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TWO PROBLEMS CONCERNING IRREDUCIBLE
ELEMENTS IN RINGS OF INTEGERS OF NUMBER FIELDS

PAUL POLLACK and LEE TROUPE

Abstract

Let K be a number field with ring of integers ZK . We prove two asymptotic formulas connected with
the distribution of irreducible elements in ZK . First, we estimate the maximum number of nonassociated
irreducibles dividing a nonzero element of ZK of norm not exceeding x (in absolute value), as x → ∞.
Second, we count the number of irreducible elements of ZK of norm not exceeding x lying in a given
arithmetic progression (again, as x → ∞). When K = Q, both results are classical; a new feature in the
general case is the influence of combinatorial properties of the class group of K.
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1. Introduction

Let K be an algebraic number field with corresponding ring of integers ZK . In this
paper, we take two well-known analytic results about rational prime numbers and
prove generalizations for the irreducible elements of ZK . Our results can be seen as
contributing to the program of understanding how combinatorial attributes of the class
group of K influence factorization properties of the domain ZK , complementing prior
work in this direction by A. Geroldinger, F. Halter-Koch, J. Kaczorowski, K. Martin,
W. Narkiewicz, R. W. K. Odoni, P. Rémond, J. Śliwa, R. J. Valenza, and others. The
relevant literature is summarized (often with full proofs) in the books of Geroldinger–
Halter-Koch [2] and Narkiewicz [7].

For each nonzero α ∈ ZK , we let ν(α) denote the number of nonassociate
irreducible elements of ZK dividing α. We view ν(·) as a generalization to ZK of the
classical arithmetic function ω(·), which counts the number of distinct prime factors
of its (rational integer) argument.

A 1940 theorem of Erdős and Kac asserts, roughly speaking, that ω(n) is normally
distributed with mean log log |n| and standard deviation

√
log log |n|. More precisely,

for each fixed real u,

#{3 ≤ n ≤ x : ω(n) ≤ log log n + u
√

log log n}
#{3 ≤ n ≤ x}

→
1
√

2π

∫ u

−∞

e−t2/2 dt,
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as x → ∞. This theorem of Erdős and Kac sharpens, in a striking way, the 1917
result of Hardy and Ramanujan [4] that ω(n) has normal order log log n. Recently [8],
the first-named author proved the following generalization of Erdős–Kac: For every
number field K, there are positive constants A and B, and a positive integer D, such
that ν(α) is normally distributed with mean A(log log |N(α)|)D and standard deviation
B(log log |N(α)|)D−1/2. The constants A, B, and D depend on K only through its class
group. When the class group is trivial, A = B = D = 1, and so this result does indeed
contain the original Erdős–Kac theorem.

While ω(n) is usually quite close to log log n, it occasionally gets much larger. For
each x ≥ 2, the maximum value of ω(n) on the integers n ≤ x is assumed when n is the
product of a certain initial segment of primes. This easy observation, together with the
prime number theorem, implies in a straightforward way (cf. [5, p. 471]) that

max
n≤x

ω(n) = (1 + o(1))
log x

log log x
, (1.1)

as x → ∞. Our first goal is to supply a corresponding description of the maximum
value of ν(α) for α ∈ ZK with |N(α)| ≤ x, for an arbitrary number field K. The answer
in the general case is decidedly more interesting than the case K = Q, and the proof,
while similar in spirit, is correspondingly more subtle.

For a finite abelian group G (described multiplicatively), we let D(G) denote the
Davenport constant of G, i.e., the smallest positive integer with the property that any
sequence of elements of G of length D(G) possesses a nonempty subsequence whose
product is the identity. We write D for the Davenport constant of the class group of K.
(This is the same value of D that appears in the result from [8] quoted above.) We let
h denote the class number of K. Our first main theorem is the following.

Theorem 1.1. As x→ ∞, we have

max
α: 0<|N(α)|≤x

ν(α) = (1 + o(1)) · M ·
( log x
h log log x

)D
.

Here M is a positive constant depending only on the class group of K.

An explicit description of the constant M is given at the beginning of §4.
We turn now to our second theme, the distribution of irreducibles in arithmetic

progressions. Let Π(x) denote the count of nonassociate irreducibles π ∈ ZK with
|N(π)| ≤ x. So when K = Q, we have Π(x) = π(x), the familiar rational prime counting
function. It was shown by Rémond in 1966 [9, Chapter 2] that for any number field K,

Π(x) = (C + o(1))
x

log x
(log log x)D−1

for a constant C > 0 depending only on the class group of K. (We continue to use D for
the Davenport constant of the class group.) When the class group is trivial, C = D = 1,
and so this result contains the classical prime number theorem.
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Our second main result is a corresponding generalization of the prime number the-
orem for arithmetic progressions. Form a nonzero ideal of ZK and α a nonzero element
of ZK , we let Π(x;m, α) denote the following counting function of irreducibles:

Π(x;m, α) = #{principal ideals (π) : |Nπ| ≤ x, π irred., π ≡ α (mod m), and
π

α
� 0}.

