
ON POLYNOMIAL RINGS WITH A GOLDBACH PROPERTY
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Abstract. David Hayes observed in 1965 that when R = Z, every element of R[T ] of
degree n ≥ 1 is a sum of two irreducibles in R[T ] of degree n. We show that this result
continues to hold for any Noetherian domain R with infinitely many maximal ideals.

It appears that David Hayes [5] was the first to observe the following polynomial analogue
of the celebrated Goldbach conjecture: If R = Z, then

(?)
every element of R[T ] of degree n ≥ 1 can be written as the sum of two
irreducibles of degree n.

His proof is a clever application of Eisenstein’s irreducibility criterion. Hayes’s theorem
and its proof were rediscovered by Rattan and Stewart [10] (see also [1] for some cognate
results). Recently Saidak [11] and Kozek [7] have considered quantitative variants of Hayes’s
theorem. The latter shows that in a precise asymptotic sense, for a given monic polynomial
A(T ) ∈ Z[T ] of degree n ≥ 2, almost all (100%) of its representations as a sum of two monic
polynomials are such that both summands are irreducible.

In this note we consider a generalization in a different direction. Namely, we investigate
which integral domains R have the property (?). In [5], Hayes points out that his proof
shows that (?) holds whenever R is a principal ideal domain with infinitely many maximal
ideals, and so in particular for the polynomial ring F [x] with F an arbitrary field. Here we
show how to relax the requirement that R be a PID to the much weaker condition that the
ideals of R are finitely generated.

Theorem 1. Suppose that R is an integral domain which is Noetherian and has infinitely
many maximal ideals. Then R has property (?).

The condition that R be Noetherian cannot be removed. To illustrate, let R be the ring
of all algebraic integers, i.e., the collection of all complex numbers which are roots of some
monic polynomial with integer coefficients. It is known that over R, there are no irreducible
polynomials of degree n > 1; in fact, as is nicely explained in (e.g.) [8], every nonconstant
polynomial in R[x] can be written as a product of linear factors. However, there are certainly
infinitely many maximal ideals of R: Indeed, for every (positive) prime p of Z, Zorn’s lemma
implies the existence of a maximal ideal of R containing (p) (see [2, p. 254]), and distinct
primes p correspond to distinct maximal ideals. The condition that R contain infinitely many
maximal ideals also cannot be dispensed with (e.g., take R to be your favorite algebraically
closed field), but can perhaps be relaxed beyond what is obvious from the proof below; it
would be interesting to investigate this further.

The proof of Theorem 1 is a nice application of the commutative ring theory seen in an
introductory graduate algebra course. As a corollary of the proof (but not Theorem 1 as
stated), we have the following:

Theorem 2. If S is any integral domain, then R = S[x] has property (?).
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In their proof of (?) for R = Z, Hayes as well as Rattan and Stewart appear to use
‘irreducible’ to mean ‘irreducible over Q’; so, e.g., 2T is considered irreducible. Throughout
this paper, we use ‘irreducible’ in its usual ring-theoretic sense: An element of R[T ] is
irreducible if it is not a unit and cannot be factored as a product of two nonunits. So
(strictly speaking) even in the case R = Z, our result is stronger than that asserted by
previous authors.

1. The basic argument.

We begin by stating our version of Eisenstein’s criterion.

Lemma 3 (Eisenstein’s criterion). Let P be a prime ideal of the integral domain R. Suppose
A(T ) = anT

n + · · ·+ a1T + a0 ∈ R[T ] is a nonconstant polynomial whose coefficients satisfy
the following three conditions:

(i) a0, a1, . . . , an−1 are all contained in P ,
(ii) a0 is not contained in P 2,

(iii) an is not contained in P .

Moreover, suppose that A is a primitive polynomial, in the sense that

(iv) the coefficients ai generate the unit ideal, i.e., (a0, . . . , an) = R.

Then A is irreducible over R.

