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PAUL POLLACK

Abstract. Let λ(n) denote the exponent of the multiplicative group modulo n. We show that
when q is odd, each coprime residue class modulo q is hit equally often by λ(n) as n varies. Under
the stronger assumption that gcd(q, 6) = 1, we prove that equidistribution persists throughout a
Siegel–Walfisz-type range of uniformity. By similar methods we show that λ(n) obeys Benford’s
leading digit law with respect to natural density. Moreover, if we assume GRH, then Benford’s
law holds for the order of a mod n, for any fixed integer a /∈ {0,±1}.

1. Introduction

If f is a naturally-occurring integer-valued arithmetic function, it is reasonable to ask how the
values of f are distributed in arithmetic progressions. Several results of this nature are collected
in Narkiewicz’s monograph [Nar84]. In particular, Chapter IV of that reference describes in detail
an easily-applicable criterion of Delange (appearing originally as [Del69, Theorem 1]) deciding,
for each additive function f and each modulus q, whether f is uniformly distributed (UD) modulo
q.

The situation for multiplicative functions is more subtle. Here Euler’s φ-function is a convenient
reference point. It has long been known that for each fixed positive integer q, the relation q | φ(n)
holds for almost all n, meaning for all but o(x) values of n ≤ x as x → ∞. (This, and much
more, follows from arguments given below.) That is, the class of 0 modulo q ‘hogs’ almost all
the values of φ(n), ruling out uniform distribution mod q except in the trivial case q = 1. This
phenomenon prompted Narkiewicz in [Nar67] to introduce a weaker notion of equidistribution:
f is weakly uniformly distributed mod q (or WUD mod q) if (a) gcd(f(n), q) = 1 for infinitely many
n, and (b) for each coprime residue class a mod q,

(1.1) #{n ≤ x : f(n) ≡ a (mod q)} ∼ 1

φ(q)
#{n ≤ x : gcd(f(n), q) = 1}, as x→ ∞.

In the same paper, Narkiewicz gives a criterion for weak uniform distribution that may be
applied to multiplicative functions that are ‘polynomial-like’ (in a sense we will not describe
here). As applications, he classifies the moduli q for which d(n) (the divisor function), and
φ(n), are WUD mod q. For instance, φ(n) is WUD mod q precisely when gcd(q, 6) = 1. For
a full development of the theory of weak uniform distribution of polynomial-like multiplicative
functions (incorporating later refinements by Narkiewicz and collaborators), see Chapters V and
VI of the previously mentioned monograph [Nar84].

The central object of study in this paper is Carmichael’s λ-function [Car19], which is a close cog-
nate of Euler’s function. Whereas φ(n) gives the order of the unit group U(Z/nZ), Carmichael’s
function λ(n) describes its exponent ; that is, λ(n) is the smallest positive integer for which
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aλ(n) ≡ 1 (mod n) for each a coprime to n. The λ function is not multiplicative but is what
might be called lcm-multiplicative:

(1.2) λ(lcm[m,n]) = lcm[λ(m), λ(n)], for all positive integers m,n.

As known already to Gauss, λ(pk) = φ(pk) whenever pk is an odd prime power, λ(1) = λ(2) = 1,
λ(4) = 2, and λ(2k) = 2k−2 for all k ≥ 3; these values, along with the relation (1.2), determine
λ(n) for all inputs n.

Several statistical properties of λ, such as its average, typical, and lower order, are investigated
by Erdős, Pomerance, and Schmutz in [EPS91]. One takeaway from their study is that despite
having similar definitions, φ and λ can behave quite differently. To give just one example: It
is classical that φ(n) ≫ n/ log log (3n) for all n, whereas it is shown in [EPS91] that there is a
sequence of n tending to infinity along which λ(n) ≤ (log n)O(log log logn). As far as we are aware,
there have not been prior investigations into the distribution of λ(n) in residue classes. It is easy
to prove that λ(n) is even whenever n ≥ 3, and so λ(n) cannot be WUD mod q if 2 | q. In our
first theorem we prove that this is the only obstruction.

