
TWO REMARKS ON ITERATES OF EULER’S TOTIENT

FUNCTION

PAUL POLLACK

Abstract. Let ϕk denote the kth iterate of Euler’s ϕ-function. We study two
questions connected with these iterates. First, we determine the average order
of ϕk and 1/ϕk; e.g., we show that for each k ≥ 0,

�

n≤x

ϕk+1(n) ∼
3

k!ekγπ2

x2

(log3 x)
k

(x → ∞),

where γ is the Euler–Mascheroni constant. Second, for prime values of p,
we study the number of distinct primes dividing

�∞
k=1 ϕk(p). These prime

divisors are precisely the primes appearing in the Pratt tree for p, which has
been the subject of recent work by Ford, Konyagin, and Luca. We show that
for each � > 0, the number of distinct primes appearing in the Pratt tree for p
is > (log p)1/2−� for all but xo(1) primes p ≤ x.

1. Introduction

Let ϕ be Euler’s totient function, so that ϕ(n) = #(Z/nZ)×. For each k ≥ 0, let
ϕk denote the kth iterate of ϕ, with the understanding that ϕ0(n) = n. The study
of the ϕk was initiated by Pillai [12] (cf. Shapiro [14]), who investigated the least
k = k(n) for which ϕk(n) = 1. The study of these iterates was continued by Erdős,
Granville, Pomerance, and Spiro [4]. Among other results, these authors showed
that the ratio ϕ(n)/ϕk+1(n) has a smooth, strictly increasing normal order:

Theorem A (see [4, Theorem 4.2]). Fix a natural number k. There is a set

A = A (k) of asymptotic density 1 with the property that as n → ∞ along A , we

have

ϕ(n)/ϕk+1(n) ∼ k!ekγ(log log log n)k.

Here γ = 0.57721 . . . is the usual Euler–Mascheroni constant.

Our first theorem shows that the average order of ϕk is dictated by the typical
integers described in Theorem A (i.e., by the members of A ).

Theorem 1.1. Fix a natural number k. Then as x → ∞, we have

(i)
�

n≤x

ϕk+1(n) ∼ k!−1e−kγ(log3 x)
−k

�

n≤x

ϕ(n),

(ii)
�

n≤x

1

ϕk+1(n)
∼ k!ekγ(log3 x)

k
�

n≤x

1

ϕ(n)
.
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Remark. It is well-known that as x → ∞,

(1)
�

n≤x

ϕ(n) ∼ 3

π2
x
2 and

�

n≤x

1

ϕ(n)
∼ ζ(2)ζ(3)

ζ(6)
log x.

We have chosen to leave these sums unevaluated in the statement of Theorem 1.1
to stress the connection to Theorem A.

Estimates similar to those considered in Theorem 1.1 were established by War-
limont [17] in the case k = 1; see the remarks at the end of §2.

We now turn to our second theorem. For each n, let F (n) be the product of the
distinct primes dividing

�
k≥0

ϕk(n). The magnitude of F for typical integers n

was investigated by Luca and Pomerance [10], who showed that for each fixed K,
we have F (n) > nK for almost all numbers n (i.e., all numbers n outside of a set
of density zero).

Luca and Pomerance were motivated by a problem in Galois theory: Let ζn

denote a primitive nth root of unity. Since Q(ζn)/Q is a solvable extension, ζn
can be expressed “by radicals”. It requires some care to make this last claim both

precise and nontrivial; ζ3 = −1+
√
−3

2
should be regarded as a satisfactory radical

expression, while ζ3 = 3
√
1 should not. We follow van der Waerden [16, §8.6] and

impose the strictest possible meaning on the phrase “radical expression”; we require
our radical extensions to be built up by irreducible adjunction of pth roots (so called
prime radical extensions). Thus, our claim about ζn becomes the assertion that
there is an extension L/Q containing Q(ζn) and a tower

