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Abstract. Let X be a finite group of primitive Dirichlet characters. Let ξ =∑
χ∈X aχχ be a nonzero element of the group ring Z[X]. We investigate the smallest

prime q that is coprime to the conductor of each χ ∈ X and that satisfies∑
χ∈X

aχχ(q) 6= 0.

Our main result is a nontrivial upper bound on q valid for certain special forms ξ.
From this, we deduce upper bounds on the smallest unramified prime with a given
splitting type in an abelian number field. For example:
• Let p be a prime, and let χ be a Dirichlet character modulo p. Suppose that χ

has order n and that d is a divisor of n with d > 1. The least prime q for which
χ(q) is a primitive dth root of unity satisfies

q �n,ε p
λ+ε, where λ =

n

8d
· 2ω(d).

• Let K/Q be an abelian number field of degree n and conductor f . Let g be a
proper divisor of n. If there is any unramified rational prime q that splits into g
distinct prime ideals in OK , then the least such q satisfies

q �n,ε f
n
8 +ε.

Our estimate also allows us to recover the upper bounds of Vinogradov–Linnik, Elliott,
and the present author on the least split-completely prime in an abelian number field.

1. Introduction

1.1. Statement of the main result. In this paper, we study the smallest prime
outside of a small finite set at which a given linear combination of Dirichlet characters
is nonvanishing. Via class field theory for Q, results of this nature have applications to
the study of prime splitting in abelian number fields. To facilitate a precise statement of
both the problem and the results, we begin by reviewing some notation and terminology.

If χ1 and χ2 are primitive Dirichlet characters, we define their product χ1χ2 as
the primitive Dirichlet character which induces the function n 7→ χ1(n)χ2(n). With
this definition, the conductor of χ1χ2 always divides the least common multiple of the
conductors of χ1 and χ2, but is often smaller. By a group of Dirichlet characters,
we mean a collection of primitive characters that forms a group with this notion of
multiplication.

For each Dirichlet character χ, we let fχ denote the conductor of χ. If X is a finite
group of Dirichlet characters, we define the conductor fX of X as the least common
multiple of the conductors fχ, for χ ∈ X. We say that X is ramified at the prime q if
q divides fX. By a form on X, we mean an element

(1.1) ξ =
∑
χ∈X

aχχ
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of the group ring Z[X]. For each integer m and each form ξ, we define the evaluation
of ξ at m in the obvious way, that is, ξ(m) :=

∑
χ∈X aχχ(m). Then ξ(0) = a1, where 1

denotes the unique primitive principal character (of conductor 1). It is important for
the sequel to observe that (ξ1ξ2)(m) need not equal ξ1(m)ξ2(m) — indeed, this can fail
even if ξ1 and ξ2 are characters themselves. However, equality does hold whenever m
is coprime to fX.

It will be seen (see Proposition 1.5 below) that the least rational prime that splits
completely in a given abelian number field K/Q is precisely the smallest unramified
prime q having

∑
χ χ(q) 6= 0; here the sum runs over a certain finite set of characters

that is canonically associated to K (see Proposition 2.1). It will turn out that the
nonvanishing of other Z-linear combinations of characters also yields useful arithmetic
information. This leads us to the following problem:

Problem 1.1. Given a nonzero form ξ ∈ Z[X], estimate the smallest prime q where
ξ(q) 6= 0 (possibly satisfying certain other ramification-related restrictions).

It is not immediately obvious that this problem is well-posed; why must there be any
such q? In fact, ξ(q) 6= 0 for infinitely many primes q. To see this, first observe that
distinct χ ∈ X induce distinct characters modulo fX. Since ξ is not identically zero, the
Artin–Dedekind theorem on linear independence of characters (see, e.g., [10, Theorem
4.1, p. 283]) shows that ξ(m) 6= 0 for all m belonging to a certain coprime residue class
modulo fX. Appealing now to Dirichlet’s theorem on primes in progressions, we see
that this residue class contains infinitely many primes q.

The argument of the last paragraph shows that an upper bound in Problem 1.1
follows from an upper bound on the least prime in a prescribed arithmetic progression.
A bound of the latter type is given in a celebrated theorem of Linnik [11, 12]:

Proposition 1.2. There is an absolute constant L with the following property: When-
ever A and M are coprime, the smallest prime q ≡ A (mod M) satisfies

q �ML.

Combined with the above remarks, Proposition 1.2 shows that the smallest prime
q - fX for which ξ(q) 6= 0 is O(fL

X
). Recent work of Xylouris [19] (improving on earlier

results of Heath-Brown [7]) allows us to take L = 5.18 in Proposition 1.2.
The purpose of this paper is to present an alternative upper bound for the prime q

described in Problem 1.1, valid for certain special forms. There is no loss of generality
in assuming that the coefficient a1 of ξ is nonzero; if a1 vanishes, we can replace ξ by
χ−1ξ for any χ in the support of ξ. (Here and below, the support of ξ refers to the set
of χ ∈ X with aχ 6= 0.) Our main theorem applies when the coefficient a1 of ξ is ±1.
When ξ is ‘short’, in the sense that ξ is a linear combination with small coefficients of
only a few characters, the resulting upper bound on q is smaller than the naive bound
from Linnik’s theorem.

We need a few more definitions before we can state our result.

