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HYPOTHESIS H AND AN IMPOSSIBILITY THEOREM OF
RAM MURTY

Abstract. Dirichlet’s 1837 theorem that every coprime arithmetic progression a mod m con-
tains infinitely many primes is often alluded to in elementary number theory courses but
usually proved only in special cases (e.g., when m = 3 or m = 4), where the proofs paral-
lel Euclid’s argument for the existence of infinitely many primes. It is natural to wonder
whether Dirichlet’s theorem in its entirety can be proved by such ‘Euclidean’ arguments.
In 1912, Schur showed that one can construct an argument of this type for every progres-
sion a mod m satisfying a2 ≡ 1 (mod m), and in 1988 Murty showed that these are the only
progressions for which such an argument can be given. Murty’s proof uses some deep re-
sults from algebraic number theory (in particular the Chebotarev density theorem). Here we
give a heuristic explanation for this result by showing how it follows from Bunyakovsky’s
conjecture on prime values of polynomials.

We also propose a widening of Murty’s definition of a Euclidean proof. With this defini-
tion, it appears difficult to classify the progressions for which such a proof exists. However,
assuming Schinzel’s Hypothesis H, we show that again such a proof exists only when a2 ≡ 1
(mod m).

1. Introduction

1.1. Motivation

Are there infinitely many prime numbers which end in the digit 7? This is a simple
and natural question about primes which anyone learning about them for the first time
might well be inclined to ask. To number theorists the answer is well known: the
boldfaced sequence

7,17,27,37,47,57,67,77,87,97,107,117,127,137,147,157, . . .

does indeed go on forever. Indeed, this theorem is a special case (a = 7, m = 10) of
the following 1837 result of Dirichlet [7], one of the crowning achievements of early
analytic number theory:

DIRICHLET’S THEOREM ON PRIMES IN ARITHMETIC PROGRESSIONS. Let
a and m be integers with m positive, and suppose that a is relatively prime to m. Then
the arithmetic progression

a,a+m,a+2m, . . .

contains infinitely many primes.

Unfortunately Dirichlet’s argument is by no means simple, and our hypothetical
questioner might well be a bit put off by all the details necessary to verify the proof
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– details from analysis, no less, an area which seems quite remote from our opening
problem. Proofs which minimize analytic prerequisites exist (e.g., those of Zassenhaus
[21], Selberg [18], and Shapiro [19], [20]; see also Granville’s article [9]), but these
“elementary” proofs exhibit at least as complicated a structure as Dirichlet’s original
argument. The contortions necessary to establish Dirichlet’s theorem stand in stark
contrast to the elegant and simple proof offered by Euclid for the infinitude of the
primes. Is this difficulty inherent in the problem itself or merely an artifact of our own
ignorance?

It is easy to give a simple proof for certain progressions. This is the case, for
example, for the progression 3 mod 4: if we already know the primes p1, . . . , pk ≡
3 mod 4, we can find another by taking a prime divisor congruent to 3 (mod 4) of
the integer 4p1 · · · pk − 1. Lebesgue [10] gives a version of this proof, noting that
“cette démonstration est imitée d’Euclide,” and in the same paper he goes on to give
a ‘Euclidean’ proof for the progression 1 mod 4. Dickson’s History records several
further attempts at giving Euclidean proofs for particular progressions (see the listing
on [6, pp. 418-420]). More recently, Bateman & Low [3] have given Euclidean proofs
for all coprime residue classes mod 24.

Bateman & Low’s work makes explicit (in the case m = 24) a 1912 result of
Schur [17], according to which one can find a Euclidean proof of Dirichlet’s theorem
whenever

(1) a2 ≡ 1 (mod m).

(Note that every coprime residue class mod 24 has this property; it is not difficult to
prove that 24 is the largest integer like this.) In 1988, Murty published a proof of the
converse of Schur’s result [12] (see also [13]):

MURTY’S IMPOSSIBILITY THEOREM. Unless (1) holds, there is no Euclidean
proof of Dirichlet’s theorem for the progression a mod m.

For example, there is no Euclidean proof that there are infinitely many primes
p ≡ 2 (mod 5). Murty’s argument rests on some deep results from algebraic number
theory (in particular on the Chebotarev density theorem).