Proof (sketch). The proof follows the familiar argument for Eisenstein’s criterion where one
passes to the domain R/P ; see, e.g., [2, p. 611]. Conditions (i)-(iii) guarantee that A has
no decomposition of the form G(T )H(T ) where G(T ) and H(T ) are nonconstant. Finally,
condition (iv) implies that every constant polynomial dividing A is a unit in R (and so in
R[T ]). �

Hayes’s argument in [5] utilizes a familiar result from the foundations of number theory:
If m and n are relatively prime integers, then there is a solution in integers x and y to the
equation mx + ny = 1. One can view this as a result about the solvability of simultaneous
linear congruences: Given x and y with mx + ny = 1, the integer a = mx solves the
simultaneous congruences a ≡ 0 (mod m) and a ≡ 1 (mod n). Conversely, given a solution
a to these congruences, we obtain an integral solution of mx + ny = 1 by setting a = mx
and solving for x and y.

When are we guaranteed the existence of a solution to a system of simultaneous congru-
ences? One answer is given by the Chinese Remainder Theorem, a ring-theoretic version of
which we quote here (for a proof, see, e.g., [2, p. 265]). Recall that two ideals I and J of a
commutative ring R are said to be comaximal if I + J = R.

Chinese Remainder Theorem for commutative rings. Let R be a commutative ring
containing ideals I1, . . . , Ik. Suppose that for every pair of i and j with i 6= j, the ideals Ii
and Ij are comaximal. Then the map

R→ R/I1 × · · · ×R/Ik

r 7→ (r mod I1, . . . , r mod Ik)

is a surjective homomorphism with kernel I1 ∩ · · · ∩ Ik. Moreover, I1 ∩ · · · ∩ Ik = I1I2 · · · Ik,
so that

R/(I1 · · · Ik) = R/(I1 ∩ · · · ∩ Ik) ∼= R/I1 × · · · ×R/Ik.
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To apply this result, one needs to know that certain pairs of ideals are comaximal. An
easy observation is that if I is a maximal ideal and J is an ideal not contained in I, then I
and J are comaximal. (Otherwise I ( I +J ( R, contradicting the maximality of I.) Apart
from this, the only property of comaximality we need is its preservation upon taking powers:

Lemma 4. Suppose that I and J are comaximal ideals. Then for any positive integers m
and n, the ideals Im and Jn are comaximal.

Proof. Since I and J are comaximal, one can pick a ∈ I and b ∈ J with a + b = 1. By the
binomial theorem,

(a + b)m+n =
m+n∑
k=0

(
m + n

k

)
akbm+n−k.

If k ≥ m, the kth term of the sum is divisible by am, and so belongs to Im. If k < m, then
m + n − k > n, and so the kth term is divisible by bn and therefore belongs to Jn. Hence
1 = (a + b)m+n belongs to Im + Jn. Consequently, Im and Jn are comaximal. �

We now prove, by Hayes’s method, a somewhat technical general result from which we
will deduce both Theorems 1 and 2.

Theorem 5. Suppose that R is an integral domain possessing distinct maximal ideals P and
Q for which the following hold:

(i) P 2 6= P and Q2 6= Q,
(ii) #R/P > 2 and #R/Q > 2.

Then R has property (?).

Proof. Let A(T ) =
∑n

j=0 ajT
j ∈ R[T ] be given, where A has degree n ≥ 1.

Suppose first that n = 1, so that A(T ) = a1T + a0. If a1 6= 1, then A(T ) = ((a1 − 1)T +
1) + (T + a0 − 1) is a decomposition of the desired form. If n = 1 and a1 = 1, then by a
change of variables, we can assume A(T ) = T . Then picking r ∈ R with r 6∈ {0, 1}, we have
the decomposition T = (rT + 1) + ((1− r)T − 1).