(2) L0 = Q ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Lr = L

where each Li+1 has the form Li( pi
√
αi), with pi a prime number, αi ∈ Li, and αi

not a pith power in Li. In fact, as shown in [10], there is a minimal such extension
L (with respect to inclusion, within a fixed algebraic closure of Q). H. W. Lenstra
asked for an estimate of the degree of L/Q. Perhaps surprisingly, L is typically
much larger than Q(ζn); as a consequence of Luca and Pomerance’s above estimate,
we have [10, Theorem 3] that

[L : Q] > n
K

for each fixed K and almost all natural numbers n.
In the case when n = p is prime, the prime divisors of F (p) have a natural tree

structure. This tree structure first appears in work of Pratt [13] and was extensively
studied in recent work of Ford, Konyagin, and Luca [5]. Our second theorem is a
lower bound for the number of distinct primes in the Pratt tree.

Theorem 1.2. Fix � > 0. As x → ∞, all but xo(1)
of the primes p ≤ x are such

that F (p) has at least (log p)1/2−�
distinct prime divisors.

Theorem 1.2 should be compared with [4, Theorem 4.5]. That theorem’s proof
(after easy changes) gives that for some absolute constant c > 0 and all but o(π(x))
primes p ≤ x (as x → ∞), one of the iterates ϕk(p) is divisible by every prime
q ≤ (log p)c. (Consequently, F (p) is also divisible by all primes q ≤ (log p)c.) We
prove Theorem 1.2 in §3 below, along with the following corollary of its proof.

Corollary 1.3. Let � > 0. For all but xo(1)
values of n ≤ x, the least r = r(n) for

which there is a tower of the form (2) described above satisfies r(n) > (log n)1/2−�
.
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Corollary 1.3 complements the easy upper bound r(n) � log n, which can be
obtained by a method of Pratt (cf. [13, Theorem 2]). For the convenience of the
reader, we include the proof of this upper bound in the remarks concluding §3.

For other results concerning arithmetic properties of ϕ-iterates, see [1], [2], [6],
[8], [9], [3], [7], [11].

Notation and conventions. For the rest of this paper, pi denotes the ith prime
in increasing order, so that p1 = 2, p2 = 3, p3 = 5, . . . . We say that the natural
number n is y-smooth if p ≤ y for every prime p dividing n, and we write Ψ(x, y) for
the number of y-smooth n ≤ x. We use ω(n) for the number of distinct prime factors
of n and Ω(n) for the total number of prime factors, counted with multiplicity. If
p is a prime, we write pe � n to mean that pe | n but that pe+1 � n; thus,

ω(n) :=
�

p|n

1, while Ω(n) =
�

pe�n

e.

We say a property holds for almost all numbers n if it holds away from a set of
density zero, and we say a property holds for almost all primes p if it holds for
all primes not in a set of primes of relative density zero. The Landau–Bachmann
Big Oh and little oh notation, as well as the associated symbols “�” and “�”,
appear with their standard meanings. We set log1 x = max{1, log x}, and we let
logk denote the kth iterate of log1.

2. Proof of Theorem 1.1

We start with the proof of (i), which is shorter and simpler.

Proof of Theorem 1.1(i). Let A denote the set specified in the statement of Theo-
rem A. By that theorem and the slow growth of log3, we have

(3)
�

n∈A ∩[1,x]

ϕk+1(n) ∼ k!−1e−kγ(log3 x)
−k

�

n∈A ∩[1,x]

ϕ(n),

as x → ∞. Now if B denotes the complement of A , then

(4)
�

n∈B∩[1,x]

ϕ(n) ≤ x ·#(B ∩ [1, x]) = o(x2) = o




�

n≤x

ϕ(n)



 .

Thus, the final sum in (3) can be extended to all n ≤ x without affecting the
asymptotic behavior. This gives the lower bound of the theorem.