Our goal in this paper is twofold. First, after explaining Murty’s definition of
a ‘Euclidean proof,’ we motivate Murty’s impossibility theorem by showing that it
follows from the classical and easy-to-understand Bunyakovsky conjecture on prime
values of a polynomial. One might wonder about the wisdom of deducing a known
result from a conjecture that is not only unknown, but is somewhat notorious for its
difficulty. To justify this, we introduce and investigate an alternative definition of what
it means for the progression a mod m to possess a ‘Euclidean proof.’ Any progression
for which a Euclidean proof exists in Murty’s sense also has one in ours. One suspects
that the converse is also true; however, an unconditional proof of this result seems
difficult. However, we are able to show that this result follows from the grown-up
brother of Bunyakovsky’s conjecture, Schinzel’s Hypothesis H. From a structural point
of view, it is amusing to note that the Chebotarev density theorem, Bunyakovsky’s
conjecture, and Hypothesis H all contain Dirichlet’s theorem as a special case!
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Notation

We use the notation d ‖ n to denote that d is a unitary divisor of n, i.e., that d divides
n while d is coprime to n/d. We use Res( f ,g) to denote the resultant of the two
polynomials f and g. We put Disc( f ) := Res( f , f ′); this coincides with the usual
definition of the discriminant of f up to a normalizing factor.

2. Just what is a Euclidean proof?

2.1. Looking for commonalities

To decide what constitutes a Euclidean proof, we examine two special cases of Dirich-
let’s theorem with indisputably Euclidean proofs, keeping an eye open for common
features. The first proof is the one we saw above for the progression 3 mod 4. The
second, for the progression 1 mod 4, runs thus: if we know the primes p1, . . . , pk ≡ 1
(mod 4), take a prime divisor p of 4p1 . . . p2

k +1. Then p is odd and−1 is a square mod
p, so that p≡ 1 (mod 4). But p cannot be any of p1, . . . , pk, and so we have discovered
a new prime p≡ 1 (mod 4).

Call a prime p a prime divisor of the polynomial f (T ) ∈ Z[T ] if f has a root
modulo p, i.e., if p divides f (n) for some integer n. In both of the above examples,
the new prime p we discover occurs as a prime divisor of an appropriately constructed
polynomial. So whatever we decide a Euclidean proof should mean, the existence of
one for the progression a mod m should entail the existence of a polynomial f with the
property that

(2) infinitely many prime divisors p of f satisfy p≡ a (mod m).

We would like this polynomial to have the property that, given a list of known primes
p1, . . . , pk ≡ a (mod m), it is easy to construct a value of f which has a prime divisor
congruent to a (mod m) not on our list. This may be hard to arrange if f has many
prime divisors outside of the given progression. And this difficult case is in some sense
generic; e.g., one can show (cf. [13, Theorem 3]) that any nonconstant polynomial
f (T ) always has infinitely many prime divisors from the progression 1 mod m. So
perhaps the best we can hope for is the following:

(3) every prime divisor p of f , with at most finitely many exceptions,
satisfies p≡ 1 (mod m) or p≡ a (mod m).

A polynomial which satisfies both (2) and (3) will be called an E-polynomial for the
progression a mod m. If an E-polynomial exists, Murty says that a Euclidean proof
exists for the progression a mod m. We can now state Murty’s impossibility theorem
in a more precise form:

MURTY’S IMPOSSIBILITY THEOREM. There is no E-polynomial for the pro-
gression a mod m unless a2 ≡ 1 (mod m).
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Progression E-polynomial E ′-polynomial
−1 mod 4 T 4T −1

1 mod 4 T 2 +1 4T 2 +1
4 mod 5 T 2−5 100T 2 +40T −1
1 mod 8 T 4 +1 16T 4 +1
3 mod 8 T 2 +2 4T 2 +4T +3
5 mod 8 T 2 +4 4T 2 +4T +5
7 mod 8 T 2−2 4T 2 +4T −1

7 mod 24 T 4 +2T 2 +4 1296T 4 +864T 3 +288T 2 +48T +7
1 mod m Φm(T ) Φm(mT )

Table 1.1: Examples of E and E ′ polynomials for some arithmetic progressions. Here
Φm(T ) denotes the mth cyclotomic polynomial.