Here the notation “� 0” indicates total positivity. (There will be no danger of
confusion with Vinogradov’s notation for orders of magnitude.) It is clear that if (α)
and m have a common principal ideal divisor in ZK other than the unit ideal, then
Π(x;m, α) ≤ 1 for all x. If there is no such principal ideal, we will say that α and m
are weakly relatively prime. (We reserve the term relatively prime for the case when
α and m have no nonunit ideal divisors at all in common, or equivalently, for when α
and m are comaximal.)

Theorem 1.2. Letm be a nonzero ideal of ZK and let α be a nonzero element of ZK with
α and m weakly relatively prime. Then there is a positive constant C′ and a positive
integer L such that, as x→ ∞,

Π(x;m, α) = (C′ + o(1))
x

log x
(log log x)L−1.

We refer the reader to Theorem 5.1 for a more explicit form of this theorem,
including precise definitions of the quantities C′ and L.

It is obvious by comparison with Rémond’s theorem that L ≤ D, for all choices
of α and m. It will emerge from the proof that (for K fixed) the constants C′ and L
depend only on the gcd ideal (α,m), with L = D precisely when (α,m) is the unit
ideal. Consequently, 100% of irreducibles are (strongly) relatively prime to m, and
those are asymptotically uniformly distributed among the strict ray classes modulo m
represented by principal ideals prime to m.

2. Background on the equidistribution of prime ideals in ray classes

In both of our main results, the key analytic input is a 1918 theorem of Landau [6]
on the equidistribution of prime ideals in strict ray classes. We recall the setup here.
For detailed proofs of the basic facts used about ray class groups, see the recent book
of Childress [1, Chapter 3].

For a number field K, we let Id(K) and PrinFrac(K) denote the group of all
fractional ideals of K and all principal fractional ideals of K, respectively. For each
nonzero integral ideal m of K, let

Idm(K) = {fractional ideals a : ordp(a) = 0 for all prime ideals p | m},

and let
PrinFrac+

m(K) = {γZK : γ ∈ K, γ ≡ 1 mod+
m};

here the mod+ notation means that ordp(γ−1) ≥ ordp(m) for all prime ideals p | m and
that γ � 0. The strict ray class group of K modulo m is defined by

Clm(K) := Idm(K)/PrinFrac+
m(K).
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The order of Clm(K), referred to as the strict ray class number mod m, is denoted
hK,m. We view the partition of ideals prime to m into strict ray classes as analogous to
the partition of rational integers coprime to m into residue classes mod m. (In fact, if
K = Q and m = (m), then Clm(K) � (Z/mZ)×, via the map [ab−1ZK] 7→ ab−1 mod m.)

For each strict ray class C ∈ Clm(K), we define the prime ideal counting function

πK(x;C) :=
∑

p: N(p)≤x
p∈C

1.

Theorem 2.1 (Landau’s equidistribution theorem). Fix a C ∈ Clm(K). For all x ≥ 3,

πK(x;C) =
1

hK,m

∫ x

2

dt
log t

+ OK(x exp(−cK
√

log x)).

Here cK is a positive constant depending only on K.

The following remarks will be useful in our applications. Recall that the (ordinary)
class group of K, here denoted Cl(K), is defined as Id(K)/PrinFrac(K). The inclusion
Idm(K) ↪→ Id(K) induces an isomorphism

Cl(K) = Id(K)/PrinFrac(K) � Idm(K)/PrinFracm(K),

where PrinFracm(K) = Idm(K) ∩ PrinFrac(K). In particular, letting hK := #Cl(K) (the
ordinary class number),

hK = [Idm(K) : PrinFracm(K)] =
[Idm(K) : PrinFrac+

m(K)]
[PrinFracm(K) : PrinFrac+

m(K)]

=
hK,m

[PrinFracm(K) : PrinFrac+
m(K)]

.

Rearranging,

[PrinFracm(K) : PrinFrac+
m(K)] =

hK,m

hK
. (2.1)

Thus, the ratio hK,m/hK can be interpreted as the number of strict ray classes modulo
m represented by principal ideals prime to m. Motivated by the analogy with Euler’s
totient function, we set

Φ(m) :=
hK,m

hK
.