For the upper bound, fix � > 0. For 1 ≤ j ≤ k, let Ej denote the set of n ≤ x for
which there is a prime p ≤ (log2 x)

j−� not dividing ϕj(n). Let us estimate the size
of each Ej . If p � ϕj(n), then there is no prime q dividing n for which p | ϕj(q). So
by Brun’s sieve,

#{n ≤ x : p � ϕj(n)} � x

�

q≤x
p|ϕj(q)

�
1− 1

q

�
� x exp(−S), where S :=

�

q≤x
p|ϕj(q)

1

q
.

By [4, Theorem 3.4], we have S �j (log2 x)
�, uniformly for p ≤ (log2 x)

j−�. Sum-
ming over all such p, we find that for large x,

#Ej ≤ x/ exp((log2 x)
�/2).
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Hence, putting E := ∪k
j=1

Ej , we have #E ≤ x/ exp((log2 x)
�/4). It follows that

�

n∈E

ϕk+1(n) ≤ x ·#E ≤ x
2
/ exp((log2 x)

�/4),

which is negligible in comparison to the estimate asserted in the theorem. If n �∈ E ,
then

ϕk+1(n) = ϕ(n)
ϕ2(n)

ϕ(n)

ϕ3(n)

ϕ2(n)
· · · ϕk+1(n)

ϕk(n)
≤ ϕ(n)

k�

j=1

�

p≤(log2 x)j−�

�
1− 1

p

�

≤ ϕ(n)



e−kγ
�

1≤j≤k

1

j − �
+ o(1)



 (log3 x)
−k

.

Here o(1) indicates the behavior as x → ∞, and is uniform for those n ≤ x not in E .
Now sum over these n and let � ↓ 0 to obtain the upper bound of the theorem. �

The proof of Theorem 1.1(ii) is more difficult and requires some preparation.
The following lemma appears as [4, Theorem 3.5].

Lemma 2.1. Let k ≥ 0, and let p be a prime. The number of n ≤ x for which

p | ϕk(n) is at most x(C log2 x)
k/p. Here C is an absolute positive constant.

Lemma 2.2. Fix an integer j ≥ 0. As t → ∞, the number of n ≤ t for which

ϕj(n)/ϕj+1(n) > exp((log3 t)
2/3) is at most t/Z1+o(1)

, where

Z = Z(t) = exp(exp((log3 t)
1/2)).

Proof. For those n counted by the lemma,

(log3 t)
2/3 ≤ log

ϕj(n)

ϕj+1(n)
= log

�

p|ϕj(n)

�
1− 1

p

�−1

�
�

p|ϕj(n)

1

p
.

Since
�

p≤Z
1

p � (log3 t)
1/2, we have

�
p|ϕj(n)
p>Z

1

p � (log3 t)
2/3. So if N denotes the

number of n under consideration, then

(5)
�

n≤t

�

p|ϕj(n)
p>Z

1

p
� N(log3 t)

2/3
.

On the other hand,

(6)
�

n≤t

�

p|ϕj(n)
p>Z

1

p
≤

�

p>Z

1

p

�

n≤t
p|ϕj(n)

1 ≤ t(C log2 t)
j
�

p>Z

1

p2
� t(C log2 t)

j
/Z.

Comparing (5) and (6) gives the bound for N asserted by the lemma. (Note that
Z grows faster than any fixed power of log2 t.) �

Lemma 2.3. Let B be a set of asymptotic density zero. Then as x → ∞, we have�
n≤x
n∈B

1

ϕ(n) = o(log x).
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Proof. Let u be a large but fixed real parameter. We partition B into two sets B1

and B2, according to whether or not n/ϕ(n) ≤ u. The contribution from B1 is
suitably small, since

�
n∈B1

1/ϕ(n) ≤ u
�

n≤x,n∈B 1/n = o(log x), where the last
estimate uses that B has density zero. The contribution from B2 is bounded by

(7)
∞�

k=0

�

n≤x
u·2k<n/ϕ(n)≤u·2k+1

1

ϕ(n)
≤ u

∞�

k=1

2k+1
�

n≤x
u·2k<n/ϕ(n)≤u·2k+1

1

n
.