Suppose now that n ≥ 2. We will find degree-n polynomials B =
∑n

i=0 biT
i and C =∑n

i=0 ciT
i satisfying A = B + C, where B and C satisfy the conditions of Eisenstein’s

criterion (Lemma 3). It is enough to describe how to choose the bi, since clearly ci = ai− bi.
Using hypothesis (i), fix p ∈ P \P 2 and q ∈ Q \Q2. Using the Chinese Remainder Theorem
and Lemma 4, pick the coefficients bi to satisfy the congruences

bi ≡ 0 (mod P ), ci ≡ 0 (mod Q) for i = 1, 2, . . . , n− 1,

b0 ≡ p (mod P 2), c0 ≡ q (mod Q2),

bn 6≡ 0 (mod P ), cn 6≡ 0 (mod Q).

(Here a congruence on ci is to be interpreted as a congruence on bi, via the relation bi + ci =
ai.) Then B satisfies conditions (i)–(iii) of Lemma 3 with respect to P , and C satisfies these
conditions with respect to Q.

To ensure that (iv) is satisfied, we amend the construction somewhat. In addition to the
constraints imposed on the bi above, we add that

cn 6≡ 0 (mod P ) and bn 6≡ 0 (mod Q);
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since #R/P > 2 and #R/Q > 2, this is permissible. Fix b2, . . . , bn satisfying all of the con-
gruence conditions specified above. Now choose b0 to satisfy all the above and the additional
congruence

(1) b0 ≡ 1 (mod bn).

To see that this is possible, notice that we now have congruence conditions on b0 with respect
to the moduli P 2, Q2 and (bn); since we have specified above that bn is in neither P nor Q,
these three moduli are pairwise comaximal (again, we appeal to Lemma 4). Similarly, we
can choose b1 satisfying all the congruences given above as well as

(2) c1 ≡ 1 (mod cn).

From (1) we have that b0 and bn generate the unit ideal, and from (2) we get the same for
c1 and cn. In particular, we have secured condition (iv) of Lemma 3. �

2. Proof of Theorem 1.

In this section we show that any Noetherian domain with infinitely many maximal ideals
satisfies the hypotheses of Theorem 5 and thus has property (?). The first lemma shows that
if R is a Noetherian domain, then condition (i) of Theorem 5 is satisfied for all nonzero P
and Q.

Lemma 6. If R is a Noetherian domain and M is a nonzero maximal ideal, then M2 6= M .

Proof. Since R is Noetherian and M 6= 0, we can choose nonzero generators g1, . . . , gk for
M , where k is a positive integer. Suppose that M2 = M . Since each gi ∈ M = M2, we can
write

gi =
k∑

j=1

mijgj for 1 ≤ i ≤ k, where each mij ∈M.

The matrix (mij) − Id kills the column vector [g1, . . . , gk]T . But the determinant of this
matrix is congruent to ±1 (mod M); in particular, it is nonvanishing, so that the matrix
is invertible over the quotient field of R. So we have an invertible matrix killing a nonzero
vector, an absurdity. �

The next lemma shows that if R is a Noetherian domain with infinitely many maximal
ideals M , then infinitely many of these M have #R/M > 2.

Lemma 7. Let R be a Noetherian ring. Then R has only finitely many maximal ideals M
with #R/M = 2.

Clearly Theorem 1 follows from Theorem 5 and Lemmas 6 and 7.

Proof. Let J be the intersection of all maximal ideals M of R for which #R/M = 2. We
will show that S := R/J is finite. Hence there are only finitely many ideals of S, and so
by the lattice isomorphism theorem, also only finitely many ideals of R containing J . Since
each M contains J , we obtain the lemma.

Let us show that S has the property that each of its prime ideals is maximal, with corre-
sponding residue field Z/2Z. Suppose x ∈ R. Since R/M ∼= Z/2Z, we have that x2−x ∈M
for all M , and hence x2 − x ∈ ∩M = J . So in S = R/J , every element is idempotent (i.e.,
S is a Boolean ring). It follows that the same is true for every quotient of S. In particular,
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if P is a prime ideal of S, then S/P is a domain where every element satisfies x2 − x = 0;
the field Z/2Z is the only such domain.