Theorem 1.1. λ is WUD mod q for all odd q. In fact, as x→ ∞,

(1.3) #{n ≤ x : λ(n) ≡ a (mod q)} ∼ 1

φ(q)
#{n ≤ x : gcd(λ(n), q) = 1},

uniformly for coprime residue classes a mod q with q odd and q ≤ log log log x.

The range of uniformity in Theorem 1.1 is rather modest (to put it mildly). If we assume that
3 ∤ q, we can do much better.

Theorem 1.2. Fix A > 0. As x→ ∞, the relation (1.3) holds uniformly for moduli q ≤ (log x)A

with gcd(q, 6) = 1.

Our next two theorems are of a slightly different nature. To set the stage, fix an integer b ≥ 2.
Let D be a positive integer, and let x be a positive real number. We say that x begins with D in
base b if the most significant digits of x in base b are the base b digits of D. For example, 357
and 0.03512 both begin with D = 35 in base 10. A sequence {an} of positive real numbers is
said to obey Benford’s law in base b if, for every positive integer D, the asymptotic density of n
for which an begins with D is log(1 +D−1)/ log b.

Diaconis observed in [Dia77] that {an} is Benford in base b precisely when the sequence { log an
log b

}
is uniformly distributed modulo 1. It is useful to rephrase this conclusion using Weyl’s criterion.
For each integer k, let θk = 2πk/ log b. Then {an} is Benford in base b precisely when aiθkn has
limiting mean value 0, for each k = 1, 2, 3, . . . . This criterion was recently used in [CLPSR]
to study Benford behavior of sequences described by multiplicative functions. For example, it
was shown there that the sequences {φ(n)} and {σ(n)} (with σ the sum-of-divisors function)
are not Benford in any base b.1 On the other hand, the sequence {τk(n)} (with τk the k-fold
divisor function) is Benford in base b if and only if log k/ log b is irrational. (Actually the work
in [CLPSR] is carried out in base 10, but the arguments generalize to arbitrary bases.)

Our next theorem implies that {λ(n)} is Benford in every base.

1Here it is important that we use asymptotic density in our definition. If we were to use logarithmic density
instead, {φ(n)} and {σ(n)} could be shown to obey Benford’s law in every base.
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Theorem 1.3. Fix a nonzero real number θ. Then
∑

n≤x λ(n)
iθ = o(x), as x→ ∞.

Let a be an integer with |a| > 1. For each positive integer n coprime to a, let ℓa(n) denote the
multiplicative order of a mod n. In our final theorem we show that, under the assumption of the
Generalized Riemann Hypothesis2 (GRH), we can replace λ(n) with ℓa(n) in this last result.

Theorem 1.4 (conditional on GRH). Fix an integer a with |a| > 1. For each fixed nonzero real
number θ, ∑

n≤x
gcd(n,a)=1

ℓa(n)
iθ = o(x), as x→ ∞.

Thus, Benford’s law holds for the orders ℓa(n) (where now the relevant densities are to be
computed relative to the set of n with gcd(n, a) = 1).

We conclude this introduction with a word about the proofs. The UD and WUD criteria of
Delange and Narkiewicz alluded to in the introduction are proved by recasting the respective
problems in terms of mean values of multiplicative functions of modulus not exceeding 1. (For
additive functions, this involves composing with an additive character, while for multiplicative
functions one uses Dirichlet characters.) The authors of [CLPSR] adopt a similar perspective in
their work on Benford’s law (note that if f is positive-valued and multiplicative, then f iθ is a
multiplicative function of modulus 1, for every real θ). Such an approach allows one to bring to
bear powerful tools such as Halász’s theorem.