2.2. From number theory to epistemology

For someone actually interested in writing down proofs for particular cases of Dirich-
let’s theorem, the discussion so far may seem less than enlightening. For to say that we
have a Euclidean proof for the progression a mod m implies, with the above definition,
that we have a polynomial f with infinitely many prime divisors p≡ a (mod m). But
how could we know we had such a polynomial without already knowing that there are
infinitely many primes p≡ a (mod m)?

The answer lies in the following result, which can be viewed as a formalization
of some ideas of Schur (see [17, pp. 45-46]).

LEMMA 2.1. Suppose that f (T ) is a nonconstant polynomial with integer coef-
ficients satisfying (3) above. Assume that f has a prime divisor p≡ a (mod m) which
is sufficiently large (i.e., larger than a computable bound depending on f ). Then one
can construct from f (T ) a polynomial g(T ) with the following two properties:

(i) g(n) has a prime divisor p≡ a (mod m) for every large enough integer n,

(ii) g has no fixed prime divisor from the progression a mod m. That is, if p ≡ a
(mod m), then there is some n for which p does not divide g(n).

Moreover, the set of primes dividing f coincides with the set of primes dividing g up
to finitely many exceptions.

Since this result is stated for motivational purposes only and will not be used in
the sequel, we omit the proof.

Once we have a polynomial g(T ) with properties (i) and (ii), one can give a
proof in the style of Euclid that infinitely many primes congruent to a (mod m) appear
among the primes dividing g: Let p1, . . . , pk be a finite (possibly empty) list of primes
from the progression a mod m that divide g. Using condition (ii) above and the Chinese
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remainder theorem, choose an integer n0 for which g(n0) is coprime to P := p1 · · · pk.
Then for any integer n,

g(Pn+n0)≡ g(n0) (mod P), hence gcd(g(Pn+n0),P) = 1.

For large n, condition (i) above guarantees that g(Pn+ n0) has a prime factor in the
progression a mod m. Since g(Pn+n0) is coprime to P, this must be a different prime
from any of the pi.

The upshot of this discussion is that in practice, to prove Dirichlet’s theorem
for the progression a mod m, it suffices to have a polynomial satisfying condition (3)
together with a single large prime p≡ a (mod m) which appears as a divisor of f . That
f also satisfies condition (2), and so is an E-polynomial for the progression a mod m,
then follows a posteriori, using the last clause of Lemma 2.1.

Since Schur has shown that E-polynomials exist whenever a2 ≡ 1 (mod m) (cf.
[13, Theorem 4]), Murty’s impossibility result completes the characterization of the
progressions for which E-polynomials exist. In the next section we give the promised
heuristic argument for Murty’s theorem. Notice, however, that to prove the existence
of infinitely many primes p ≡ a (mod m), all we really need is the existence of a
polynomial with properties (i) and (ii) of Lemma 2.1. Call such a polynomial an E ′-
polynomial for the progression a mod m. (Some examples of E and E ′-polynomials
are given in Table 1.1.) In §4 we demonstrate the following conditional analogue of
Murty’s result:

THEOREM 2.2 (assuming Hypothesis H). There is no E ′-polynomial for the
progression a mod m unless a2 ≡ 1 (mod m).

We conclude the paper with some comments on the difficulties of proving The-
orem 2.2 unconditionally.

3. Bunyakovsky’s conjecture implies Murty’s impossibility theorem

Let f be a nonconstant polynomial with integer coefficients. Given a positive integer m,
let S( f ,m) denote that subset of Z/mZ consisting of those residue classes which con-
tain infinitely many prime divisors of f (T ). Clearly S( f ,m) is a subset of (Z/mZ)×.
Moreover, S( f ,m) is nonempty, because every nonconstant polynomial has infinitely
many prime divisors (see [17, pp. 40-41] or [13, Theorem 2]). Actually S( f ,m) pos-
sesses considerably more structure:

THEOREM 3.1. If f is irreducible over the rational numbers, then S( f ,m) is a
subgroup of (Z/mZ)×.

In fact, if we form a number field K by adjoining a root of f to Q, then Conrad
[5] shows that S( f ,m) is exactly the image of Gal(K(ζm)/K) under the restriction map
to Gal(Q(ζm)/Q).