Various earlier algebro-analytic results can be recovered as special cases of The-
orem 2.1. For instance, we easily deduce the equidistribution of prime ideals relative
to the ordinary class group Cl(K); in that case, the factor 1

hK,m
in Theorem 2.1 should

be replaced with 1
hK

. (To see this implication, take m = (1) in Theorem 2.1 and note
that, by (2.1), each ideal class modulo (1) is a union of hK,(1)/hK strict ray classes mod
(1).) Theorem 2.1 also implies the prime ideal theorem, that the total number of prime
ideals of norm not exceeding x is asymptotically

∫ x
2 dt/ log t. (Sum over all hK,m strict

ray classes.) Since these earlier theorems are also due to Landau, we shall refer to any
and all of these results as “Landau’s theorem”.
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3. Anatomy of an irreducible

Since ideals of ZK factor uniquely while elements typically do not, we will
rephrase our questions about irreducible elements in ideal-theoretic terms. To make
this translation, it is important to understand how irreducible elements decompose as
products of prime ideals. We recall the basic results here (cf. [7, §9.1]).

Fix — once and for all — an ordering of the (ordinary) ideal classes, say
C1, . . . ,Ch, where h = hK .

We define a type as an h-tuple of nonnegative integers. Given a nonzero integral
ideal a of ZK , the type of a is the tuple (t1, . . . , th), where ti is the number of prime
ideals dividing a from the class Ci, counted with multiplicity. The type of a nonzero
element of ZK is defined as the type of the corresponding principal ideal.

Now let π be an irreducible element of ZK . Irreducibility implies that the prime
ideal factorization of (π) has no nonempty proper subproduct equal to a principal
ideal. Thus, if τ = (t1, . . . , th) is the type of an irreducible, then τ has the property
that Ct1

1 · · · C
th
h is trivial in Cl(K) but no proper nonempty subproduct is trivial. If

τ = (t1, . . . , th) is any type with this property and not all ti = 0, we call τ an irreducible
type.

Landau’s theorem implies that every irreducible type (t1, . . . , th) is the type of an
irreducible element. Indeed, if we multiply ti prime ideals from the class Ci (for
i = 1, 2, . . . , h), the result is a principal ideal, and each of its generators is an irreducible
of the sought-after kind. (Landau’s theorem is used here only to ensure the existence
of at least one prime ideal in each ideal class.) Thus, the irreducible types are exactly
the types of irreducibles.

Recall our notation D for the Davenport constant of Cl(K). It follows quickly from
the definition of the Davenport constant that if (t1, . . . , th) is any irreducible type, then
t1 + · · · + th ≤ D (so that, in particular, there are only finitely many irreducible types)
and that equality holds for some irreducible type. The quantity t1 + · · · + th will be
referred to as the length of τ = (t1, . . . , th). We call an irreducible type with length D a
maximal irreducible type.

4. The maximal order of ν: Proof of Theorem 1.1

Let Tmax denote the collection of maximal irreducible types, and consider the
polynomial in x1, . . . , xh defined by

P(x1, . . . , xh) =
∑
τ∈Tmax

h∏
i=1

xti
i

ti!
,

where we have written each τ as (t1, . . . , th). Note that P depends on K only via its
class group. Let M denote the maximum value of P on the simplex

∆ = {(x1, . . . , xh) ∈ Rh : xi ≥ 0 ∀i,
∑

xi ≤ h}.

The value M exists, as the maximum of a polynomial on a compact set, and it is
obvious that M > 0. We will show that Theorem 1.1 holds with this value of M.
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The proof goes in two stages. First, we show the lower bound implicit in Theorem
1.1.

Lemma 4.1. As x→ ∞,

max
α: 0<|N(α)|≤x

ν(α) ≥ (M − o(1))
( log x
h log log x

)D
.

For the upper bound, it is convenient to extend the definition of ν as follows. For
each nonzero ideal a of ZK , we let ν(a) denote the number of nonassociate irreducibles
π for which (π) divides a. Thus, if a = (α), then ν(a) = ν(α).

Lemma 4.2. For each nonzero integral ideal a of ZK with N(a) ≤ x,

ν(a) ≤ (M + o(1))
( log x
h log log x

)D
.

Restricting to principal ideals in Lemma 4.2 yields the upper bound half of
Theorem 1.1. Thus, it remains only to prove Lemmas 4.1 and 4.2.

4.1. Proof of Lemma 4.1. It is enough to show that for each fixed ε > 0 and all
x > x0(ε), there is a nonzero α ∈ ZK with |N(α)| ≤ x and

ν(α) ≥ (M − ε)
(

log x
h log log x

)D

. (4.1)

Let δ > 0 be a parameter to be chosen later in terms of ε, and put X = x1−δ. We fix a
point (γ1, . . . , γh) ∈ ∆ at which P achieves its maximum. Let a be the (integral) ideal
of ZK defined by

a :=
h∏

i=1

∏
p∈Ci

N(p)≤γi log X

p.