Since S is Noetherian, every ideal of S contains a product of prime ideals [2, p. 685].
Applying this to the zero ideal, we find that (0) = P e1

1 P e2
2 · · ·P

ek
k for distinct prime ideals

P1, . . . , Pk of S. Since each Pi is maximal, the Chinese Remainder Theorem and Lemma 4
give that S ∼= S/(0) ∼=

∏k
i=1 S/P

ei
i . Since each element of S is idempotent, none of the rings

S/P ei
i can have nonzero nilpotent elements. This forces P ei

i = Pi for each i, yielding that

S ∼=
∏k

i=1 S/Pi
∼= (Z/2Z)k. �

With a bit of effort, one can tweak the proof of Lemma 7 to show that for any Noetherian
ring R and any constant B, there are only finitely many ideals I of R with #R/I ≤ B. This
argument is due to Samuel [12, p. 292].

3. Proof of Theorem 2.

It suffices to verify that R = S[x] satisfies the two conditions of Theorem 5. Fix a maximal
ideal M of S and let K denote the field S/M . The ring K[x] contains infinitely many monic
irreducibles; one can see this by mimicking the usual Euclidean proof that there are infinitely
many primes. Each such irreducible has the form I, where I ∈ S[x] is monic, and I signifies
that the coefficients are reduced modulo M . We have an isomorphism

S[x]/(M, I(x)) ∼= K[x]/(I),

which shows that (M, I(x)) is a maximal ideal of S[x]. Moreover, any two distinct monic
irreducibles I generate the unit ideal of K[x], and so correspond to distinct maximal ideals
(M, I(x)) of S[x]. Note that the above isomorphism shows that the quotient of S[x] by
(M, I(x)) has size > 2 provided either that K is infinite or that I has degree at least two;
in particular, regardless of the size of K, there are always infinitely many choices of I for
which the quotient has size > 2.

Now let monic polynomials I1 and I2 in S[x] be chosen so that I1, I2 are distinct irreducibles
over K, and so that P := (M, I1(x)) and Q := (M, I2(x)) have residue fields with more than
two elements. To see that P 2 6= P , note that the elements of P are exactly those elements of
S[x] whose reductions modulo M are divisible by I1 over K. So every element of P 2, after

reduction modulo M , is congruent to a multiple of I
2

1. Since I
2

1 does not divide I1 in K[x],
we see that I1 /∈ P 2, so that P 2 6= P . Similarly, Q2 6= Q.

4. Concluding remarks.

Theorem 1 does not directly comment on the case when R = F is a field, since in that case
(0) is the only maximal ideal. However, if F is the quotient field of a unique factorization
domain R satisfying the conditions of Theorem 1, then ‘Gauss’s lemma’ [2, p. 303] shows that
(?) holds. At a much deeper level, we have the investigations into the Hilbert irreducibility
theorem (see [13, §4.4]), from which we may deduce that (?) holds if R = F and F is any
infinite finitely generated field.

If we ask what happens when R = F is a finite field, then we are quickly led to interesting
open problems. Suppose first that #F > 2. Here one expects that every element of F [T ]
can be written as a sum of two irreducibles, and that for elements of sufficiently large degree
(larger than an absolute constant), the summands can be taken to be of the same degree as
F . However, for all anyone knows, proving this may be as difficult as resolving the classical
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Goldbach conjecture. Just as in the classical situation, the expected results are known
for sums of three irreducibles; see [6], [3], and the survey [4]. The situation is similar for
F = Z/2Z, but now congruence obstructions modulo the primes T and T + 1 of F [T ] must
be taken into account. For a precise discussion of these issues, see [9].
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