To estimate the inner sum in (7), we begin by recalling that for all t > 0,

�

n≤t

�
n

ϕ(n)

�2

� t.

(See, e.g., [15, Exercises 8–9, p. 54].) Hence, the number of n ≤ t with n/ϕ(n) >
u · 2k is � tu−22−2k. By partial summation, the final inner sum in (7) is �
u−22−2k log x, and so (7) itself is � u−1 log x. Since we can take u arbitrarily
large, the result follows. �

Proof of the lower bound in Theorem 1.1(ii). Using the slow rate of growth of log3,
we quickly deduce from Theorem A that those n ∈ A ∩ [1, x] make a contribution

∼ k!ekγ(log3 x)
k

�

n∈A ∩[1,x]

1

ϕ(n)
.

But the final sum here is asymptotic to the corresponding sum over all n ≤ x, by
(1) and Lemma 2.3 (applied with B taken as the complement of A ). �

Proof of the upper bound in Theorem 1.1(ii). Let E0 be the set of n ≤ x with the
property that

ϕj(n)

ϕj+1(n)
> exp((log3 x)

2/3)

for some j = 0, 1, 2, . . . , k. By Lemma 2.2, the number of n ∈ E0 ∩ [1, t] is
(crudely) Ok(t/(log2 t)

k+2), for all 1 ≤ t ≤ x. For all n ≤ x, we have ϕk+1(n) �k

n/(log2 x)
k+1 (by the minimal order of the ϕ-function [15, p. 84]), and so

�

n∈E0

1

ϕk+1(n)
�k (log2 x)

k+1
�

n∈E0

1

n
�k (log2 x)

k+1

� x

1

dt

t(log2 t)
k+2

�k
log x

log2 x
,

which is negligible. Next, fix a small � > 0, and let E1 be the set of n ≤ x which do
not belong to E0 and which satisfy

�

p|ϕj(n)

p>(log2 x)j+�

1

p
>

1

log3 x

for some j = 1, 2, . . . , k. Then letting E1(t) := E1 ∩ [1, t], the averaging argument
used in the proof of Lemma 2.2 shows that

#E1(t)/ log3 x ≤
k�

j=1




�

n≤t

�

p|ϕj(n)

p>(log2 x)j+�

1

p




�k t(log2 x)

−�
,
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and so #E1(t) ≤ t(log2 x)
−�/2 (for large x, uniformly for 1 ≤ t ≤ x). If n ∈ E1 (so

that in particular, n �∈ E0), we have

1

ϕk+1(n)
=

1

n

n

ϕ(n)

ϕ(n)

ϕ2(n)
· · · ϕk(n)

ϕk+1(n)
≤ 1

n
exp(k(log3 x)

2/3) ≤ 1

n
(log2 x)

�/4
.

Applying partial summation, we find that
�

n∈E1

1

ϕk+1(n)
≤ (log2 x)

�/4
�

n∈E1

1

n
� log x

(log2 x)
�/4

,

which is again negligible. Finally, suppose that n �∈ E0 ∪ E1. For each j with
1 ≤ j ≤ k, we have

ϕj(n)

ϕj+1(n)
=

�

p|ϕj(n)

�
1− 1

p

�−1

≤ (1 +O(1/ log3 x))
�

p|ϕj(n)

p≤(log2 x)j+�

�
1− 1

p

�−1

,

where for the O-term we use that n �∈ E1. By Mertens’s theorem, the remaining
product does not exceed

(1 + o(1))eγ(j + �) log3 x,

as x → ∞. Hence,

1

ϕk(n)
=

1

ϕ(n)

k�

j=1

ϕj(n)

ϕj+1(n)
≤ 1

ϕ(n)
(ekγ + o(1))(log3 x)

k
k�

j=1

(j + �),

as x → ∞. The upper bound asserted by the theorem now follows upon summing
over n, noting that � may be taken arbitrarily small. �

Remark. Warlimont [17] calculated asymptotic formulas for the partial sums of
ϕ/ϕ2, ϕ2/ϕ and log ϕ

ϕ2
. There is no difficulty in calculating corresponding formulas

for the partial sums of ϕk/ϕk+1, ϕk+1/ϕk, or log ϕk

ϕk+1
, for any fixed k, by the

methods employed in the proof of Theorem 1.1. In each case, one obtains the
answer one would expect from the normal order statement of Theorem A.