Landau’s equidistribution theorem implies that each term of the inside product is of
size Xγi/h+o(1) (as x→ ∞); since

∑
γi ≤ h,

N(a) ≤ X1+o(1) = x1−δ+o(1).

(To estimate the product we used a form of Landau’s result where prime ideals are
counted with weight log N(p) rather than weight 1; this may be deduced by partial
summation from Theorem 2.1 by a standard calculation.) This upper bound implies
that, for x sufficiently large, a has a principal multiple with norm at most x; indeed, it
suffices to multiply a by the smallest ideal in [a]−1. So it is enough to show that ν(a) is
at least as large as the right-side of (4.1).

We establish this bound by counting, for each maximal type τ, the number of
nonassociated irreducibles π of type τ with (π) | a. Since a is a product of distinct
prime ideals, the number of these for a given τ is exactly

h∏
i=1

(
ωi(a)

ti

)
, (4.2)
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where ωi(a) is the number of distinct prime ideal divisors of a from the class Ci. By
Landau’s theorem, for each i with γi , 0,

ωi(a) =
∑
p∈Ci

N(p)≤γi log X

1

= (γi + o(1))
log X

h log log X
. (4.3)

The terms of the product (4.2) with ti = 0 are identically 1; for the others,(
ωi(a)

ti

)
=
ωi(a)(ωi(a) − 1) · · · (ωi(a) − (ti − 1))

ti!

=
ωi(a)ti

ti!
+ O

(( log X
log log X

)ti−1)
.

As a consequence, the number of nonassociate irreducible divisors of a of type τ is∏
1≤i≤h
ti,0

ωi(a)ti

ti!
+ O((log X/ log log X)D−1). (4.4)

Suppose first that whenever ti , 0, we have γi , 0. In that case, substituting in the
estimate (4.3) for ωi(a) yields∏

1≤i≤h
ti,0

ωi(a)ti

ti!
= (1 + o(1))

∏
1≤i≤h
ti,0

γti
i

ti!

( log X
h log log X

)ti

=
( ∏

1≤i≤h

γti
i

ti!

)( log X
h log log X

)D
+ o

(( log X
h log log X

)D)
. (4.5)

If γi = 0 for some i with ti , 0, then
∏

1≤i≤h, ti,0
ωi(a)ti

ti!
= 0 =

∏
1≤i≤h

γ
ti
i

ti!
, and hence

(4.5) remains valid.
Inserting (4.5) back into (4.4) and then summing over maximal types τ, we

conclude that there are

M
( log X
h log log X

)D
+ o

(( log X
h log log X

)D
)

nonassociate irreducible divisors of a. This expression is ∼ M(1 − δ)D
(

log x
h log log x

)D
.

Choosing δ sufficiently small in terms of ε gives a lower bound exceeding the right-
hand side in (4.1).

4.2. Proof of Lemma 4.2. Fix an ideal awith ν(a) maximal among all nonzero ideals
with N(a) ≤ x. We may assume that a has the following property: Whenever a prime
ideal p divides a, every prime ideal p′ belonging to the same ideal class of p with
N(p′) < N(p) also divides a. If not, then define a new ideal a′ by replacing p by p′ in
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the ideal factorization of a; then a′ has the same number of irreducible divisors as a,
and N(a′) < N(a) ≤ x. We can repeat this procedure as necessary until we obtain an
ideal with the desired property.

We may restrict ourselves to counting irreducibles π dividing a which are (a) of
maximal type and (b) have (π) squarefree. Indeed, if either (a) or (b) fails, then
(π) is composed of at most D − 1 distinct prime ideals. The number of distinct
prime ideals dividing a is � log x/ log log x (by a proof entirely analogous to that
of (1.1)). Hence, the number of possibilities for the set of prime ideals dividing
(π) is � (log x/ log log x)D−1. Furthermore, having chosen the set of prime ideals
dividing (π), the number of (π) composed of those prime ideals is O(1); one can see
this by noting, for instance, that the exponent to which each prime ideal can appear is
bounded (e.g., by h). Thus, there are � (log x/ log log x)D−1 irreducible divisors of a
not satisfying (a) and (b), and this will be negligible for us.

For each 1 ≤ i ≤ h, define ui so that the largest prime ideal dividing a and belonging
to the ideal class Ci has norm ui log x; if no such prime ideal exists, set ui = 0. Set

a0 :=
∏

1≤i≤h
ui,0

∏
p∈Ci

N(p)<ui log x

p.

Notice that a0 | a, and so
N(a0) ≤ N(a) ≤ x.