Since λ is not multiplicative, we must take a different tack. In recent work with Singha Roy
[PSR], we proposed an alternative method of proving UD and WUD theorems. This was used
to show (among other things) that for f = φ, the relation (1.1) holds uniformly for q ≤ (log x)A

with gcd(q, 6) = 1. Theorem 1.2 is proved in §3 using these same ideas. Here it is important that
the contribution of large primes to λ(n) can usually be computed as if λ were multiplicative; see
the discussion following (3.8).

The arguments for Theorem 1.2 fail to establish weak uniform distribution when 3 | q but do
show (as described in §4) that a failure of (1.3) in this case entails the nonuniform distribution
of λ(n) mod 3 (among n with gcd(λ(n), q) = 1). In §5, we rule out this pathology in the range
q ≤ log log log x, thus proving Theorem 1.1. This requires bringing in certain anatomical facts
of the kind that frequently arise when studying Euler’s φ-function. For instance, it may be
instructive to compare the proof of our Lemma 5.3 with that of Theorem 8 in [ELP08].

Theorems 1.3 and 1.4 are proved in §6. The proof of Theorem 1.3 is a fairly straightforward
adaptation of the arguments in §5. The proof of Theorem 1.4 has the same basic structure but
also requires results on the distribution of the numbers ℓa(p), which we extract from work of
Li–Pomerance [LP03], Moree [Mor05], and Pappalardi [Pap15].

Notation and conventions. We use (a, b) to denote the greatest common divisor of a and b.
The letters ℓ, p, and P should always be read as being restricted to primes values. We write
logk for the k-fold iterate of the natural logarithm. Implied constants are usually absolute but
are allowed depend on parameters described explicitly as ‘fixed’; concretely, this means that
constants appearing in the proof of Theorem 1.2 may depend on A, that those appearing in the

2here we mean the Riemann Hypothesis for Dedekind zeta functions
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proof of Theorem 1.3 may depend on θ, and that those appearing in the proof of Theorem 1.4
may depend on both θ and a.

We write P+(n) for the largest prime factor of the positive integer n and adopt the convention
that P+(1) = 1. If P+(n) ≤ y, we say that n is y-smooth. The y-smooth part of n refers to the
largest y-smooth divisor of n; we denote this by sy(n), so that

sy(n) =
∏
pk∥n
p≤y

pk.

We let P1(n) = P+(n) and define, inductively, Pk+1(n) = P+(n/Pk(n)); thus, Pk(n) is the kth
largest prime factor of n with multiplicity taken into account.

We will also need the Schemmel totient function φ2(n), defined as the count of residue classes
a mod n with gcd(a(a− 1), n) = 1. Familiar arguments show that φ2(n) = n

∏
p|n(1− 2/p).

2. Preliminaries

In this section we record some results needed for the proofs of Theorems 1.1–1.3. They are all
closely related to lemmas appearing in [PSR].

For each positive integer q, we let α(q) =
∏

p|q (1− 1/(p− 1)). It will be important for the sequel
that when q is odd,

(2.1) α(q) ≫ 1/ log2 (3q).

We will very often abbreviate α(q) to α.

The following proposition is a special case of [PSR, Proposition 2.1]. A more precise estimate
could be extracted from work of Scourfield [Sco84], but we shall not need that.

Proposition 2.1. Fix A > 0. For x tending to infinity and all odd integers q ≤ (log x)A,

(2.2) #{n ≤ x : (λ(n), q) = 1} =
x

(log x)1−α
exp(O((log2(3q))

2)).

Actually, Proposition 2.1 of of [PSR] estimates the frequency with which a general “polynomial-
like” multiplicative function f is coprime to a given integer q. Taking f = φ gives Proposition
2.1, after observing that the conditions (λ(n), q) = 1 and (φ(n), q) = 1 are equivalent. (For any
finite abelian group, the exponent and order share the same set of prime factors.) We note that
in [PSR], the exponent of log2 (3q) is given as O(1), but inspecting the proof reveals that this
exponent can be taken as 2 for f = φ.