The impossibility theorem is a straightforward consequence of Theorem 3.1:
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Given an E-polynomial for the progression a mod m, it is easy to see that it must have
an irreducible factor which is also an E-polynomial for the same progression. Using
f to denote this factor, Theorem 3.1 implies that S( f ,m) is a subgroup of (Z/mZ)×
satisfying {a mod m} ⊂ S( f ,m)⊂ {1 mod m,a mod m}. This easily implies that a2 ≡
1 (mod m).

We now show that Theorem 3.1 can be deduced from Bunyakovsky’s conjecture
on prime values of polynomials. We begin by recalling the statement of Bunyakovsky’s
conjecture [4]:

BUNYAKOVSKY’S CONJECTURE. Let f (T ) be a polynomial with integer co-
efficients and positive leading coefficient which is irreducible over Q. Let

d := gcd{ f (n)}n∈Z.

Then f (n)/d is prime for infinitely many positive integers n.

For the proof we use the following result, which may be extracted from an
argument of Schinzel appearing in [16]:

LEMMA 3.2. Let f be a polynomial with integer coefficients, and let d be the
greatest fixed divisor of f , i.e., d := gcd{ f (n)}n∈Z. There exist integers A,B with A> 0
so that 1

d f (AT +B) has integer coefficients and no fixed prime divisor.

The next lemma, together with the ‘subgroup criterion’ from a first-course in
group theory, completes the proof:

LEMMA 3.3. Assume Bunyakovsky’s Conjecture. Let f be a nonconstant ir-
reducible polynomial with integer coefficients and m a positive integer. Suppose that
S( f ,m) contains the residue classes a1 mod m, . . . ,ak mod m. Then S( f ,m) also con-
tains the residue class a−1

1 · · ·a
−1
k mod m.

Proof. Observe that the set S( f ,m) is unchanged if f is replaced by a polynomial
whose set of prime divisors coincides with that of f except at finitely many places.
Thus, replacing f with the polynomial whose existence is asserted in Lemma 3.2, we
may assume that f has no fixed prime divisor. Next, replacing f with f (T +n0) for a
suitable n0, we can assume additionally that the constant term of f is prime to m. Now
replacing f with f (mT ), we can also assume that f is constant modulo m, i.e., that
the reduction f of f in (Z/mZ)[T ] actually belongs to Z/mZ. Let a0 mod m be this
reduction. Since f assumes infinitely many prime values by Bunyakovsky’s conjecture,
it must be that a0 mod m is an element of S( f ,m).

Now choose prime divisors p0, p1, . . . , pk of f with each pi ≡ ai (mod m) and
no pi dividing Disc( f ). For each i, choose an integer ri so that f (ri) ≡ 0 (mod pi).
Since p - Disc( f ), we have f ′(ri) 6≡ 0 (mod pi). So by replacing ri with ri + pi if
necessary, we can assume that pi ‖ f (ri) for each i. Then choosing r to satisfy r ≡ ri
(mod p2

i ) for each i, we have p0 · · · pr ‖ f (r). Define a new polynomial g(T ) by the
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equation
f (p0 . . . pkT + r) = p0 · · · pkg(T ).

Then g(T ) has integer coefficients, is irreducible over Q, and has no fixed prime divi-
sors. The first two properties are inherited from f . To see the third, note that since f has
no fixed prime divisors, the only possibilities for fixed prime divisors of g are p0, ...,
pk, but none of these divide g(0) = f (r)/(p0 . . . pk). It follows that gcd{g(n)}n∈Z = 1.
So by Bunyakovsky’s conjecture, there are arbitrarily large n for which g(n) is prime.
Since

g(n)≡ a0a−1
0 a−1

1 · · ·a
−1
k ≡ a−1

1 · · ·a
−1
k (mod m),

it follows that a−1
1 · · ·a

−1
k mod m belongs to S( f ,m), as we sought to show.

4. Proof of Theorem 2.2

We begin by recalling Schinzel’s Hypothesis H:

HYPOTHESIS H. Let f1, f2, . . . , fk be nonconstant polynomials which have in-
teger coefficients, positive leading coefficients, and which are all irreducible over the
rationals. Suppose that f := f1 f2 . . . fk has no fixed prime divisor, i.e., that there is no
prime p dividing f (n) for all integers n. Then

f1(n), f2(n), . . . , fk(n) are simultaneously prime

for arbitrarily large positive integer values of n.

