
THE LEAST PRIME QUADRATIC NONRESIDUE

IN A PRESCRIBED RESIDUE CLASS MOD 4

PAUL POLLACK

Abstract. For all primes p ≥ 5, there is a prime quadratic nonresidue q < p with
q ≡ 3 (mod 4). For all primes p ≥ 13, there is a prime quadratic nonresidue q < p
with q ≡ 1 (mod 4).

1. Introduction

Let p be an odd prime. It is easy to see that there is always a prime in the interval
[2, p− 1] that is a quadratic nonresidue modulo p. Indeed, since a product of squares
is a square, the least quadratic nonresidue modulo p is necessarily prime. Since there
is some quadratic nonresidue less than p (in fact, there are p−1

2 of them), the claim
follows. With a bit more work, one can show that whenever p > 3 there is an odd prime
quadratic nonresidue less than p. (This statement, accompanied by a clever elementary
proof, appears as Lemma 5.8 in [9].) In this note, we show that both of the coprime
residue classes modulo 4 contain quadratic nonresidues smaller than p once p ≥ 13.

Theorem 1. For every prime p ≥ 5, there is a prime quadratic nonresidue q ≡ 3
(mod 4) with q < p.

Theorem 2. For every prime p ≥ 13, there is a prime quadratic nonresidue q ≡ 1
(mod 4) with q < p.

In both of these theorems, the lower bound on p is easily seen to be sharp.
These theorems are complementary to those of Gica [6], who proved the analogous

results for prime quadratic residues (by methods different from those used here).
Specifically, if p ≥ 19, then there is a prime quadratic residue q < p with q ≡ 3 (mod 4),
while if p ≥ 41, then there is a prime quadratic residue q < p with q ≡ 1 (mod 4).
Again, the bounds are sharp.

Theorems 1 and 2 are primarily of interest as examples of numerically explicit results;
from an asymptotic perspective, sharper results are already available. For r = 1 or 3, let
nr(p) denote the least prime quadratic nonresidue modulo p lying in the progression r

modulo 4. One can deduce from the machinery of [11] that n3(p) ≤ p
1
4
+o(1), as p→∞.

The same methods give n1(p) ≤ p
1
2
+o(1), but in fact Friedlander showed already in 1973

that n1(p) ≤ p
1

2
√

e
+o(1)

[4].
In view of the results “at infinity” just described, one might guess that the proofs of

Theorems 1 and 2 should be entirely routine. This is not so. A major obstacle is that
the estimate on n3(p) quoted above is ineffective; the method of [11] does not allow
one to determine, even in principle, an explicit p0 for which n3(p) < p once p > p0. As
regards n1(p), the methods of [11] and [4] are effective. But the proof of Theorem 2
still presents challenges. For example, the Burgess-type character sum estimates in Z[i]
proved in [4] have not (as far as I know) ever been made numerically explicit. It would
not be difficult to use the method of [11], in conjunction with an explicit version of the
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classical Burgess bound (e.g., that proved in [13]), to find some value of p0 such that
n1(p) < p for all p > p0. However, p0 would be large enough that it would be far from
routine to check Theorem 2 in the remaining range [13, p0].

Our approach to these problems is as follows: We avoid character sum analysis
altogether in the proof of Theorem 1. Instead, we appeal to classical results on binary
quadratic forms (all of which were known already to Gauss). The proof of Theorem 2
goes through character sum estimates, but the Burgess bounds are eschewed in favor of
the Pólya–Vinogradov inequality, for which we have explicit versions with remarkably
agreeable leading terms.

Notation. The letters p, q, and ` are reserved for prime variables unless otherwise
noted. It is convenient to adopt the following modified O-notation: f = O∗(g) indicates
that |f | ≤ g for all values of the arguments under consideration.