Proposition 2.1 is established by a combination of sieve methods and mean value theorems. The
key arithmetic input is an estimate for

∑
p≤x, (p−1,q)=1 1/p (see [PSR, Lemma 2.4]). We now

restate this estimate alongside a slight extension that will be needed later.

Proposition 2.2. For each positive integer q, and all x ≥ 3,∑
p≤x

(p−1,q)=1

1

p
= α(q) log2 x+O((log2 (3q))

2).
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If additionally s is a positive integer coprime to q, then∑
p≤x

(p−1,q)=1
s∤p−1

1

p
= α(q)

(
1− 1

φ(s)

)
log2 x+O((log2 (3q))

2).

For completeness, we sketch the proof of Proposition 2.2. We need a lemma due independently
to Norton [Nor76, Lemma, p. 669] and Pomerance [Pom77, Remark 1].

Lemma 2.3. Let q be a positive integer and let x be a real number with x ≥ max{3, q}. For each
coprime residue class a mod q,∑

p≤x
p≡a (mod q)

1

p
=

log2 x

φ(q)
+

1

pq,a
+O

(
log(3q)

φ(q)

)
,

where pq,a denotes the least prime congruent to a modulo q.

In particular: For all positive integers q and all x ≥ 3, we have
∑

p≤x, p≡1 (mod q) 1/p = log2 x/φ(q)+

O(log (3q)/φ(q)) (this estimate being trivial when q > x).

Proof of Proposition 2.2 (sketch). We write∑
p≤x

(p−1,q)=1
s∤p−1

1

p
=

∑
p≤x

(p−1,q)=1

1

p
−

∑
p≤x

(p−1,q)=1
s|p−1

1

p

and proceed to estimate the two right-hand sums. By inclusion-exclusion and Lemma 2.3,

∑
p≤x

(p−1,q)=1

1

p
=
∑
d|q

µ(d)
∑
p≤x

p≡1 (mod d)

1

p
= log2 x

∑
d|q

µ(d)

φ(d)
+O

∑
d|q

|µ(d)| log(3d)
φ(d)

 .

Similarly,

∑
p≤x

(p−1,q)=1
s|p−1

1

p
=
∑
d|q

µ(d)
∑
p≤x

p≡1 (mod sd)

1

p
=

log2 x

φ(s)

∑
d|q

µ(d)

φ(d)
+O

∑
d|q

|µ(d)| log(3ds)
φ(sd)

 .

Since
∑

d|q µ(d)/φ(d) = α(q), we have the main terms claimed in the proposition. As far as the

errors, notice that log(3ds)/φ(sd) ≤ (log (3d)/φ(d)) · (log(3s)/φ(s)) ≪ log(3d)/φ(d). Thus, the
proof will be completed once it is shown that

∑
d|q |µ(d)| log(3d)/φ(d) ≪ (log2(3q))

2. But this

elementary estimate is already worked out (in greater generality) at the end of the proof of [PSR,
Lemma 2.4]. (In the notation of that argument, we have F (T ) = T − 1, D = 1, and ν(d) = 1 for
all d.) □

The last result we need can be found, in slightly different form, near the start of [PSR, §4]. For
convenience of the reader, we include a simple proof (a variant of the “Remark” in [PSR]).
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Lemma 2.4. Let q be a positive integer coprime to 6. For each integer J ≥ 2 and each integer
r prime to q,

#{(a1, . . . , aJ) mod q : gcd

( J∏
j=1

aj(aj − 1), q

)
= 1,

J∏
j=1

(aj − 1) ≡ r (mod q)}

=
φ2(q)

J

φ(q)
exp

O(∑
p|q

(p− 2)1−J

) .

Proof. By the Chinese remainder theorem, we can assume q = pk is a prime power with p ≥ 5.
Orthogonality of Dirichlet characters implies that the cardinality in question is

1

φ(pk)

∑
χ mod pk

 ∑
a mod pk

χ0(a)χ(a− 1)

J

χ̄(r).