Suppose that k = 1, and that f = f1 satisfies the conditions of Hypothesis H.
Since f has no fixed prime divisor, it follows that gcd{ f (n)}n∈Z = 1, and so Bun-
yakovsky’s conjecture predicts that f (n) is prime for infinitely many positive integers
n. In other words, Bunyakovsky’s conjecture implies the case k = 1 of Hypothesis
H. Conversely, Schinzel shows [16] that the case k = 1 of Hypothesis H implies Bun-
yakovsky’s conjecture. Thus, one may view Hypothesis H as a generalization to several
polynomials of Bunyakovsky’s conjecture.

LEMMA 4.1. If a mod m possesses an E ′-polynomial, then it also possesses an
E ′-polynomial with no fixed prime divisor.

Proof. Let f be an E ′-polynomial for the given progression, and let g = 1
d f (AT +B)

be a polynomial as in the conclusion of Lemma 3.2. Then g has the desired property.
Indeed, suppose n is large. Since f satisfies condition (i) in the definition of an E ′-
polynomial, there is a prime p ≡ a (mod m) that divides f (An+B); since f satisfies
condition (ii), this prime p does not divide d, so that it must divide g(n) = f (An+B)/d.
This shows that (i) holds for g. And since g has no fixed prime divisor at all, (ii) holds
as well.

LEMMA 4.2. Suppose that the progression a mod m has an E ′ polynomial.
Then one can choose an E ′ polynomial f (T ) for a mod m with a factorization in Z[T ]
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of the form
f (T ) = f1(T ) · · · fk(T )

and where all of the following hold:

(i) f has no fixed prime divisor,

(ii) f has constant term coprime to m,

(iii) f has positive leading coefficient,

(iv) the fi have integer coefficients, positive leading coefficients and are distinct and
irreducible over the rationals,

(v) f and the fi are constant polynomials modulo m; i.e., the reductions f (T ) ∈
(Z/mZ)[T ] and fi(T ) ∈ (Z/mZ)[T ] are constant polynomials.

Proof. We begin by constructing an E ′-polynomial g with a factorization g = g1 . . .gk
for which the analogues of of (i) - (iv) are satisfied, with gi in place of fi. We then
describe the modifications necessary to obtain (v).

Choose some E ′-polynomial g(T ) for the progression a mod m with no fixed
prime divisor. This is possible by Lemma 4.1. Then already (i) is satisfied. Apply
the Chinese remainder theorem to find an integer n with g(n) coprime to m, and then
replace g with g(T +n); this gives (ii). Write

(4) g(T ) =±g1(T ) · · ·gk(T )

where the gi are irreducible over the integers and the leading coefficient of each gi is
positive. Since g has no fixed prime divisor, the gi are nonconstant, and so each gi is
irreducible also over the rationals. Now replace g by the product of the distinct gi. This
gives (iii) and (iv); note that g remains an E ′-polynomial after this transformation.

To obtain (v), set f (T ) := g(mT ) and fi(T ) := gi(mT ) for 1 ≤ i ≤ k. Clearly
(ii)-(v) now hold. Since g was without fixed prime divisor, all fixed prime divisors of
f divide m. But f (0) = g(0) is coprime to m, so (i) holds as well. Finally, f is still
an E ′-polynomial for a mod m, since property (i) in the definition of an E ′-polynomial
is inherited from g and property (ii) of the same definition is weaker than condition (i)
above.

We also require an easy but technical consequence of Hypothesis H:

LEMMA 4.3. Assume Hypothesis H. Suppose f1, . . . , fk are distinct noncon-
stant polynomials with integer coefficients, positive leading coefficients, all irreducible
over the rationals and such that the product f := f1 . . . fk has no fixed prime divisor.
Let 0≤ r ≤ k and suppose that for each 1≤ i≤ r we are given a prime divisor pi of fi.
Moreover, suppose that

(5) p1 p2 . . . pr is coprime to ∏
1≤i≤k

Res( fi, f ′i ) ∏
1≤i< j≤k

Res( fi, f j).
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Then there are arbitrarily large n for which

f1(n) = p1q1, f2(n) = p2q2, . . . , fr(n) = prqr, fr+1(n) = qr+1, . . . , fk(n) = qk,

where all the qi are prime.