Definition 1.3. Suppose that ξ is a form on X, written as (1.1). We define

• the weight of ξ, denoted Wξ, as
∏

χ∈X f
aχ
χ ,

• the length of ξ, denoted ‖ξ‖, as
∑

χ∈X |aχ|.
• the positive part of ξ, denoted ξ+, as

∑
χ∈X: aχ>0 aχχ; similarly, the negative

part of ξ, denoted ξ−, is defined as −
∑

χ∈X: aχ<0 aχχ.

Our main result is the following. The proof is presented in §4, following preparatory
work given in §3.
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Theorem 1.4. Let X be a finite group of Dirichlet characters with conductor f and
exponent dividing the positive integer n. Let ξ ∈ Z[X], and suppose that ξ(0) = ±1.
Let

W := max{Wξ+ ,Wξ−},
and let L be an upper bound on the length of ξ. For each ε > 0, the smallest prime q - f
for which ξ(q) 6= 0 satisfies

q � W 1/4f ε.

Here the implied constant depends at most on n, ε, and L.

Remark. It is perhaps more natural to state the theorem with n equal to the (precise)
exponent of X and L equal to the length of ξ. However, the looser definitions of n and
L used above will be convenient in the proof.

1.2. Consequences. We now discuss applications. We begin by quoting the main
result of [16], which we show in §2.1 to be a simple consequence of Theorem 1.4.

Proposition 1.5. Let K/Q be an abelian extension of degree n and discriminant D.
The smallest rational prime q that splits completely in K satisfies

q �n,ε |D|
1
4
+ε

for each ε > 0.

If we specialize Proposition 1.5 to the case of a cyclic extension of prime conductor,
we immediately obtain the following result (due to Vinogradov and Linnik [17] when
n = 2 and Elliott [5] when n > 2):

Proposition 1.6. Let p be a prime, and let χ be a Dirichlet character modulo p of
order n. The smallest prime q for which χ(q) = 1 satisfies

q �n,ε p
n−1
4

+ε,

for each ε > 0.

Next, we turn to our new results. The statement of the next theorem assumes
familiarity with the correspondence between abelian extensions of Q and groups of
Dirichlet characters (which is reviewed at the start of §2.1). The proof is given in §2.2.
We remind the reader that ω(d) denotes the number of distinct primes dividing d.

Theorem 1.7. Let K/Q be an abelian extension of degree n and conductor f . Choose
a basis χ1, . . . , χk for the group of characters X associated to K. Suppose that each
χi has order ni. For all 1 ≤ i ≤ k, choose a divisor di of ni, and suppose that at least
one di > 1. The smallest prime q for which χi(q) is a primitive dith root of unity, for
every 1 ≤ i ≤ k, satisfies

q � fλ+ε, where λ =
1

8

(
k∏
i=1

ni

)(
k∏
i=1

2ω(di)

di

)
.

Here the implied constant depends at most on n and ε.

Theorem 1.7 is perhaps a bit difficult to appreciate in itself. So we record two
consequences here that seem of independent interest. The first complements Elliott’s
Proposition 1.6; we omit the proof, since it follows immediately from Theorem 1.7 upon
restricting to extensions of prime conductor.
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Corollary 1.8. Let p be a prime, and let χ be a Dirichlet character modulo p of order
n. Suppose that d divides n and d > 1. Then the least prime q for which χ(q) is a
primitive dth root of unity satisfies

q �n,ε p
λ+ε, where λ =

n

8d
· 2ω(d).

Our next result, proved in §2.3, complements Proposition 1.5.

Corollary 1.9. Let K/Q be an abelian extension of degree n and conductor f . Let g
be a divisor of n with g < n. Assume that there is at least one rational prime that does
not ramify in K and that has g distinct prime ideal factors in OK. Then the smallest
prime q of this type satisfies

q �n,ε f
n
8
+ε.

Remark. For each abelian extension K/Q of degree n, one has |D| ≥ fn/2 (compare

with [3, Lemma 9.2.1, p. 431]). Hence, f
n
8
+ε ≤ |D| 14f ε ≤ |D| 14+ε. So combining

Corollary 1.9 with the result of Proposition 1.5, we see that the smallest unramified
prime that splits into g distinct prime ideals in OK is On,ε(|D|

1
4
+ε), uniformly in g,

provided that at least one prime of this kind exists.

1.3. Sketch of the proof of Theorem 1.4. We conclude the introduction with a
brief sketch of the proof of Theorem 1.4. We freely omit details at this point in order
to give the flavor of the argument. In addition, we tell some ‘white lies’; for instance,
in the actual proof, our partial sums of Dirichlet coefficients are weighted conveniently.

Write ξ+ =
∑

χ∈X aχ,+χ and ξ− =
∑

χ∈X aχ,−χ. Since ξ(0) = ±1, either a1,+ = 1

or a1,− = 1; we can assume it is the former (replace ξ with −ξ otherwise). Since
ξ = ξ+ − ξ−, whenever ξ(q) = 0, we have

(1.2)
∑
χ∈X

aχ,+χ(q) =
∑
χ∈X

aχ,−χ(q).

Let us suppose that we were to have ξ(q) = 0 for all primes q. (We already know that
this impossible, but it is insightful to see where this assumption leads us.) Define a
Dirichlet series G by setting

∏
χ∈X L(s, χ)aχ,+ = G(s)

∏
χ∈X L(s, χ)aχ,− . Taking Euler-

product expansions of both sides and appealing to (1.2), we find that G represents a
function that is analytic and nonzero for <(s) > 1

2
.