Here the principal character χ = χ0 contributes φ2(p
k)J/φ(pk). For χ ̸= χ0, the complete sum∑

a mod pk χ(a− 1) = 0, so that∑
a mod pk

χ0(a)χ(a− 1) = −
∑

a mod pk

a≡0 (mod p)

χ(a− 1) = −χ(−1)
∑

b mod pk

b≡1 (mod p)

χ(b).

The residue classes b mod pk with b ≡ 1 (mod p) form an index p−1 subgroup of the multiplica-
tive group mod pk. Thus, the sum on b vanishes unless the restriction of χ to this subgroup is
trivial. This happens for precisely (p − 1) − 1 = p − 2 nontrivial characters, and in these cases∑

a mod pk χ0(a)χ(a− 1) has absolute value pk−1. The triangle inequality thus implies that

1

φ(pk)

∣∣∣∣∣∣∣∣
∑

χ mod pk

χ ̸=χ0

 ∑
a mod pk

χ0(a)χ(a− 1)

J

χ̄(r)

∣∣∣∣∣∣∣∣ ≤
1

φ(pk)
(p− 2)p(k−1)J .

Putting this estimate back above, our tuple count is φ2(pk)J

φ(pk)
(1+θ(p−2)1−J), for some real number

θ with |θ| < 1. As 1 + θ(p− 2)1−J = exp(O((p− 2)1−J)), the lemma follows. □

In our application of Lemma 2.4 we will have that J → ∞. Thus,
∑

p|q(p−2)1−J = o(1), leading

to a tuple count that is ∼ φ2(q)
J/φ(q).

3. Uniformity up to (log x)A when (q, 6) = 1: Proof of Theorem 1.2

In what follows, x is assumed to be a large real number, q is an odd positive integer with
q ≤ (log x)A, where A > 0 is fixed, and a mod q is a coprime residue class. Unless otherwise
stated, asymptotic estimates refer to behavior as x → ∞ and are to be read as uniform in
the choice of a mod q. Implied constants may depend on A but on no other parameters unless
explicitly noted.
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We begin the proof of Theorem 1.1 by restricting our attention to inputs n whose large prime
factors are suitably well-behaved. We let

J := ⌊log log log x⌋.
(Any integer-valued function of x tending to infinity sufficiently slowly would do just as well.)
We also set

y := exp(
√
log x).

Following [PSR, §3] (choosing δ := 1 in the notation of that paper), a positive integer n ≤ x
is called convenient if PJ(n) > y and none of the primes P1(n), P2(n), . . . , PJ(n) have squares
dividing n. That is, n is convenient when n admits a decomposition

(3.1) n = mPJ · · ·P1, with Lm := max{P+(m), y} < PJ < · · · < P1.

Write N = N(x, q) for the total count of n ≤ x with (λ(n), q) = 1. The following lemma,
proved as Lemma 3.1 in [PSR], shows that this count does not change very much if we restrict
to convenient n.

Lemma 3.1. The number of inconvenient n ≤ x with (λ(n), q) = 1 is o(N).

Our next lemma asserts that there are few inconvenient solutions to λ(n) ≡ a (mod q).

Lemma 3.2. The number of inconvenient n ≤ x with λ(n) ≡ a (mod q) is o(N/φ(q)).

For the proof of Lemma 3.2 (and subsequently), it is useful to note that (2.1) and (2.2) imply
(crudely) that N ≫ x/ log x in our range of q.

In addition, it will be helpful to have at hand certain basic estimates from the theory of smooth
numbers. Let Ψ(X, Y ) denote the count of Y -smooth numbers in [1, X]. Canfield, Erdős, and
Pomerance have shown [CEP83] that if X, Y , and U := logX

log Y
all tend to infinity, with X ≥ Y ≥

(logX)2, then

(3.2) Ψ(X, Y ) = X exp(−(1 + o(1))U logU).

Also, it is known (see [Ten15, Theorem 5.1, p. 512]) that for all X ≥ Y ≥ 2,

(3.3) Ψ(X, Y ) ≪ X exp(−U/2).

