (− (1 + o(1))u log u)

when y ≤ exp((log log x)o(1)). (Of course, we continue to assume that u = log y/ log log log x →
∞.) We will suppose that u > (log log log x)1/2, as our earlier arguments already establish
(17) in the complementary range.
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We treat this range of u by the same the method used in proving Theorem 4. However,
instead of splitting the possible values of w = ω(d/ gcd(d, σ(d))) at 1

3
u, we split at (1− η)u,

where η > 0 is small and fixed. Keeping in mind that u ≤ (log log x)o(1), we see that
(C(1− η)u log log x)(1−η)u ≤ y1−η+o(1), and then that the number of n corresponding to some
w ≤ (1 − η)u is at most xy−η+o(1). Since u = (log log x)o(1), eventually y−η+o(1) < y−η/2 =
(log log x)−uη/2 < exp(−u log u), so that there are fewer than x exp(−u log u) values of n of
this kind. On the other hand, there are at most x exp(−(1 − η + o(1))u log u) numbers n
corresponding to some w ≥ (1− η)u. This proves (17) with 1 + o(1) replaced by 1− η+ o(1).
Since η can be taken arbitrarily small, (17) follows.

Now suppose that n ≤ x is not necessarily squarefree and that gcd(n, σ(n)) > y. Again, we
fix a small real number η > 0.

Write n = n0n1 where n0 is squarefree, n1 is squarefull, and gcd(n0, n1) = 1. We can assume
n1 ≤ yη/ log log x, since the number of n ≤ x with squarefull component exceeding yη/ log log x
is O(x(log log x)1/2/yη/2) and (eventually) yη/2/(log log x)1/2 > yη/3 = (log log x)uη/3 > uu. So
from (16),

d0 := gcd(n0, σ(n0)) > y1−2η.

Thus, given n1, the number of corresponding n0 is at most

E∗(x/n1, y
1−2η) ≤ x

n1

exp((1− 2η + o(1))u log u),

uniformly in n1 ≤ yη. Summing on squarefull n1, and keeping mind that η can be taken
arbitrarily small, we obtain the upper bound on E(x, y) claimed in Theorem 3.
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