Define arithmetic functions f+ and f− by setting∏
χ∈X

L(s, χ)aχ,+ =
∞∑
m=1

f+(m)

ms
and

∏
χ∈X

L(s, χ)aχ,− =
∞∑
m=1

f−(m)

ms
.

Writing G(s) =
∑

m≥1 g(m)m−s, and using ? to denote Dirichlet convolution, the defi-
nition of G shows that

(1.3)
∑
m≤y

f+(m) =
∑
m≤y

(g ? f−)(m)

for all y. But this cannot be: Since a1,+ = 1 and a1,− = 0, the product
∏

χ∈X L(s, χ)aχ,+

has a simple pole at s = 1 from the factor L(s,1) = ζ(s), whereas G(s)
∏

χ∈X L(s, χ)aχ,−

is analytic at s = 1. Applying Perron’s formula, one derives from these facts that∑
m≤y f

+(m) grows linearly with y while
∑

m≤y(g ? f
−)(m) = o(y), as y → ∞. This

contradiction proves (again) that ξ(q) is nonzero for some prime q.
To obtain a bound on the smallest such q, we replace the extravagant assumption

that ξ(q) always vanishes with the more modest assumption that ξ(q) = 0 for all primes
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q ≤ y. Keeping track of the dependencies in the error terms, Perron’s formula shows
that the right-hand side of (1.3) is much smaller than the left once y is a little larger
than W . To derive this, one uses the trivial bound of fχ on the partial sums of each
nontrivial character χ. If one replaces the trivial bound with the Burgess bound, one
can replace W here with W 1/4. These ideas suffice to prove Theorem 1.4, modulo
technical work necessary to handle the extra condition that q not divide fX.

Remark. The ideas that go into the proof of Theorem 1.4 can be found in nascent
form in the works of Vinogradov–Linnik [17] and Elliott [5] already alluded to. In
the language of the present paper, those authors considered only cyclic groups X of
prime conductor and the particular form ξ =

∑
χ∈X χ. (Thus, ξ+ = ξ and ξ− = 0,

and the product
∏

χ∈X L(s, χ)aχ,+ is the Dedekind zeta function of the number field
corresponding to X. This allows for small technical simplifications over what is seen
below.) The raison d’être of the present work is to place these earlier papers in a
suitable general context.

Additional notation. We continue to employ the Landau–Bachmann o and O no-
tations, as well as the associated Vinogradov symbols � and �, with their usual
meanings. Any dependence of implied constants is indicated explicitly, usually with
subscripts. Throughout, the letters p and q are reserved for prime variables. We write

τk(n) =
∑

d1···dk=n

1

for the k-fold Piltz divisor function. Thus, τ2(n) is the usual number-of-divisors func-
tion, which we write simply as τ(n).

2. Proofs of the corollaries

2.1. Proof of Proposition 1.5. For the convenience of the reader, we summarize the
correspondence between finite groups of Dirichlet characters and finite abelian exten-
sions of Q. For much more, see [18, Chapter 3].

Proposition 2.1. Let X be a finite group of characters of conductor f . Identify each
χ ∈ X with the induced character modulo f , and let H = ∩χ∈X kerχ E (Z/fZ)× =
Gal(Q(ζf )/Q). Associate to X the fixed field Q(ζf )

H . Then K/Q is an abelian exten-
sion of degree #X and conductor f . Conversely, each abelian extension K/Q arises in
this way from a unique character group X.

Suppose now that X is a finite group of characters and that K is the corresponding
field. If q is any rational prime, then

(i) q ramifies in K precisely when q | fχ for some χ ∈ X,
(ii) the number of distinct prime ideal factors of q in OK is equal to the number of

χ ∈ X for which χ(q) = 1.

Proof of Proposition 1.5. Let X be the group of Dirichlet characters corresponding to
K. Then the exponent of X divides #X = [K : Q] = n. By Proposition 2.1, q splits
completely in K precisely when χ(q) = 1 for all χ ∈ X. To detect this condition, we
introduce the form ξ =

∑
χ∈X χ ∈ Z[X]. We claim that if X is unramified at q, and q

does not split completely in K, then ξ(q) = 0. Indeed, under these conditions, there is
a ψ ∈ X with ψ(q) 6= 1. Since q is relatively prime to f = lcmχ∈X[fχ], multiplication
by ψ(q) permutes

∑
χ∈X χ(q); this forces

∑
χ∈X χ(q) = 0.

From the last paragraph, the smallest split-completely prime is bounded above by
the smallest q - fX for which ξ(q) 6= 0. We estimate this using Theorem 1.4. In our
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case, ξ+ = ξ has weight
∏

χ∈X fχ = |D| (from the conductor-discriminant formula [18,

Theorem 3.11, p. 27]) and ξ− = 0 has weight 1. Thus, W = |D|. We can take
L = ‖ξ‖ = n. Now Theorem 1.4 shows that there is a suitable prime q �n,ε |D|1/4f ε ≤
|D|1/4+ε. �

2.2. Proof of Theorem 1.7. We need an easy lemma concerning the length of a
product of two forms.

Lemma 2.2. Length is submultiplicative. In other words, if ξ1 and ξ2 are two forms
on X, then ‖ξ1ξ2‖ ≤ ‖ξ1‖ · ‖ξ2‖.