Note that under the hypotheses of the lemma, the product appearing in (5) is
nonvanishing. Indeed, every term in the product is nonzero since the fi are nonassoci-
ated over the rationals and (being irreducible) have no multiple roots.

Proof. Let 1 ≤ i ≤ r. Since pi divides fi, we can choose an integer ni with fi(ni) ≡ 0
(mod pi). Since pi - Res( fi, f ′i ), we have f ′i (ni) 6≡ 0 (mod pi), and hence by adjust-
ing ni by a multiple of p we can in fact assume p ‖ fi(ni). Choose n0 with n0 ≡ ni

(mod (∏ p j)
2) for all 1≤ i≤ r. Then p ‖ fi(n0) for each i.

Let P := (∏ pi)
2. Define polynomials g1, . . . ,gk by

f1(PT +n0) = p1g1(T ), f2(PT +n0) = p2g2(T ), . . . , fr(PT +n0) = prgr(T ),

fr+1(PT +n0) = gr+1(T ), fr+2(PT +n0) = gr+2(T ), . . . , fk(PT +n0) = gk(T ).

It suffices to check that the conditions of Hypothesis H hold for g1, . . . ,gk.
The polynomials gi all have integer coefficients. Moreover, the gi are noncon-

stant and irreducible over the rationals, since the fi are. So we need only verify that the
product

g(T ) := (g1 · · ·gk)(T ) =
( f1 · · · fk)(PT +n0)

p1 · · · pr

has no fixed prime divisor. Any such is also a fixed prime divisor of f (PT +n0) and so
necessarily divides P. That is, any fixed prime divisor is one of the pi. But if pi divides
g(0), then p2

i |∏ fi(n0), and we deduce that

pi | f j(n0) for some j 6= i,

since pi ‖ fi(n0). This implies that fi and f j have a common root modulo pi, so that
pi | Res( fi, f j), a contradiction.

Proof of Theorem 2.2. We shall show that if f and fi are as in Lemma 4.2, then one of
the fi is an E-polynomial for the progression a mod m. Theorem 2.2 then follows from
Murty’s characterization of E-polynomials (the impossibility theorem). Renumbering
if necessary, we may assume that the constant term of fi is congruent to a (mod m)
precisely for 1≤ i≤ r.

We first show that r ≥ 1, i.e., that some fi has constant term congruent to a
(mod m). Supposing the contrary, we apply Hypothesis H to obtain arbitrarily large
values of n for which fi(n) is prime for each 1≤ i≤ k (the conditions of Hypothesis H
are implied by conditions (i) and (iv) of Lemma 4.2). Then, recalling (v) of the same
lemma,

fi(n)≡ fi(0) 6≡ a (mod m) for 1≤ i≤ k,
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and so f (n) = ∏
k
i=1 fi(n) has no prime factors from the progression a mod m for these

values of n. But this contradicts that f is an E ′-polynomial for a mod m.
Now fix 1 ≤ i ≤ r, and that suppose that fi is not an E-polynomial for the

progression a mod m. Then either

(i′) fi has infinitely many prime divisors outside of the progressions 1 mod m and
a mod m, or

(ii′) a 6≡ 1 (mod m), and all but finitely many of fi’s prime divisors belong to the
residue class 1 mod m.

But (ii′) is easily seen to be impossible. For in this case let Q be the product of those
prime divisors of fi that do not belong to the residue class 1 mod m. Since f has no
fixed prime divisor, neither does fi, so again the Chinese remainder theorem allows us
to find arbitrarily large n with fi(n) coprime to Q. Since

fi(n)≡ fi(0)≡ a (mod m),

for large enough n of this type we get a positive integer congruent to a (mod m) all of
whose prime factors are from the progression 1 mod m, which is absurd.