If ui > 1/ log log x, then we may deduce from Landau’s theorem that∏
p∈Ci

N(p)<ui log(x)

N(p) ≥ xui(1+o(1))/h.

Hence, ∑
i: ui>1/ log log x

ui ≤ h + o(1). (4.6)

Proceeding as in the lower bound argument, we see that the count of nonassociated
irreducibles π dividing a with (π) squarefree and π having a given maximal type
τ = (t1, . . . , th) is

h∏
i=1

(
ωi(a)

ti

)
=

∏
1≤i≤h
ti,0

(ωi(a)ti

ti!
+ O

(( log x
log log x

)ti−1))

=
∏

1≤i≤h
ti,0

ωi(a)ti

ti!
+ O

(( log x
log log x

)D−1)
.

To control the error terms, we used here that for each i,

ωi(a) = O(log x/ log log x), (4.7)
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which follows from having each ui ≤ 2h, say (which in turn follows, for large x, from
(4.6)). Suppose first that ui > 1/ log log x for each index i with ti , 0. Then for each i
with ti , 0, Landau’s theorem shows that ωi(a) = (1 + o(1)) ui log x

h log log x , and so

∏
1≤i≤h
ti,0

ωi(a)ti

ti!
=

h∏
i=1

uti
i

ti!

( log x
h log log x

)D
+ o

(( log x
h log log x

)D)
.

Suppose now that some ui ≤ 1/ log log x. Then for this index i, we have ui log x ≤
log x/ log log x, so that (by Landau’s theorem again)

ωi(a) = O
( log x
(log log x)2

)
.

It follows that ∏
1≤i≤h
ti,0

ωi(a)ti

ti!
�

(
log x

log log x

)D

(log log x)−1,

using the bound (4.7) for the other choices of i. In all cases, our count of (π) is at most

h∏
i=1

uti
i

ti!

( log x
h log log x

)D
+ o

(( log x
h log log x

)D)
.

Summing over the maximal types τ, we conclude that

ν(a) ≤ (P(u1, . . . , uh) + o(1))
( log x
h log log x

)D
. (4.8)

Since
h∑

i=1

ui =
∑

i: ui≤1/ log log x

ui +
∑

i: ui>1/ log log x

ui ≤ h + o(1),

the point (u1, . . . , uh) gets arbitrarily close to a point of ∆ as x→ ∞. By the definition
of M and the uniform continuity of P (on a closed set slightly larger than ∆), we have
that

P(u1, . . . , uh) ≤ M + o(1).

Inserting this into (4.8) completes the proof.

Example 4.3 (analysis of the main term in Theorem 1.1 when Cl(K) is cyclic). Suppose
that Cl(K) is cyclic of order h. Number the ideal classes as C1, . . . ,Ch, where Ci
corresponds to i mod h under a fixed isomorphism of Cl(K) with Z/hZ. It is known
that D(Cl(K)) = h and that the maximal types are (0, . . . , 0, h, 0, . . . , 0), where the h
may appear in any of the φ(h) positions 1 ≤ i ≤ h with gcd(i, h) = 1 (see [3, Corollary
2.1.4, p. 24]). Thus,

P(x1, . . . , xh) =
∑

1≤i≤h
gcd(i,h)=1

xh
i /h!.
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It is easily seen that the maximum of P on ∆ occurs when x1 = h and all other xi
vanish, so that

M = hh/h!.
We conclude that

max
α: 0<|N(α)|≤x

ν(α) = (1 + o(1)) ·
1
h!

( log x
log log x

)h
,

as x→ ∞.

5. Irreducibles in arithmetic progressions: Proof of Theorem 1.2
Using the notation of Theorem 1.2, let g := (α,m) be the gcd ideal of (α) and m.

Clearly, each (π) counted in Theorem 1.2 is divisible by g. To proceed with the proof
of that theorem, we need to tailor the structure theory of irreducibles introduced in §3
to irreducibles divisible by g.

We call a type τ = (t1, . . . , th) principal if Ct1
1 · · · C

th
h is trivial in Cl(K). If τ and τ′

are any two types, we say that τ′ is a subtype of τ, and write τ′ � τ, if each component
of τ′ is less than or equal to the corresponding component of τ. Thus, an irreducible
type is a principal type with no nonzero principal subtype.

Observe that if a type τ′ has no nonzero principal subtype, then τ′ � τ for some
(not necessarily unique) irreducible type τ. Indeed, if τ′ = (t′1, . . . , t

′
h) is not itself

irreducible, we may take τ = (t′1, . . . , t
′
j−1, t

′
j + 1, t′j+1, . . . , t

′
h), where j is chosen so that

C
t′1
1 · · · C

t′h
h = C−1

j . An irreducible type τ is said to be maximal with respect to τ′ if τ′ � τ
and the length of τ is maximal among those irreducible types having τ′ as a subtype.