Proof. Suppose ξ1 =
∑

χ∈X aχ,1χ and ξ2 =
∑

χ∈X aχ,2χ. Then

‖ξ1ξ2‖ =

∥∥∥∥∥∥∥∥
∑
χ∈X

∑
ψ,ρ∈X
ψρ=χ

aψ,1aρ,2

χ

∥∥∥∥∥∥∥∥ =
∑
χ∈X

∣∣∣∣∣∣∣∣
∑
ψ,ρ∈X
ψρ=χ

aψ,1aρ,2

∣∣∣∣∣∣∣∣
≤

(∑
ψ∈X

|aψ,1|

)(∑
ρ∈X

|aρ,2|

)
= ‖ξ1‖ · ‖ξ2‖. �

Proof of Theorem 1.7. The proof is similar to that of Proposition 1.5. But for our
‘detector’ form, we now choose

(2.1) ξ =
k∏
i=1

(1 + χdii + χ2di
i + · · ·+ χni−dii )

∏
p|di

(χ
di/p
i − 1)

 .

To justify this choice, suppose that X does not ramify at q. If the order of χi(q) divides
ni but not di, then χi(q) is a root of xni−1

xdi−1 = 1 +xdi + · · ·+xni−di ; thus, ξ(q) = 0. Also,

if the order of χi(q) is a proper divisor of di, then χi(q) is a root of xdi/p − 1 for some
prime p dividing di, and again ξ(q) = 0. Combining these two observations, we see that
ξ(q) vanishes unless χi(q) has order di for each i.

Before we can apply Theorem 1.4, we must check that ξ has constant term a1 = ±1.
By hypothesis, X is the direct sum of the groups generated by χ1, . . . , χk. So it is
sufficient to show that for every i, each monomial appearing in the expansion of the
product (taken in the polynomial ring Z[x])

(1 + xdi + x2di + · · ·+ xni−di)
∏
p|di

(xdi/p − 1)

has the form xm where either m = 0 or ni - m. In fact, if xm appears with a nonzero
coefficient in this expansion, then either m ≤ ni − di < ni, or

m ≡
∑
p∈S

di/p (mod di)

for some nonempty subset S of the primes dividing di. But the right-hand sum is not
divisible by di, since

∑
p∈S

1
p

is not an integer (its lowest-terms denominator is divisible

by every prime in S ). So di - m, and a fortiori, ni - m.
We are now in a position to apply Theorem 1.4. Since ξ+ and ξ− have disjoint

support, ‖ξ‖ = ‖ξ+‖+ ‖ξ−‖. Moreover, since ξ+ and ξ− have nonnegative coefficients,

0 = ξ(1) = ξ+(1)− ξ−(1) = ‖ξ+‖ − ‖ξ−‖.
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(The first equality uses our assumption that some di > 1.) Hence,

‖ξ+‖ = ‖ξ−‖ =
1

2
‖ξ‖.

Examining the factors appearing in the definition of ξ and using the submultiplicativity
of the length, we find that

‖ξ‖ ≤

(
k∏
i=1

ni
di

)(
k∏
i=1

2ω(di)

)
= n

k∏
i=1

2ω(di)

di
= 8λ.

(In particular, ‖ξ‖ ≤ n, since 2ω(di) ≤ τ(di) ≤ di for each 1 ≤ i ≤ k.) Since each
χ ∈ X has conductor dividing f , the weight of ξ+ is bounded above by f ‖ξ

+‖ ≤ f 4λ,
and similarly for ξ−. So W 1/4 ≤ fλ. Taking L = n, the bound claimed in Theorem 1.7
now follows from Theorem 1.4. �

2.3. Proof of Corollary 1.9. Choose a basis χ1 . . . , χk for the character group X
corresponding to K. Let ni denote the order of χi. Suppose that K is unramified at q0
and that q0 splits into g distinct prime ideals in OK , where g < n. Since q0 does not
split completely, some χi(q0) 6= 1. So by Theorem 1.7, there is a prime q �n,ε f

n/8+ε

with the property that χi(q) and χi(q0) have the same multiplicative order for all
1 ≤ i ≤ k. For this q, the multiset {χ0

i (q), χ
1
i (q), . . . , χ

ni−1
i (q)} coincides with the

multiset {χ0
i (q0), χ

1
i (q0), . . . , χ

ni−1
i (q0)} for all 1 ≤ i ≤ k. Using that χ1, . . . , χk are a

basis for X, we deduce that the multiset {χ(q) : χ ∈ X} coincides with the multiset
{χ(q0) : χ ∈ X}. In particular, the number 1 appears in these two multisets with the
same multiplicity. So by Proposition 2.1(ii), q is unramified in K and also splits into g
distinct prime ideals in OK .

Remark. One can often improve the exponent n/8 in Corollary 1.9 by taking into
account the factors 2ω(di)/di featuring in Theorem 1.7. We have not pursued such an
improvement, since our objective was to obtain an entirely uniform bound.

2.4. Remarks concerning the optimality of Theorem 1.7. There are two points
in the proof of Theorem 1.7 where one may wonder whether we are making optimal use
of Theorem 1.4. The first is our crude estimation of W , where we pretend that all of the
characters involved have conductor fX. This worst-case estimate is sharp only when
one of ξ+ or ξ− is supported on characters of conductor fX. This does sometimes occur;
for example, it holds whenever fX is prime (as in the application to Corollary 1.8). But
one can certainly construct families of pairs (X, ξ) where our worst-case assumption on
the weights is indeed lossy. In such cases, a more careful application of Theorem 1.4
may be advantageous.