3. Proof of Theorem 1.2

For each prime p, the Pratt tree T (p) associated to p is the tree with root node
p and with the property that a node labeled r has child nodes labeled with the
distinct primes q dividing r − 1 (see Figure 1 for an example). As claimed in the
introduction, the primes appearing in T (p) are exactly the primes dividing F (p).
Indeed, induction on k shows that a prime divides ϕk(p) precisely when it appears
in one of the first k levels of the tree (where the root node corresponds to the level
k = 0).

We are interested in the distinct primes appearing in T (p), and so we must
prune our tree. With h the number of nodes in T (p), label the nodes with the
ordinal numbers 1, 2, 3, . . . , h in such a way that each child node is assigned a
larger number than its parent node. (For example, label the nodes with the numbers
h, h−1, h−2, . . . , starting with the lowest level and working upwards.) Now iterate
the following procedure:

(1) Among all remaining nodes, identify that node with the largest ordinal
number label.
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389173

113

7

23

2

2

41

5

2

2

7

3

2

2

3

2

2

389173

113

7

3

2

41

5

Figure 1. Left : A picture of T (389173). Right : The same tree,
pruned by the procedure described in the proof of Theorem 1.2.

(2) Delete all nodes that have the same prime label but a smaller ordinal num-
ber label.

After a finite number of iterations, the remaining nodes have distinct labels cor-
responding to the distinct primes dividing F (p). (See again Figure 1.) Let h�

denote the number of remaining nodes. By removing the ordinal number labels
corresponding to deleted nodes and collapsing the numbering, we obtain a labeling
of the remaining nodes by 1, 2, . . . , h�.

We now fix h� and count the number of p ≤ x for which T (p) has precisely
h� distinct nodes. In the pruned tree, the node labeled with the ordinal number
h� is labeled with the prime 2. Moreover, if q is the prime corresponding to the
node i, where i < h�, then q − 1 is supported on the primes labeling the nodes
i + 1, i + 2, . . . , h�. The total number of integers q − 1 ≤ x with this property
does not exceed the number Ψ(x, ph�−i) of integers n ≤ x supported on the primes
p1, . . . , ph�−i. Since p is the prime corresponding to the node labeled with the
ordinal number 1, it follows that the number of possible p ≤ x is bounded above by

h�−1�

i=1

Ψ(x, ph�−i).

We have the crude upper bound

Ψ(x, ph�−i) ≤ (1 + log x/ log 2)h
�−i

,

obtained by observing that the exponent of any prime appearing in a number ≤ x

is trivially bounded by log x/ log 2. Hence,

h�−1�

i=1

Ψ(x, ph�−i) ≤ (1 + log x/ log 2)h
�2/2 ≤ exp(h�2 log2 x)

for large x. In particular, if h� ≤ (log x)1/2/ log log x (say), then the number of
corresponding p ≤ x is at most xo(1).

Summing over all h� ≤ (log x)1/2/ log log x, it follows that the number of primes
p ≤ x for which ω(F (p)) ≤ (log x)1/2/ log log x is also xo(1). This proves Theorem
1.2 (in a slightly stronger form).
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Proof of Corollary 1.3. In [4], it is shown that the minimal extension containing
Q(ζn) which one can reach by a sequence of prime radical extensions is Lr := Q(ζm),
where

(8) m = n

�

p|F (n)
p�n

p.