We now return to the situation of Theorem 1.2. Since (α) and m are weakly
relatively prime, the type τ′ of g = (α,m) has no principal subtype. We now restate
Theorem 1.2 in the form in which it will be proved, making explicit the constants in
the asymptotic formula.

Theorem 5.1. Let τ′ be the type of g := (α,m). As x→ ∞, we have

Π(x;m, α) ∼
1

N(g)Φ(mg−1)
L
hL

( ∑
τ′�τ

τ max’l w.r.t. τ′

1
t1! · · · th!

) x
log x

(log log x)L−1,

where τ − τ′ = (t1, . . . , th), and where L is the (common) length of the types τ − τ′.

Theorem 5.1 follows immediately from the next proposition, upon summing over
all types τ maximal relative to τ′.

Proposition 5.2. Keep the notation of Theorem 5.1. Let τ be a fixed irreducible
type which is maximal with respect to τ′. The number of ideals of norm at most x
generated by an irreducible element π of type τ with π ≡ α (mod m) and π/α � 0 is
asymptotically equal to

1
N(g)Φ(mg−1)

L
hL

 h∏
j=1

1
t j!

 x
log x

(log log x)L−1, (5.1)

where τ − τ′ = (t1, . . . , th) and L = t1 + · · · + th.
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The proof of Proposition 5.2 depends on the following lemma, which allows us to
restrict our attention to ideals divisible by a large prime factor.

Lemma 5.3. Fix k ∈ Z+. As x → ∞, the number of (integral) ideals a with N(a) ≤ x
having k prime ideal factors (counted with multiplicity) which are not divisible by a
prime ideal with norm exceeding x1−1/ log log x is

o
( x(log log x)k−1

log x

)
.

Proof of Lemma 5.3. The number of ideals a with N(a) ≤ x1− 1
2 log log x is O(x1− 1

2 log log x ),
which is negligible. Thus, we may restrict our attention to a with N(a) > x1− 1

2 log log x .
When k = 1, there are no such a meeting the conditions of the lemma, and so we may
assume that k ≥ 2. Write a = p1 · · · pk, where N(p1) ≤ · · · ≤ N(pk). Then

N(pk) > x1− 1
2 log log x N(p1 · · · pk−1)−1.

So if N(pk) ≤ x1−1/ log log x, then

k−1∏
j=1

N(p j) ≥ x
1

2 log log x .

This implies that N(pk−1) ≥ x
1

2k log log x . We fix p1, . . . , pk−1 and count the number
of corresponding values of pk. Since x/N(p1 · · · pk−1) ≥ N(pk) ≥ x1/2k (since
N(pk)k ≥ N(a) ≥ x1/2), we can use the prime ideal theorem to estimate the number
of possibilities for pk given p1, . . . , pk−1 as

�
x

log x
1

N(p1 · · · pk−1)
.

We now sum on p1, . . . , pk−1. By the prime ideal theorem (with the error term of
Theorem 2.1) and partial summation, we have∑

N(p)≤x

1
N(p)

= log log x + O(1);

this provides an upper bound for the sum on p j for 1 ≤ j ≤ k − 2. For the sum on pk−1,
we use the estimate ∑

x
1

2k log log x ≤N(p)≤x

1
N(p)

= log log log x + O(1).

Thus, we obtain an upper bound on the number of a that is

�
x(log log x)k−2

log x
log log log x,

which implies the lemma. �
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The following lemma will reduce the problem of counting our ideals (π) to one of
counting ideals of a certain type lying in a specific strict ray class.

Lemma 5.4. Let a be a nonzero integral ideal of ZK divisible by g. Then a = (ρ) for
some ρ ≡ α (mod m) with ρ/α � 0 if and only if ag−1 and (α)g−1 represent the same
element of Clmg−1 (K).

Proof. First, suppose that a admits a generator ρ ≡ α (mod m) with ρ/α � 0. Then

ag
−1 = (ρ/α) · ((α)g−1). (5.2)

We claim that
ρ/α ≡ 1 mod+

mg
−1. (5.3)

By assumption, ρ/α � 0, so it remains to show that ordp(ρ/α − 1) ≥ ordp(mg−1)
for all p | mg−1. If p divides mg−1, then ordp(g) < ordp(m); since ordp(g) =

min{ordp(α), ordp(m)}, it must be that ordp(g) = ordp(α), and

ordp(mg−1) = ordp(m) − ordp(g) = ordp(m) − ordp(α)
≤ ordp(ρ − α) − ordp(α) = ordp(ρ/α − 1).