The second concern is with our choice of the detector form ξ. There are many other
possible candidates for ξ besides (2.1). For example, if we set Pn,d(x) := (xn−1)/Φd(x)
(where Φd(x) is the dth cyclotomic polynomial), then the form

(2.2) ξ =
k∏
i=1

Pni,di(χi) ∈ Z[X]

will also detect when each χi(q) has order di. This is arguably a more intuitively
appealing choice than (2.1). It turns out, however, that the choice (2.2) has larger
length than (2.1). Since W is bounded in terms of the length of ξ in the proof of
Theorem 1.7, the choice (2.1) is better. Perhaps surprisingly, the choice (2.1) is not
only better than (2.2) but is in fact best possible. We prove this here for the special
case when X is cyclic.
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Theorem 2.3. Let X be a cyclic group of characters with generator χ. Suppose that X
has order n and that d is a divisor of n. Finally, suppose that the form ξ ∈ Z[X] has the
following ‘detector’ property: For all primes q, with at most finitely many exceptions,

(2.3) χ(q) has order d⇐⇒ ξ(q) 6= 0.

Then

‖ξ‖ ≥ n · 2ω(d)

d
.

The proof depends on two lemmas. The first is the dual form of the usual Möbius
inversion formula of elementary number theory. For a proof, see, for example, [14,
Theorem A.22, p. 320].

Lemma 2.4. Let D be a finite set of natural numbers that is divisor-closed, meaning
that every divisor of an element of D also belongs to D . Suppose that the two functions
f, g : D → C have the property that for all s ∈ D ,

f(s) =
∑
r∈D
s|r

g(r).

Then for all r ∈ D ,

g(r) =
∑
s∈D
r|s

f(s)µ(s/r).

The next lemma is a polynomial version of Theorem 2.3, possibly of independent
interest.

Lemma 2.5. Let A(x) =
∑

0≤k<n akx
k ∈ Z[x] be a polynomial of degree smaller than

n that vanishes at all nth roots of unity with the exception of those of order d, where d
divides n. Then ∑

0≤k<n

|ak| ≥ n · 2ω(d)

d
.

Proof. After dividing by a suitable power of x, we can assume that a0 6= 0. Let D
denote the set of divisors of d. For each r ∈ D , set Ar(x) :=

∑
0≤k<n

gcd(k,d)=r
akx

k. Then

A(x) =
∑

r|dAr(x). Moreover, if s ∈ D , then

(2.4)
∑
ζs=1

A(ζ) =
∑

0≤k<n

ak
∑
ζs=1

ζk = s
∑

0≤k<n
s|k

ak = s
∑
r∈D
s|r

Ar(1).

Now if s is a proper divisor of d, then A vanishes at all of the sth roots of unity, and so∑
ζs=1A(ζ) = 0. Also, since A vanishes at all nth roots of unity except those of order

d, ∑
ζd=1

A(ζ) =
∑
ζn=1

A(ζ) = n
∑

0≤k<n
n|k

ak = a0n.

So from (2.4), we find that for s ∈ D ,∑
r∈D
s|r

Ar(1) =

{
0 if s is a proper divisor of d,

a0n/d if s = d.
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By the dual form of the Möbius inversion formula, we deduce that for every r ∈ D ,

Ar(1) = a0µ(d/r)
n

d
.

Using that |µ| = µ2, we see that

|a0|+ |a1|+ · · ·+ |an−1| ≥
∑
r|d

|Ar(1)|

= |a0|
n

d

∑
r|d

µ2(d/r) = |a0|
n

d

∑
r|d

µ2(r) = |a0|n ·
2ω(d)

d
.

Since |a0| ≥ 1, the lemma follows. �

Proof of Theorem 2.3. Since χ has order n, each nth root of unity is the value of χ(q) for
infinitely many primes q (for example, by Dirichlet’s theorem). Write ξ =

∑n−1
k=0 akχ

k.
Then ξ is not the zero element of Z[X]. (Otherwise, the detection property (2.3) implies
that χ(q) has order d only finitely many times.) If q is a prime not dividing fχ, then
ξ(q) = A(χ(q)), where A(x) :=

∑
0≤k<n akx

k ∈ Z[x]. Since each nth root of unity is the
value of χ(q) for infinitely many primes q not dividing fχ, condition (2.3) shows that
A vanishes at all of the nth roots of unity with the exception of those of exact order d.
Since ‖ξ‖ =

∑
0≤k<n |ak|, the desired lower bound on ‖ξ‖ follows from Lemma 2.5. �

Remark. The proof of the non-cyclic analogue of Theorem 2.3 is entirely analogous,
but the notation is much more unwieldy.

3. Preliminaries for the proof of Theorem 1.4

In this section, we present several results needed for the proof of Theorem 1.4. The
first is a variant of Burgess’s character sum estimates [1, 2], due to Heath-Brown (see
[7, Lemma 2.4] for a more precise statement). In this version of Burgess’s estimates,
the restriction to characters of cubefree conductor present in Burgess’s work is replaced
by a bound on the order of χ.

Proposition 3.1. Suppose that χ is a primitive character of conductor fχ > 1 whose
order divides the natural number n. Let ε > 0, and let r be a positive integer. Then for
every pair of integers M and N with N > 0, we have∣∣∣∣∣ ∑

M<m≤M+N

χ(m)

∣∣∣∣∣�r,n,ε N
1−1/rf

r+1

4r2
+ε

χ .