Hence if none of f1, . . . , fr is an E-polynomial for a mod m, then for every
1 ≤ i ≤ r the polynomial fi must have infinitely many prime divisors outside the pro-
gressions 1 mod m and a mod m. Choose such a prime divisor pi for each 1 ≤ i ≤ r
in such a way that Lemma 4.3 can be applied (e.g., it suffices to take choose the pi all
sufficiently large). Then we obtain arbitrarily large n for which

f1(n) = p1q1, f2(n) = p2q2, . . . , fr(n) = prqr,

fr+1(n) = qr+1, fr+2(n) = qr+2, . . . , fk(n) = qk,

where all the qi are prime. Since f = ∏ fi is an E ′-polynomial for a mod m, for suffi-
ciently large n of this type the list

p1, p2, . . . , pr,q1, . . . ,qr,qr+1, . . . ,qk

must contain a prime congruent to a (mod m).
But this is not possible: The pi were chosen outside the progression a mod m,

the q j for j > r satisfy

q j = f j(n)≡ f j(0) 6≡ a (mod m),

and for 1≤ j ≤ r,
p jq j ≡ f j(n)≡ f j(0)≡ a (mod m),

so that
q j ≡ ap−1

j 6≡ a (mod m),

since p j 6≡ 1 (mod m). This contradiction completes the proof.
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REMARK 1. Keeping closer track of the transformations of this section, one can
obtain from our arguments a stronger result than claimed in Theorem 2.2, namely that
(assuming Hypothesis H) any E ′-polynomial for the progression a mod m is divisible
by an E-polynomial for the same progression.

5. Concluding Remarks

5.1. Lessons from History

As we have already mentioned, the first volume of Dickson’s History of the Theory of
Numbers chronicles the early attempts to obtain special cases of Dirichlet’s theorem.
There are two entries that deserve special attention. While nearly all the results are for
progressions a mod m with a2 ≡ 1 (mod m), Dickson also reports, more surprisingly,
that

A.S. Bang [gave a proof] for the differences 4, 6, 8, 10, 12, 14, 18, 20, 24,
30, 42, 60,

and

E. Lucas for 5n+2, 8n+7.

But the first progression attributed to Lucas, as well as many of the progressions here
attributed to Bang, have no Euclidean proofs in our sense (assuming Hypothesis H).
How then did these authors proceed?

Bang’s entry is a healthy reminder that we ought not equate Euclidean proofs
with elementary proofs. His arguments (which may be found in [1] or [2]) are based
not on Euclid’s approach to prime number theory but on Chebyshev’s. Forty years
later, similar proofs would be given by Erdős [8] and Ricci ([14], [15]), both of whom
were apparently unaware of Bang’s work.

Lucas’s argument [11, p. 309] is intriguing but erroneous. Let L0 = 2, L1 = 1
and Ln+2 = Ln+1 + Ln for n = 0,1,2, . . . ; these ‘Lucas numbers’ satisfy many well-
known identities, in particular

L2n = L2
n−2(−1)n and L2

n−5F2
n = 4(−1)n,

where Fn is the nth Fibonacci number (indexed so that F0 = 0). The first identity implies
that L2k ≡ 2 (mod 5) for k ≥ 2, while the second implies that

(−5
p

)
= 1 for each prime

divisor p of L2k , whence p≡ 1,3,7 or 9 (mod 20). From these two facts, Lucas wants
us to conclude that each L2k , with k ≥ 2, has a prime divisor congruent to 2 (mod 5).
However,

L27 = 119809 ·4698167634523379875583,

and neither prime on the right-hand side belongs to the progression 2 mod 5.
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5.2. Obstructions to an unconditional proof of Theorem 2.2

Fix a progression a mod m for which a2 6≡ 1 (mod m). Then it not only appears dif-
ficult to establish unconditionally that there is no E ′-polynomial for the progression
a mod m, but it is not even obvious how to show that a specific polynomial f (T ) is not
an E ′-polynomial for the specified progression. To take a very concrete example, the
author is unaware of any solution to the following exercise:

PROBLEM. Show that T 2+2 is not an E ′-polynomial for the progression 2 mod
7. Equivalently, prove that there are infinitely many integers n for which n2 +2 is free
of prime factors congruent to 2 (mod 7)

We might expect problems of this kind to be difficult because elementary sieve
methods easily establish that for almost all n (that is, all n outside a set of asymptotic
density 0) the integer n2 +2 does have a prime factor congruent to 2 (mod 7).