In view of (5.2) and (5.3) , ag−1 and (α)g−1 represent the same element of Clmg−1 (K),
as long as ordp(ag−1) = ordp((α)g−1) = 0 for all p | mg−1. That ordp((α)g−1) = 0 for
all p | mg−1 is clear, since g is the gcd of (α) and m. Since ordp(ρ/α − 1) > 0 for all
p | mg−1, the strong triangle inequality yields

ordp(ρ/α) = ordp((ρ/α − 1) + 1) = 0

for such p. Thus, (5.2) implies that ordp(ag−1) = 0 for all p | mg−1.
We now turn to the converse implication. Suppose that ag−1 and (α)g−1 represent

the same element of Clmg−1 (K). Then ag−1 = γ(α)g−1, where γ ∈ K satisfies
γ ≡ 1 mod+

mg−1. Thus a = γαZK ; since a is integral, ρ := γα ∈ ZK . The proof
is completed by showing that ρ/α � 0 and that ρ ≡ α (mod m).

Since γ ≡ 1 mod+
mg−1, we have ρ/α = γ � 0. To prove the congruence for ρ

mod m, we start by noticing if p | mg−1, then

ordp(ρ − α) = ordp(α) + ordp(γ − 1) ≥ ordp(α) + ordp(mg−1)
= ordp(α) + ordp(m) − ordp(g) ≥ ordp(m).

If p | m but p - mg−1, then ordp(g) = ordp(m). Since ordp(g) = min{ordp(α), ordp(m)},
it follows that ordp(α) ≥ ordp(m). Moreover, since g | a = (ρ), we know that for these
same p,

ordp(ρ) ≥ ordp(g) = ordp(m);

hence,
ordp(ρ − α) ≥ min{ordp(ρ), ordp(α)} ≥ ordp(m).

Putting the above arguments together shows that ordp(ρ − α) ≥ ordp(m) for all p | m,
and so ρ ≡ α (mod m). �
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5.1. Proof of Proposition 5.2. We are to count the number of ideals (π) of bounded
norm where π is an irreducible of type τ with π ≡ α (mod m) and π/α � 0. Rather
than count these (π) directly, it is more convenient to count values of j := (π)g−1.

By Lemma 5.4, the integral ideals j which arise are precisely those of type τ − τ′

with j relatively prime to mg−1 and lying in the strict ray class of (α)g−1 modulo
mg−1. Moreover, the condition that N(π) ≤ x corresponds to the constraint that
N(j) ≤ X := x/N(g).

We first prove an upper bound on the number of these j that matches the asymptotic
formula claimed in Proposition 5.2.

Since j has type τ − τ′, which is of length L, the j under consideration are
products of L prime ideals (possibly with repetition). By Lemma 5.3, we can assume
one of these prime ideals has norm exceeding X1−1/ log log X , at the cost of excluding
o(X(log log X)L−1/ log X) values of j, which is negligible. Thus,

j = p1 · · · pL,

where the prime ideals pi are comaximal with mg−1, and where N(pL) > X1−1/ log log X .
Recall that t1, . . . , th are defined by the equation τ − τ′ = (t1, . . . , th). Since j has

type τ − τ′, the class Ci of pL must satisfy ti > 0. We fix an index i (1 ≤ i ≤ h) with
ti > 0 and bound the number of j with pL belonging to Ci.

Write j = j0pL. Then j0 is a product of L − 1 prime ideals (with multiplicity), t j
of which belong to the class C j for j , i, and ti − 1 of which belong to the class Ci.
Moreover, given j0, the strict ray class of pL modulo mg−1 is uniquely determined as
the class of (α)g−1j−1

0 . Since N(j0pL) = N(j) ≤ X, we also have that

N(pL) ≤
X

N(j0)
.

Noting that X/N(j0) ≥ N(pL) ≥ X1−1/ log log X , Landau’s equidistribution theorem (for
strict ray classes modulo mg−1) implies that the number of possibilities for pL given j0
is

≤ (1 + o(1))
X/N(j0)

hK,mg−1 log(X/N(j0))
≤

( 1
hK,mg−1

+ o(1)
) 1
N(j0)

x
N(g) log x

.

(Recall that X = x/N(g).) Now sum on j0. The contribution of nonsquarefree values of
j0 to

∑ 1
N(j0) is zero unless L ≥ 3, in which case it is

≤

 ∑
N(p)≤x

1
N(p)2


 ∑

N(p)≤x

1
N(p)

L−3

� (log log x)L−3.

The contribution of squarefree values of j0 to
∑ 1

N(j0) is, by the multinomial theorem,

≤


∏

1≤ j≤h
j,i

1
t j!

( ∑
N(p)≤x
p∈C j

1
N(p)

)t j

 · 1
(ti − 1)!