Since each extension Li+1/Li has prime degree, the number r of extensions required
is precisely the number of prime factors, counted with multiplicity, of [Lr : Q] =
ϕ(m). From (8), we find that

(9) r = Ω(n)− ω(n) +
�

p|F (n)

Ω(p− 1).

Since Ω(n) ≥ ω(n) always and Ω(p− 1) ≥ 1 for p > 2, we have

r ≥ ω(F (n))− 1.

To estimate ω(F (n)) from below, we imitate the proof of Theorem 1.2, making use
of the observation that a prime divides F (n) precisely when it divides F (q) for some
prime q dividing n.

Draw the prime trees T (q) for all primes q dividing n. If h is the total number of
nodes in all these trees, label the nodes with the numbers 1, 2, . . . , h in such a way
that each parent node has a smaller number than its child nodes. Now carry out
the pruning procedure described in the proof of Theorem 1.2. If h� is the number
of remaining nodes, then h� = ω(F (n)).

Let us count the number of n for which r ≤ (log x)1/2−�. For any such n, we
have h� ≤ r + 1 <

√
log x/ log log x. Fix h�. The proof of Theorem 1.2 shows that

the number of choices for the primes labeling nodes 1, 2, 3, . . . , h� is xo(1). Having
chosen these primes, we see that the number of possibilities for the set of prime
factors of n is bounded by 2h

�
= xo(1), since the prime factors of n form a subset

of the primes dividing F (n). Finally, given the set S of prime factors of n, the
number of possibilities for n itself is bounded by Ψ(x, pk), where k is the size of S .
In our case, k <

√
log x, and so

Ψ(x, pk) < (1 + log x/ log 2)
√
log x = x

o(1)
.

Piecing everything together, the corresponding number of possibilities for n is xo(1).
Summing over the xo(1) possibilities for h� completes the proof. �

Remarks.

(i) Perhaps it is true that for each � > 0 and almost all primes p, the number
F (p) is divisible by all primes q < (log x)1−�. (Cf. [4, Conjecture 1].) It is
shown in [5, Theorem 2] that almost always the total number of nodes in
T (p) exceeds 0.378 log p.

(ii) As remarked in the introduction, it is simple to show that the quantity
r = r(n) of Corollary 1.3 satisfies r � log n (cf. [4, Theorem 4.6]): Clearly
2Ω(n) ≤ n, so that Ω(n) ≤ log n/ log 2. Thus, from (9), it suffices to show
that the function R(n) :=

�
p|F (n) Ω(p− 1) satisfies

(10) R(n) ≤ 2
log n

log 2
− 2
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for all n > 1. We first show that (10) holds for prime values of n. By
direct calculation, (10) holds for n = 2 and n = 3. Suppose that n ≥ 5 is
prime and that (10) is known for all primes < n. Then by the induction
hypothesis,

R(n)− Ω(n− 1) ≤
�

q|n−1

R(q) ≤
�

qe�n−1

eR(q)

≤ 2
log(n− 1)

log 2
− 2Ω(n− 1),

so that R(n) ≤ 2 logn
log 2

− Ω(n − 1) ≤ 2 logn
log 2

− 2. This proves (10) for prime

n. The general case now follows from the relation R(n) ≤
�

q|n R(q) ≤�
qe�n eR(q).
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[1] N. L. Bassily, I. Kátai, and M. Wijsmuller, Number of prime divisors of ϕk(n), where ϕk is

the k-fold iterate of ϕ, J. Number Theory 65 (1997), no. 2, 226–239.
[2] , On the prime power divisors of the iterates of the Euler-ϕ function, Publ. Math.

Debrecen 55 (1999), no. 1-2, 17–32.
[3] J. Bayless, The Lucas-Pratt primality tree, Math. Comp. 77 (2008), no. 261, 495–502 (elec-

tronic).
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[7] I. Kátai, On the prime power divisors of the iterates of ϕ(n) and σ(n), Šiauliai Math. Semin.
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