2. Proof of Theorem 1

We first dispose of those cases when p ≡ 3 (mod 4). Since p ≥ 5 is assumed, we in
fact have p ≥ 7, so that p− 4 ≥ 3. Since p− 4 ≡ 3 (mod 4), there is a prime q | p− 4
with q ≡ 3 (mod 4). By quadratic reciprocity,(

q

p

)
= −

(
p

q

)
= −

(
4

q

)
= −1,

and so q is our desired prime.
To prove Theorem 1 when p ≡ 1 (mod 4), we appeal to the reduction theory and

genus theory of binary quadratic forms; useful references for this material are the books
of Cox [1] and Flath [3]. For primes p ≡ 1 (mod 4), the genus characters associated
to the discriminant −4p are the Legendre symbol

( ·
p

)
and χ, the nontrivial Dirichlet

character modulo 4. By Gauss’s theorem on the existence of genera (cf. Theorem
3.6(ii) on [3, p. 158]), there is a primitive, positive definite binary quadratic form F of
discriminant −4p such that for any integer a coprime to 4p represented by F ,

(1)

(
a

p

)
= −1 and χ(a) = −1.

(For the discriminant −4p, there are exactly two genera, and the condition (1) charac-
terizes the forms F in the nonprincipal genus.)

Applying Gauss–Lagrange reduction, we can assume F (x, y) = Ax2 + Bxy + Cy2,
where |B| ≤ A ≤ C. Since B2 − 4AC = −4p, the integer B is even. Moreover, A > 1:
Indeed, if A = 1, then B = 0, and C = p, so that F is the “principal form” X2 + pY 2.
But F is not in the principal genus! Thus, A ≥ 2. Now

C =
1

4

B2

A
+
p

A
≤ 1

4
A+

p

A
.

Since

4p = 4AC −B2 ≥ 4A2 −A2 = 3A2,

we have that A ≤
√

4p/3. The expression 1
4 t+ p

t is decreasing as a function of the real

variable t for t ∈ [2,
√

4p/3], and we conclude that

C ≤
(

1

4
t+

p

t

)∣∣∣∣
t=2

=
p+ 1

2
.

As A ≤ C, the same upper bound holds for A. (This upper bound also follows from

A ≤
√

4p/3.) In particular, neither A nor C is a multiple of p.
Since B is even and Ax2 + Bxy + Cy2 is primitive, at least one of A or C is odd.

Pick an odd integer from {A,C}, say a. Then a is prime to 4p, and a is represented by
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F . Thus, (1) holds. Since χ(a) = −1, we have a ≡ 3 (mod 4), and so there is a prime
q | a with q ≡ 3 (mod 4). Then

−4p = B2 − 4ac ≡ B2 (mod q),

so that

1 =

(
−4p

q

)
=

(
−4

q

)(
p

q

)
= −

(
p

q

)
= −

(
q

p

)
.

Hence,
(q
p

)
= −1. Since q ≤ a ≤ p+1

2 < p, the prime q has the properties claimed in

Theorem 1.

Remarks.

(i) In the (easier) case p ≡ 3 (mod 4), sharper results have been obtained by Nagell
[10]: If p ≡ 3 (mod 8) and p > 3, one can find a q ≡ 3 (mod 4) with

(q
p

)
= −1

and q < 2
√
p+ 1. When p ≡ 7 (mod 8), one can find such a q < 2

√
p− 1.

(ii) In the case p ≡ 1 (mod 4), our proof shows that there is a nonresidue q ≡ 3

(mod 4) with q ≤ p+1
2 . One can do a bit better for large p — while maintaining

effectivity! — as follows. Let h be the number of classes of primitive, positive
definite forms of discriminant −4p, so that each of the two corresponding genera
is comprised of 1

2h inequivalent forms. By a straightforward counting argument,

we can show that each genus contains a reduced form Ax2 +Bxy + Cy2 with
A� h/ log h: If Ax2 +Bxy +Cy2 is a reduced form of discriminant −4p, then
B2 ≡ −4p (mod A). Given A, the number of B satisfying this congruence with
|B| ≤ A is O(d(A)), where d(·) is the number-of-divisors function. Moreover,
since B2 − 4AC = −4p, the integers B and A determine C. Thus, the number
of possible forms with A ≤ T is �

∑
A≤T d(A) � T log T . Now taking T as

the maximum value of A for all reduced forms in the genus, we deduce that
T log T � 1

2h, so that T � h/ log h.