Somewhat surprisingly, some problems of this type do have simple solutions.
For example, H. W. Lenstra has pointed out to the author the following demonstration
that n2 + 1 is infinitely often free of prime factors congruent to 2 (mod 5): There is
certainly at least one n for which n2 + 1 is free of prime factors from the progression
2 mod 5, namely n = 2. But then (n5)2 +1 is another, since the quotient

n10 +1
n2 +1

= Φ10(n2) has only prime divisors congruent to 0 or 1 (mod 5).

Alternatively, Don Coppersmith notes that by quadratic reciprocity, n2 + 1 is free of
prime factors congruent to 2 or 3 (mod 5) whenever it admits a representation in the
form x2−5y2 with x and y coprime and of opposite parity. He completes his proof by
observing that

(10k2)2 +1 = 100k4 +1 = (10k2 +1)2−5(2k)2.

Both methods are capable of generalization. For example, Coppersmith’s method
shows that n2+2 is free of prime factors congruent to 2 (mod 5) whenever the positive
integer n corresponds to a solution of the generalized Pell equation n2−3m2 =−242.
For example, taking a reasonably large solution of this Pell equation, we find

7605776085504397023312 +2 =

3 ·2539 ·316981018521 ·295798907466244259932289011,

and as predicted none of the right-hand primes are congruent to 2 (mod 5).

Appendix: A remark on Bunyakovsky’s conjecture

The concern of this paper has been clarifying logical relations between certain conjec-
tures, theorems, and methods of proof. In this appendix, we point out a further such
relation, relevant to the discussion of §3. Consider the following assertion:
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BUNYAKOVSKY’S CONJECTURE (WEAK FORM). Let f be a polynomial with
integer coefficients and positive leading coefficients which is irreducible over Q. Let

d := gcd{ f (n)}n∈Z.

Then f (n)/d is prime for at least one positive integer n.

The hypotheses here are the same as Bunyakovsky’s conjecture from §3, but
the conclusion is weaker. In this appendix, we show that one can derive the full Bun-
yakovsky conjecture from this seemingly weaker version.

THEOREM 5.1. The weak form of Bunyakovsky’s conjecture implies the full
Bunyakovsky conjecture (i.e., the conjecture as stated in §3).

Proof. We show that the weak Bunyakovsky conjecture implies that the following as-
sertion holds for every positive integer k:

(Bk)
If f satisfies the hypotheses of Bunyakovsky’s conjecture, then f (n)/d
is prime for at least k distinct positive integers n.

The assertion (B1) is exactly the weak form of Bunyakovsky’s conjecture. We continue
by induction. Suppose that (Bk) is known, and let f be a polynomial satisfying the
hypotheses of Bunyakovsky’s conjecture. If f (T ) = cT for some positive integer c,
then gcd{ f (n)}n∈Z = c, and so f (n)/d = n. Since there are infinitely many primes,
it is clear in this case that f (n)/d represents primes for at least k+ 1 distinct positive
integers n; thus (Bk+1) holds for these f . So we can assume that f (0) 6= 0. By the
induction hypothesis, there are positive integers n1 < n2 < · · · < nk for which each
f (ni) is prime. Choose a prime q > nk for which q - f (0), and define an auxiliary
polynomial F by putting

F(T ) := f (qT ).

Since f is irreducible over Q, so is F . Let D := gcd{F(n)}n∈Z. We claim that D =
d. Assuming this for now, the weak Bunyakovsky conjecture implies that F(n)/D =
f (qn)/d is prime for some positive integer n. Putting nk+1 := qn, we have nk+1 ≥ q >
nk, and so f (m)/d is prime for at least the k+ 1 integers m ∈ {n1, . . . ,nk+1}. Thus,
(Bk+1) holds in general.

It remains to prove that D = d. Since the image of F is contained in the image
of f , it is immediate that d divides D. Suppose that r is a prime dividing D, and choose
e ≥ 1 with re ‖ D. Notice that r divides F(0) = f (0), and so r 6= q. Since re | D, it
follows that F(T ) = f (qT ) defines the zero function as a map from Z/reZ to itself.
But q is coprime to re, so that multiplication by q merely permutes the elements of
Z/reZ. Hence, f also defines the zero function as a map from Z/reZ to itself, which
implies that re divides d. Thus, r - D/d. Since this holds for every prime divisor r of
D, the positive integer D/d has no prime divisors at all; thus D/d = 1, and D = d, as
desired.
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