The next lemma gives an application of Proposition 3.1 that will be required below.

Lemma 3.2. Let X be a finite group of characters of exponent dividing n. Let ξ =∑
χ∈X aχχ be a form on X with each aχ ≥ 0 and a1 = 0. Let W be an upper bound on

the weight Wξ and let L be an upper bound on the length ‖ξ‖. Let 0 < η < 1, and let

(3.1) σ = 1− 1

1 + d1/ηe
.

(Thus, 2
3
≤ σ < 1.) If y ≥ W

1
4
+η, then for every s on the line <(s) = σ,∏

χ∈X

(∑
m≤y

χ(m)

ms

)aχ

�n,η,L |s|Ly1−σ−
η2

80 .
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Proof. We introduce two parameters, a positive integer r and a positive real number ε,
both of whose values will be specified in the course of the argument. For each χ in the
support of ξ and each u ≥ 1, Proposition 3.1 shows that∑

m≤u

χ(m)�r,n,ε u
1−1/rf

r+1

4r2
+ε

χ .

We now apply partial summation. Using σ for the real part of s, we find that∑
m≤y

χ(m)

ms
=

1

ys

∑
m≤y

χ(m) + s

∫ y

1

1

us+1

∑
m≤u

χ(m)

m
du

�r,n,ε y
1−1/r−σf

r+1

4r2
+ε

χ + |s|f
r+1

4r2
+ε

χ

∫ y

1

u−σ−1/r du.

Provided that σ + 1/r > 1, this last expression does not exceed

f
r+1

4r2
+ε

χ

(
1 + |s|

∫ ∞
1

u−σ−1/r du

)
= f

r+1

4r2
+ε

χ (1 + |s|(σ + 1/r − 1)−1).

Now take r := d1/ηe (so that r ≥ 2) and σ := 1− 1
r+1

. (This choice of σ is the same as
that specified in the lemma statement.) We find that on the line <(s) = σ,∑

m≤y

χ(m)

ms
�η,n,ε |s|f

r+1

4r2
+ε

χ .

Multiplying over those χ ∈ X, each taken with multiplicity aχ, gives∏
χ∈X

(∑
m≤y

χ(m)

ms

)aχ

�η,n,ε,L |s|LW
r+1

4r2
+ε

= |s|Ly1−σ
(
W

r+1

4r2
+εyσ−1

)
.

To complete the proof, it suffices to show that the final parenthesized expression is
bounded by y−η

2/80. Since y ≥ W
1
4
+η, we have that

W
r+1

4r2
+εyσ−1 ≤ (y

4
1+4η )

r+1

4r2
+εy−

1
r+1

= y
−4ηr2+4ε(r2+r3)+2r+1

(4η+1)r2(r+1) ≤ y
1−2r+8εr3

(4η+1)r2(r+1) ,

where in the last step we used the bound η ≥ 1/r coming from our definition of r. Now
select ε := 1

8r2
; then

1− 2r + 8εr3

(4η + 1)r2(r + 1)
=

1− r
(4η + 1)r2(r + 1)

≤ −r/2
(4η + 1)r2(r + 1)

= − 1

2r(r + 1)(4η + 1)
≤ − 1

(2r) · (2r) · 5
= − 1

20r2
.

Since r ≤ 2/η, this last expression is at most −η2/80, which finishes the proof. �

The next two lemmas collect well-known results on L(1, χ).

Proposition 3.3. Let χ be a primitive character with conductor fχ > 1. Let ε > 0.
Then

f−εχ �ε |L(1, χ)| � log fχ.
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Proof. For the upper bound, see (e.g.) [13, Lemma 10.15, p. 350]. For non-real char-
acters χ, we have |L(1, χ)| � 1/ log fχ (see [13, Theorem 11.4, pp. 362–363]), which
is stronger than the lower bound claimed above. Finally, for real χ, the lower bound
|L(1, χ)| �ε f

−ε
χ is the celebrated theorem of Siegel [13, Theorem 11.14, p. 372]. �

Lemma 3.4. Let χ be a primitive character of conductor fχ > 1, with order dividing

n. Suppose that 0 < η ≤ 1/3. If y ≥ f
1
4
+η

χ , then∑
m≤y

χ(m)

m
= L(1, χ)

(
1 +On,η(y

−η2/2)
)
.

Proof. Under the hypotheses on χ and η appearing in the lemma statement, one can

show that for all real numbers u ≥ f
1/4+η
χ ,∑

m≤u

χ(m)�n,η u
1−η2 .

(See [16, Lemma 3], and compare with [9, eq. (12.57), p. 326].) So for y ≥ f
1/4+η
χ ,

L(1, χ)−
∑
m≤y

χ(m)

m
=
∑
m>y

χ(m)

m

= −1

y

∑
m≤y

χ(m) +

∫ ∞
y

(∑
m≤u

χ(m)

)
du

u2
�n,η y

−η2 .

By Proposition 3.3, we have |L(1, χ)| �η f
−η2/8
χ ≥ y−η

2/2, and so∑
m≤y

χ(m)

m
= L(1, χ) +Oη,n(y−η

2

)

= L(1, χ)(1 +Oη,n(y−η
2/2)).

This completes the proof of the lemma. �

As in Elliott’s work [5], our argument invokes a standard variant of Perron’s theorem
(proved, for instance, in [8, pp. 486–487]).