Choose a form G(x, y) = Ax2 + Bxy + Cy2 in the nontrivial genus with

A � h/ log h. Since |B| ≤ A ≤
√

4p/3, we have AC = (B2 + 4p)/4 ≤ 4p/3,
and so

A ≤ C ≤ 4p

3A
� p log h

h
.

Following our proof of Theorem 1 reveals that there is a prime quadratic
nonresidue q ≡ 3 (mod 4) with q ≤ max{A,C} � p log h/h. The lower bound
h �ε (log p)1−ε of Goldfeld–Gross–Zagier (see [8, Chapter 23]) thus yields

q �ε p/(log p)1−
1
2
ε, where the implied constant is effectively computable for

each ε > 0.

3. Proof of Theorem 2

We continue to use χ to denote the nontrivial Dirichlet character modulo 4. Let
r(n) :=

∑
de=n χ(d), so that r(n) is multiplicative in n and

r(n) =
1

4
#{(x, y) ∈ Z2 : x2 + y2 = n}

(see [7, Theorem 278, p. 314]). We begin with an estimate for the partial sums of r(n)
over odd n.

Lemma 3. For all real x ≥ 1,∑
n≤x
n odd

r(n) =
x

2
· π

4
+O∗

(
7

4

√
x+

5

4

)
.
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Proof. Inserting the definition of r(n) and interchanging the order of summation, we find
that

∑
n≤x, n odd r(n) =

∑
de≤x, d,e odd χ(d). Applying Dirichlet’s hyperbola method,∑

de≤x
d,e odd

χ(d) =
∑
d≤
√
x

d odd

χ(d)
∑
e≤x/d
e odd

1 +
∑
e≤
√
x

e odd

∑
d≤x/e
d odd

χ(d)−
∑

d,e≤
√
x

d,e odd

χ(d)

=
∑

1
+
∑

2
−
∑

3
,

say. Since χ is supported on odd integers, and since the partial sums of χ(·) are all 0
or 1,

(2)
∣∣∣∑

2

∣∣∣ ≤ ∑
e≤
√
x

e odd

1 ≤ 1 +
√
x

2
;

similarly,

(3)
∣∣∣∑

3

∣∣∣ =

∣∣∣∣ ∑
d≤
√
x

d odd

χ(d)

∣∣∣∣ · ∣∣∣∣ ∑
e≤
√
x

e odd

1

∣∣∣∣ ≤ 1 +
√
x

2
.

We turn now to
∑

1. Noting that the number of odd natural numbers not exceeding t,
for real t ≥ 1, is t/2 +O∗(1/2), we have that∑

1
=
∑
d≤
√
x

d odd

χ(d)
∑
e≤x/d
e odd

1 =
∑
d≤
√
x

d odd

χ(d)

(
x

2d
+O∗

(
1

2

))

=
x

2

∑
d≤
√
x

χ(d)

d
+O∗

(
1 +
√
x

4

)
.

Since
∑

d≥1 χ(d)/d = π/4, we also have that∑
d≤
√
x

χ(d)

d
=
π

4
−
∑
d>
√
x

χ(d)

d
=
π

4
+O∗

(
1√
x

)
,

using in the last step that the nonzero terms χ(d)/d are alternating in sign and
decreasing in absolute value. Substituting this estimate above reveals that

(4)
∑

1
=
x

2
· π

4
+O∗

(
1 + 3

√
x

4

)
.

Combining (2), (3), and (4) yields the lemma. �

Remark. As pointed out by the referee, the O∗ term could be improved to 5
4

√
x+ 3

4 by
taking account of the fact that

∑
2 and

∑
3 are nonnegative.

Motivated by Lemma 3, we let

RSUM+(x) =
x

2
· π

4
+

7

4

√
x+

5

4
, and RSUM−(x) =

x

2
· π

4
− 7

4

√
x− 5

4
.