Proof of Lemma 3.2. We may assume that

(i) n has no repeated prime factor exceeding (log x)A+1,

since the number of n ≤ x failing (i) is o(x/(log x)A+1), which is o(N/φ(q)) in our range of q.
We may also assume that, with y′ := x1/ log2 x,

(ii) P+(n) > y′.

Indeed, (3.2) shows that (ii) holds for all but x/(log x)(1+o(1)) log3 x = o(N/φ(q)) values of n ≤ x.
We write each remaining inconvenient solution n ≤ x to λ(n) ≡ a (mod q) in the form n = rP ,
where P = P+(n). By (i) and (ii), we know that P ∤ r, and so

(3.4) λ(n) = lcm[λ(r), P − 1] =
λ(r) · (P − 1)

(λ(r), P − 1)
.
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Continuing, let y′′ = exp((log2 x)
2). We may further suppose that

(iii) (λ(r), P − 1) is y′′-smooth.

Indeed, if (iii) fails choose a prime ℓ > y′′ for which ℓ divides (λ(r), P − 1). By (i), ℓ2 ∤ r, and
so there must be a prime p dividing r with p ≡ 1 (mod ℓ). There are at most x/pP values of
n corresponding to a given pair of p, P . Summing x/pP on all primes p, P ≡ 1 (mod ℓ) with
p, P ≤ x bounds the count of n corresponding to a given ℓ as O(x(log2 x)

2/ℓ2). (We have bounded
the sums on p, P by partial summation and the Brun–Titchmarsh inequality.) Now summing on
ℓ > y′′ shows that the number of exceptions to (iii) is O(x(log2 x)

2/y′′), which is o(N/φ(q)).

Continuing, we may suppose that

(iv) (λ(r), P − 1) ≤ y′1/3.

When (iv) fails, we use (iii) to decompose P − 1 = dh, where d is y′′-smooth and d > y′1/3. Since
the number of possibilities for n given P is at most x/P < x/dh, summing on h and d bounds
the number of exceptions to (iv) as

≪ x log x
∑

d>y′1/3

d y′′-smooth

1

d
.

Summing by parts, (3.3) gives that the sum on d is O(log y′′ · exp(−1
6
log y′

log y′′
)). Thus, the number

of n where (iv) fails is O(x exp(−(log x)0.9)) (say), which is o(N/φ(q)).

We now fix d := (λ(r), P − 1) and count possibilities for P given r and d. We must have
(λ(r), q) = 1 (otherwise (λ(n), q) > 1, contradicting λ(n) ≡ a (mod q)) and hence also (d, q) = 1.
Furthermore,

P ≡ 1 (mod d)

and, from (3.4),

P − 1 ≡ ad

λ(r)
(mod q).

(The right-hand side of the congruence makes sense mod q, since (λ(r), q) = 1.) These two
congruences put P in a unique residue class mod dq. Since y′ < P ≤ x/r while d, q < y′1/3, the
Brun–Titchmarsh inequality gives that the number of possibilities for P given r, d is

≪ x

φ(dq)r log(x/rdq)
≪ x log2 x

φ(d)φ(q)r log x
≪ x(log2 x)

2

dφ(q)r log x
,

using in the last step that d/φ(d) ≪ log2 d ≪ log2 x. Since d is y′′-smooth, it follows that the
number of P given r is

(3.5) ≪ x(log2 x)
2

φ(q)r log x

∏
p≤y′′

(
1 +

1

p
+

1

p2
+ . . .

)
≪ x(log2 x)

4

φ(q)r log x
.

Finally we sum on r. Write r = r1r2, where r1 is the y-smooth part of r. We bound
∑

1/r
by summing on all possibilities for r1 and r2. Since n = r1r2P is inconvenient, it must be that
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Ω(r2) < J . Thus, ∑
r

1

r
≤

(
1 +

∑
p≤x

(1/p+ 1/p2 + 1/p3 + . . . )

)J∑
r1

1

r1

≤ exp(O((log3 x)
2)) ·

∑
r1

1

r1
.