( ∑
N(p)≤x
p∈Ci

1
N(p)

)ti−1

.
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By Landau’s theorem and partial summation,
∑

N(p)≤x
p∈C

1
N(p) = 1

h log log x + O(1) for any

ideal class C. Putting this in above, we find that∑ 1
N(j0)

≤ (1 + o(1))

ti h∏
j=1

1
t j!

 (1
h

log log x
)L−1

,

so that the number of corresponding j is

≤ (1 + o(1))
1

N(g)hK,mg−1 hL−1

ti h∏
j=1

1
t j!

 x
log x

(log log x)L−1.

Now sum on i with ti , 0. Since
∑

i: ti,0 ti =
∑

i ti = L, we conclude that the total
number of j is

≤ (1 + o(1))
L

N(g)hK,mg−1 hL−1

 h∏
j=1

1
t j!

 x
log x

(log log x)L−1.

Recalling that Φ(mg−1) = hK,mg−1/h, we see that

L
N(g)hK,mg−1 hL−1 =

1
N(g)Φ(mg−1)

·
1
hL .

Making this substitution in the previous display, our upper bound matches the expres-
sion (5.1) from Proposition 5.2.

The proof of the lower bound in Proposition 5.2 is similar. Fix i ∈ {1, 2, . . . , h} with
ti > 0. Let p1, . . . , pL−1 be distinct prime ideals not dividingmg−1 whose norms belong
to the interval [2, X1/ log log X], with t j of these p j belonging to the class C j for j , i, and
ti − 1 of the p j belonging to the class Ci. Let pL be a prime ideal with

X1/2 ≤ N(pL) ≤ X/N(p1 · · · pL−1)

belonging to the strict ray class modulo mg−1 of (α)g−1p−1
1 · · · p

−1
L−1. Define

j = p1 · · · pL.

Let us see that j satisfies the conditions set down at the start of the proof. The ideal
gj is principal, since it is lies in the same strict ray class modulo mg−1 as the principal
ideal (α). This implies that pL ∈ Ci. Indeed, let p be a prime ideal from Ci. Then
p1 · · · pL−1p has type (t1, . . . , th) = τ − τ′, so that gp1 · · · pL−1p has type τ. Since τ is an
irreducible type, gp1 · · · pL−1p is principal, and hence so is

(gp1 · · · pL−1p)(gj)−1 = pp−1
L .

But this is only possible if pL ∈ Ci. It follows that j has type τ − τ′. By construction,
j is relatively prime to mg−1, lies in the strict ray class of (α)g−1 modulo mg−1, and
satisfies N(j) ≤ X.
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So the proof of Proposition 5.2 will be complete if we show that the number
of j yielded by this construction is as large as the expression (5.1). By Landau’s
equidistribution theorem, given p1, . . . , pL−1, the number of possibilities for pL is at
least

(1 + o(1))
x

hK,mg−1 N(g) log x
1

N(p1 · · · pL−1)
,

as x→ ∞. We again sum on possible tuples p1, . . . , pL−1. If we ignore the distinctness
condition, then the sum on the p j is at least(1

h
log log(X1/ log log X) + O(1)

)L−1
= (1 + o(1))

1
hL−1 (log log x)L−1.

But the terms with p j = p j′ for any pair 1 ≤ j , j′ ≤ L − 1 contribute only
O((log log X)L−3) to the sum. Hence, we may omit the distinctness condition without
changing the asymptotic formula for the sum. We divide by (ti − 1)!

∏
1≤ j≤h, j,i t j! to

avoid overcounting and conclude as in the proof of the upper bound.

Example 5.5. Let K = Q(
√
−23), α = 1+

√
−23

2 andm = (3). In this case, Cl(K) � Z/3Z
(so that h = 3), (α) = p1q1, and (m) = p1p2, where p1, p2, q1 are distinct prime ideals
of order 3 in Cl(K) of respective norms 3, 3, and 2. Hence, g = (α,m) = p1. We choose
the numbering of the ideal classes C1,C2,C3 so that C1 = [p1]. Then g has type
τ′ = (1, 0, 0). There is a unique irreducible type τ relative to τ′, namely τ = (3, 0, 0).
Thus, τ − τ′ = (2, 0, 0) and L = 2. We have N(g) = N(p1) = 3 and

Φ(mg−1) = Φ(p2) =
hK,p2

hK
.

Using the well-known formula for the strict ray class number appearing, for example,
as Proposition 2.1 on [1, p. 50], we find that hK,p2/hK = 1. Plugging all of this into
Theorem 5.1, we conclude that as x→ ∞,

Π(x; (3),
1
2

(1 +
√
−23)) ∼

1
27

x
log x

log log x.
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