Lemma 3.5. Let F (s) =
∑∞

n=1 f(n)n−s be a Dirichlet series that converges absolutely
in the half-plane <(s) > 1, and let ` be a positive integer. Then

1

2πi

∫ σ+i∞

σ−i∞
F (s)

xs

s`+1
ds =

1

`!

∑
n≤x

f(n)
(

log
x

n

)`
for any choice of σ > 1.

4. Proof of Theorem 1.4

We may assume that 0 < ε < 1/3. Let y := W 1/4f ε. Our strategy is as follows:
We suppose that the smallest q - f with ξ(q) 6= 0 exceeds y, and we prove that f is
bounded (in terms of L, n, and ε). Consequently, Theorem 1.4 holds with an implied
constant of 1 once f is large enough. On the other hand, since ξ(q) is nonvanishing for
all primes q from a certain coprime progression modulo f , the smallest q in Theorem
1.4 is bounded by a function of f . Thus, if f �L,n,ε 1, then q �L,n,ε 1. So enlarging
the implied constant if necessary, the estimate of Theorem 1.4 holds in every case.
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Write ξ+ =
∑

χ∈X aχ,+χ and ξ− =
∑

χ∈X aχ,−χ. Since ξ(0) = ±1, either a1,+ = 1 or

a1,− = 1. Without loss of generality, we can assume that a1,+ = 1. (Otherwise, replace
ξ with −ξ). Let G(s) be the Dirichlet series determined by the formal identity

(4.1)
∏
χ∈X

L(s, χ)aχ,+ = G(s)
∏
χ∈X

L(s, χ)aχ,− .

Lemma 4.1. Write G(s) =
∑∞

m=1 g(m)m−s. Then all of the following hold:

(i) The function g(·) is multiplicative.
(ii) If g(m) 6= 0 for the natural number m ≤ y, then each prime dividing m appears

to the second power or higher, except possibly for those primes dividing f .
(iii) For each natural number m,

|g(m)| ≤ τ‖ξ‖(m).

Proof. Expanding each L(s, χ) as an Euler product, we find that

(4.2) G(s) =
∏
p

∏
χ∈X

(
(1 + χ(p)p−s + χ(p2)p−2s + . . . )aχ,+(1− χ(p)p−s)aχ,−

)
.

Since G(s) has an Euler-product expansion, (i) immediate. We can read off from (4.2)
that for each prime p,

g(p) =
∑
χ∈X

(aχ,+ − aχ,−)χ(p) = ξ+(p)− ξ−(p) = ξ(p).

By assumption, ξ(p) = 0 for all p ≤ y, except possibly for those primes dividing f . So
(ii) follows from the multiplicativity of g(·). Finally, (4.2) shows that each coefficient
of G(s) is bounded in absolute value by the corresponding coefficient of∏

p

∏
χ∈X

(
(1 + p−s + p−2s + . . . )aχ,++aχ,−

)
= ζ(s)‖ξ‖.

In other words, |g(m)| ≤ τ‖ξ‖(m), which is (iii). �

We have arranged matters so that L(s,1) = ζ(s) appears in the left-hand side of
(4.1) to the power a1,+ = 1. So from (4.1), the two Dirichlet series

ζ(s)
∏
χ∈X
χ 6=1

(∑
m≤y

χ(m)

ms

)aχ,+

and

(∑
m≤y

g(m)

ms

)∏
χ∈X

(∑
m≤y

χ(m)

ms

)aχ,−

share the same initial byc coefficients. Lemma 3.5 now implies that for any integer
` ≥ 1,

(4.3)
1

2πi

∫ 2+i∞

2−i∞

ζ(s)
∏
χ∈X
χ 6=1

(∑
m≤y

χ(m)

ms

)aχ,+

 ys

s`+1
ds

=
1

2πi

∫ 2+i∞

2−i∞

(∑
m≤y

g(m)

ms

∏
χ∈X

(∑
m≤y

χ(m)

ms

)aχ,−)
ys

s`+1
ds.

For technical reasons related to issues of convergence, in what follows we fix the
choice

` := L+ 2.

Having fixed `, we proceed to estimate both sides of (4.3).
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Lemma 4.2. We have
(4.4)

1

2πi

∫ 2+i∞

2−i∞

ζ(s)
∏
χ∈X
χ 6=1

(∑
m≤y

χ(m)

ms

)aχ,+

 ys

s`+1
ds = y

∏
χ∈X
χ 6=1

L(1, χ)aχ,+ +On,ε,L(y1−
ε2

80L2 ).

Proof. Since X has conductor f , it is clear that Wξ+ =
∏

χ∈X f
aχ,+
χ ≤ f

∑
χ∈X aχ,+ ≤ f ‖ξ‖,

and similarly for Wξ− . Thus, W ≤ f ‖ξ‖ ≤ fL, and our choice of y satisfies

y = W 1/4f ε ≥ W
1
4
+η, where η := ε/L.

Shift the line of integration to <(s) = σ, where σ is defined in terms of η by (3.1).
We pick up a residue from the pole at s = 1, which contributes (recall Lemma 3.4)

(4.5) y
∏
χ∈X
χ 6=1

(∑
m≤y

χ(m)

m

)aχ,+

=

y∏
χ∈X
χ 6=1

L(1, χ)aχ,+

(1 +On,η,L(y−η
2/2)
)
.