To proceed, we also require an estimate for the partial sums of r(n) when weighted
by the Legendre symbol

(
n
p

)
. We derive a suitable bound from the following explicit

version of the Pólya–Vinogradov inequality due to Frolenkov and Soundararajan (see
[5, Theorem 2]).

Proposition 4. Let χ be a primitive Dirichlet character modulo m, where m ≥ 1200.
For all M ∈ Z and N ∈ Z+, ∣∣∣∣∣

M+N∑
n=M+1

χ(n)

∣∣∣∣∣ ≤ PV(m),
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where

PV(m) :=
2

π2
√
m logm+

√
m.

In fact, when χ(−1) = −1, one can replace 2
π2 by the smaller constant 1

2π . We will not
need this, however.

It is useful to observe that the estimate of Proposition 4 continues to hold with the
sum on n restricted to odd values. When m is even, this claim is trivial, since in that
case χ is supported on odd n. If m is odd, write “1

2” for an inverse of 2 modulo m,

and note that χ(2j + 1) = χ(2)χ(j + 1
2); thus, a sum over odd n has the same absolute

value as an unrestricted sum on j taken over a different interval. Since the bound of
Proposition 4 applies to sums over arbitrary intervals [M + 1,M +N ], our assertion
follows.

Lemma 5. Let p be an odd prime, and let M ≥ 1. Then∣∣∣∣∣∣∣
∑
n≤pM
n odd

(
n

p

)
r(n)

∣∣∣∣∣∣∣ ≤WRSUM+(p,M),

where

WRSUM+(p,M) :=
1 +
√
pM

2
(PV(p) + PV(4p)) + PV(p) · PV(4p).

Proof. Inserting the definition of r(n) and interchanging the order of summation, we

find that
∑

n≤pM, n odd

(
n
p

)
r(n) =

∑
de≤pM, d,e odd

((
d
p

)
χ(d) ·

(
e
p

))
. By the hyperbola

method, ∑
de≤pM
d,e odd

((
d

p

)
χ(d) ·

(
e

p

))
=
∑

1
+
∑

2
−
∑

3
,

where now ∑
1

=
∑

d≤
√
pM

d odd

(
d

p

)
χ(d)

∑
e≤pM/d
e odd

(
e

p

)
,

∑
2

=
∑

e≤
√
pM

e odd

(
e

p

) ∑
d≤pM/e
d odd

(
d

p

)
χ(d),

∑
3

=
∑

d,e≤
√
pM

d,e odd

(
d

p

)
χ(d) ·

(
e

p

)
.

Now
( ·
p

)
is a primitive character of conductor p while

( ·
p

)
· χ(·) is a primitive character

of conductor 4p. Applying Proposition 4 to the inner sums in
∑

1 and
∑

2 yields∣∣∣∑
1

∣∣∣ ≤ 1 +
√
pM

2
· PV(p), and

∣∣∣∑
2

∣∣∣ ≤ 1 +
√
pM

2
· PV(4p).

Writing
∑

3 as a product of two sums, we see that |
∑

3| ≤ PV(p) · PV(4p). The lemma
follows from combining these estimates for

∑
1,
∑

2, and
∑

3. �

We now prove Theorem 2.

Proof. A straightforward computation with PARI/GP shows that for every prime p with
13 ≤ p < 3 · 1011, there is a prime q ≡ 1 (mod 4) with q < p and

(q
p

)
= −1. (The
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computation took roughly 6 hours running under gp2c on a Core i5-6200u machine.)
So it is enough to prove the theorem under the assumption that p ≥ 3 · 1011. We take

M := 60 · (log p)2.

Using our lower bound on p, we find that

RSUM−(pM) ≥ 7.8 ·WRSUM+(p,M).

(We used Mathematica to compute the minimum of RSUM−(pM)/WRSUM+(p,M)
for p ≥ 3 · 1011.) So by Lemmas 3 and 5,∣∣∣∣∣∣∣

∑
n≤pM
n odd

(
n

p

)
r(n)

∣∣∣∣∣∣∣ ≤
1

7.8

∑
n≤pM
n odd

r(n).

Hence, ∑
n≤pM
n odd

r(n)

(
1−

(
n

p

))
≥ 6.8

7.8

∑
n≤pM
n odd

r(n).

Considering the possibilities for
(
n
p

)
, we deduce that

(5)
∑

n≤pM, (np)=−1
n odd

r(n) ≥ 3.4

7.8

∑
n≤pM
n odd

r(n)− 1

2

∑
n≤pM, p|n
n odd

r(n).

The sum being subtracted on the right-hand side of (5) is quite small. Indeed, since
pM < p2 for the values of p under consideration,∑

n≤pM, p|n
n odd

r(n) = r(p)
∑
m≤M
m odd

r(m) ≤ 2 · RSUM+(M).

(We used here that r(p) = 0 or 2.) In our range of p,

RSUM+(M) ≤ 1

10000
RSUM−(pM).

(Indeed, this holds already for p ≥ 2 · 104.) Referring back to (5), and noting that
3.4/7.8− 1/10000 > 0.4357, we find that

(6)
∑

n≤pM, (np)=−1
n odd

r(n) ≥ 0.4357
∑
n≤pM
n odd

r(n).

To finish things off, we suppose for a contradiction that
(q
p

)
= 1 for all primes q < p

with q ≡ 1 (mod 4). Under this assumption, if r(n) > 0 for an odd number n ≤ pM
with

(
n
p

)
= −1, then n must be divisible by some prime q ≡ 1 (mod 4) with q > p.

Moreover, writing n = qk, we have r(n) = 2r(k). Therefore,∑
n≤pM, (np)=−1

n odd

r(n) ≤
∑

p<q≤pM
q≡1 (mod 4)

∑
n≤pM, n odd

q|n

r(n)

= 2
∑

p<q≤pM
q≡1 (mod 4)

∑
k≤pM/q
k odd

r(k).(7)

We claim that for every real t ≥ 6, ∑
k≤t
k odd

r(k) ≤ 1

2
t.
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It clearly suffices to verify this for integers t. For t ≥ 300, it follows from Lemma 3,
since RSUM+(t)/t ≤ 1/2 in that range; for 6 ≤ t < 300, it is verified directly with a
short computer program. Using this estimate to bound the inner sum in (7),

∑
n≤pM, (np)=−1

n odd

r(n) ≤ 2

 ∑
pM/5<q≤pM
q≡1 (mod 4)

1 +
∑

pM/6<q≤pM/5
q≡1 (mod 4)

3 +
1

2
pM

∑
p<q≤pM/6
q≡1 (mod 4)

1

q

 .

To bound the sums on q, we use that for ε := 1/400 and all t ≥ 1010,∑
q≤t

q≡1 (mod 4)

log q =
1

2
t(1 +O∗(ε));

this is a result of Ramaré and Rumely [12] (see the entry for k = 4, x0 = 1010 in their
Table 1). Thus,∑

pM/5<q≤pM
q≡1 (mod 4)

1 ≤ 1

log (pM/5)

∑
pM/5<q≤pM
q≡1 (mod 4)

log q

≤
1
2pM(1 + ε)− 1

2(pM/5)(1− ε)
log(pM/5)

=

(
1 +

3

2
ε

)
2pM/5

log(pM/5)
.

Similarly,∑
pM/6<q≤pM/5
q≡1 (mod 4)

1 ≤ 1

log (pM/6)

∑
pM/6<q≤pM/5
q≡1 (mod 4)

log q

≤
1
2(pM/5)(1 + ε)− 1

2(pM/6)(1− ε)
log(pM/6)

= (1 + 11ε)
pM/60

log(pM/6)
.