By Proposition 3.3, for each nonprincipal χ with aχ,+ > 0, we have

L(1, χ)� log fχ ≤ logW � log y,

and so the expression (4.5) is

y
∏
χ∈X
χ 6=1

L(1, χ)aχ,+ +On,η,L(y1−
η2

4 ).

It remains to estimate the size of the integral after the shift to the line <(s) = σ.
Apply Lemma 3.2 to the form ξ+ − 1. Note that the weight of ξ+ − 1 is the same as
that of ξ+ (which is bounded by W ) and that the length of ξ+ − 1 is bounded by L.
So Lemma 3.2 shows that the integral along the line <(s) = σ is

(4.6) �n,η,L

∫ σ+i∞

σ−i∞
|ζ(s)| · (|s|Ly1−σ−η2/80) · yσ

|s|`+1
|ds|

= y1−
η2

80

∫ σ+i∞

σ−i∞
|ζ(s)| · |s|L−`−1 |ds|.

Recall that for <(s) ≥ 1
2
, one has ζ(s) � |s|(1 + 1/|s − 1|) (see [4, p. 79]). When

<(s) = σ, we have |s− 1| ≥ |σ− 1| �η 1; thus, ζ(s)�η |s| on the entire line <(s) = σ.
By this estimate and our choice of `,∫ σ+i∞

σ−i∞
|ζ(s)| · |s|L−`−1 |ds| �η

∫ σ+i∞

σ−i∞
|s|L−` |ds| =

∫ σ+i∞

σ−i∞

|ds|
|s|2
�η 1.

Putting this back into (4.6), we get an upper bound of On,η,L(y1−
η2

80 ).
Piecing the above estimates together, we find that the left-hand side of (4.4) is

y
∏
χ∈X
χ 6=1

L(1, χ)aχ,+ +On,η,L(y1−
η2

80 ).

Since η = ε/L, the lemma follows. �
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Lemma 4.3. We have

1

2πi

∫ 2+i∞

2−i∞

(∑
m≤y

g(m)

ms

∏
χ∈X

(∑
m≤y

χ(m)

ms

)aχ,−)
ys

s`+1
ds�n,ε,L τ(f) · y1−

ε2

80L2 .

Proof. As in the proof of Lemma 4.2, we begin by shifting the line of integration to
<(s) = σ, where σ is defined by (3.1) with η = ε/L. In contrast to the previous
case, the present integrand is defined and analytic for <(s) > 0, and so we do not pick
up any residues; thus, shifting the contour does not change the value of the integral.
Proceeding as in the proof of Lemma 4.2 (but with Lemma 3.2 now applied to ξ−), we
see that the value of the shifted integral is

(4.7) �n,ε,L y
1− η

2

80

∑
m≤y

|g(m)|
mσ

.

To estimate the sum on m, we use the results of Lemma 4.1 along with partial
summation. We begin by showing that for u ≤ y, we have S(u) :=

∑
m≤u |g(m)| �L

τ(f)u3/5. By Lemma 4.1(ii), every m ≤ u for which g(m) is nonvanishing can be written
as the product of a divisor of f and a squarefull integer. Since the number of squarefull
numbers in [1, u] is O(u1/2), the number of m ≤ u with g(m) 6= 0 is O(τ(f)u1/2).
Lemma 4.1(iii) implies that for every m ≤ u,

|g(m)| ≤ τ‖ξ‖(m) ≤ τ(m)‖ξ‖−1 ≤ τ(m)L−1 �L u
1/10.

(In the last step, we have used the well-known estimate τ(m)�β m
β for all β > 0; see,

for example, [6, Theorem 315, p. 343].) Thus,

|S(u)| ≤
(

max
m≤u
|g(m)|

) ∑
m≤u
g(m)6=0

1�L u
1/10 · τ(f)u1/2 = τ(f)u3/5,

as claimed. Recalling that σ ≥ 2
3
, we find that∑

m≤y

|g(m)|m−σ ≤
∫ y

1−
u−2/3 dS(u) = S(y)y−2/3 +

2

3

∫ y

1

S(u)u−5/3 du

�L τ(f)

(
y−1/15 +

∫ y

1

u−16/15 du

)
� τ(f).

Substituting this estimate into (4.7) completes the proof. �

Setting the estimates of Lemmas 4.2 and 4.3 equal to each other, we get the upper
bound

∏
χ∈X, χ6=1 L(1, χ)aχ,+ �n,ε,L τ(f) ·y−ε2/80L2

. On the other hand, Proposition 3.3

shows that
∏

χ∈X, χ6=1 L(1, χ)aχ,+ �ε,L W−ε2/640L2
(say). Comparing these estimates,

we get the lower bound

τ(f)�n,ε,L y
ε2/80L2 ·W−ε2/640L2

≥ yε
2/80L2 · (y4)−ε2/640L2

= yε
2/160L2

,

using that y ≥ W 1/4. Since also y ≥ f ε, another appeal to the maximal order of the
divisor function gives

τ(f)�ε,L y
ε2/320L2

.

Comparing the last two displayed estimates shows that y is bounded in terms of n, ε,
and L. So f is also bounded. The remarks at the start of this section now finish the
proof of Theorem 1.4.
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Remark. The use of contour integration in the proof of Theorem 1.4 can be avoided,
as was shown by Pintz [15] in a closely related context. Indeed, Pintz’s approach was
followed by the author in [16]. However, it seems that the arrangement we have chosen
above better highlights the similarities between our arguments and those of Elliott [5].
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