Moreover,∑
p<q≤pM/6
q≡1 (mod 4)

1

q
=

∫ pM/6

p

1

t log t
d

( ∑
q≤t

q≡1 (mod 4)

log q

)

=

 1

t log t

∑
q≤t

q≡1 (mod 4)

1


∣∣∣∣∣∣∣∣
pM/6

p

−
∫ pM/6

p

 ∑
q≤t

q≡1 (mod 4)

log q

 d

(
1

t log t

)
;

this is at most

1

2
(1 + ε) · 1

log(pM/6)
− 1

2
(1− ε) · 1

log p
+

1

2
(1 + ε)

∫ pM/6

p

(
1

t log t
+

1

t log(t)2

)
dt,

which in turn equals

1

2
(1 + ε) · 1

log(pM/6)
− 1

2
(1− ε) · 1

log p

+
1

2
(1 + ε) ·

(
log log(pM/6)− log log(p) +

1

log p
− 1

log(pM/6)

)
.

Putting these estimates together, we see that

(8)
∑

n≤pM, (np)=−1
n odd

r(n) ≤ 2 · S(p),
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where

S(p) :=

(
1 +

3

2
ε

)
· 2pM/5

log(pM/5)
+ (1 + 11ε) · pM/20

log(pM/6)

+
1

2
(1 + ε)

pM/2

log(pM/6)
− 1

2
(1− ε)pM/2

log p

+
1

4
pM(1 + ε) ·

(
log log(pM/6)− log log(p) +

1

log p
− 1

log(pM/6)

)
.

Comparing (8) and (6), we see that

(9) S(p) ≥ 0.21785 · RSUM−(pM).

Again using Mathematica, we see this inequality fails for p ≥ 3 · 1011. �

Remark for the skeptical. All of the inequalities asserted above can be verified with a
finite number of high-precision calculations. In particular, there is no need to trust
the output of Mathematica’s Minimize or NMinimize functions. The details are not
particularly inspiring, so we discuss how this goes only for the key inequality (9)
(meaning that we explain how to rigorously refute (9)). Simplifying,

S(p)

pM
=(

1 +
3

2
ε

)
2/5

log(pM/5)
+(1+11ε)

1/20

log(pM/6)
+ε

1/2

log p
+

1

4
(1+ε) log

(
1 +

log(M/6)

log p

)
.

In our range of p, all four summands are easily checked to be decreasing as functions of
the real variable p, so that S(p)/pM is decreasing. On the other hand,

RSUM−(pM)

pM
=

1

2
· π

4
− 7

4
√
pM
− 5

4pM
,

which is positive and increasing in our range of p. Thus,

S(p)

RSUM−(pM)
=
S(p)

pM
· pM

RSUM−(pM)

is a product of positive, decreasing functions, so is decreasing. At p = 3 · 1011,

S(p)

RSUM−(pM)
< 0.2171.

It follows that (9) fails for all p ≥ 3 · 1011.

4. Concluding thoughts: Do we need character sums?

It is natural to wonder if the intricate analysis above is necessary to prove Theorem
2, especially as certain special cases of that theorem do admit algebraic treatments. For
example, let p ≡ 7 (mod 8). From work of Dickson [2], we can write p = x2 + y2 + 2z2

for some x, y, z ∈ Z. (In fact, Dickson shows that x2 + y2 + 2z2 represents all integers
not of the form 4k(16m+ 14).) Since a sum of two squares cannot be 7 mod 8, it must
be that z is odd, so that

x2 + y2 = p− 2z2 ≡ 5 (mod 8).

Any primes that appear to an odd power in an odd sum of two squares are 1 mod 4,
and so are 1 or 5 mod 8. Since x2 + y2 ≡ 5 (mod 8), it follows that there is some prime
q ≡ 5 (mod 8) that divides x2 + y2. Then(

q

p

)
=

(
p

q

)
=

(
2z2

q

)
=

(
2

q

)(
z2

q

)
= −

(
z

q

)2

= 0 or − 1.
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But q ≤ p − 2z2 < p, so
(q
p

)
6= 0, and hence

(q
p

)
= −1. So q is our desired prime.

(Compare with the proof of [6, Theorem 1].) This argument can be extended somewhat,
but the author has not so far succeeded in establishing all of Theorem 2 this way.
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