Since r1 is divisible only by primes p ≤ y with (p− 1, q) = 1,

∑
r1

1

r1
≤

∏
p≤y

(p−1,q)=1

(∑
j≥0

p−j

)
≪ exp

( ∑
p≤y

(p−1,q)=1

1

p

)
≪ (log x)

1
2
α exp(O((log2 (3q))

2)),

using Proposition 2.2 to estimate the final sum on p. Plugging these estimates back into (3.5),
we conclude that the number of inconvenient n ≤ x with λ(n) ≡ a (mod q) and all of (i)–(iv)
being satisfied is

≪ x

φ(q)(log x)1−
1
2
α
exp(O((log2 (3q))

2 + (log3 x)
2)).

Comparing with the estimate for N from Proposition 2.1, and keeping in mind the lower bound
(2.1) on α, this is seen to be o(N/φ(q)) (in fact, it is O(N/φ(q) exp((log2 x)

0.9)), say). □

By Lemmas 3.1 and 3.2, Theorem 1.2 will follow if it is shown that

(3.6) #{convenient n ≤ x : λ(n) ≡ a (mod q)}

=
1

φ(q)
#{convenient n ≤ x : (λ(n), q) = 1}+ o(N/φ(q)).

Referring back to the description of convenient numbers appearing as (3.1), the left-hand side of
(3.6) can be rewritten as

(3.7)
∑
m≤x

(λ(m),q)=1

∑
Pj ,...,P1

Lm<PJ<PJ−1<···<P1

PJ ···P1≤x/m
lcm[λ(m),P1−1,...,PJ−1]≡a (mod q)

1.

Proceeding futher requires that we tame the ornery-seeming lcm condition. To this end, we let

w := exp((log x)1/8)

and we show that most of the time

(3.8) λ(m), P1 − 1, . . . , PJ − 1 are pairwise coprime at primes > w,

meaning that no prime ℓ > w divides two terms from the list. Suppose there is such an ℓ.
Then ℓ divides at least one of P1 − 1, . . . , PJ − 1 and divides two of these unless ℓ | λ(m). If
ℓ | λ(m), then either ℓ2 | m or ℓ | p − 1 for some prime p dividing m. In any case, we find
that n = mP1 · · ·PJ is either divisible by ℓ2 or there are primes p1, p2 dividing n with p1, p2 ≡ 1
(mod ℓ). The number of n ≤ x satisfying the first condition is O(x/ℓ2), while the count of n ≤ x
satisfying the second is O(x(log2 x)

2/ℓ2) (cf. the handling of condition (iii) in the proof of Lemma
3.2). Summing on ℓ > w, we see that our coprimality condition excludes only o(x/w) values of
n, which is acceptable as x/w = o(N/φ(q)).
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Recall our notation sw(·) for the w-smooth part. When our coprimality condition (3.8) holds,

(3.9) lcm[λ(m), P1 − 1, . . . , PJ − 1]

= lcm[sw(λ(m)), sw(P1 − 1), . . . , sw(PJ − 1)]
λ(m)

sw(λ(m))

J∏
j=1

Pj − 1

sw(Pj − 1)
.

So at the cost of an error of o(N/φ(q)), we may swap out the lcm congruence condition in
(3.7) for the condition that the right-hand side of (3.9) be congruent to a modulo q. We then
remove the ordering on the Pj, which introduces a factor of 1/J !, and we partition the inner
sum on P1, . . . , PJ according to the values of dj := sw(Pj − 1). The upshot is as follows: Let
d = (d1, . . . , dJ) and define rational numbers rm,d and am,d by

(3.10) rm,d = lcm[sw(λ(m)), d1, . . . , dJ ]
λ(m)

sw(λ(m))

J∏
j=1

1

dj
, am,d = a/rm,d.

Then the count described by (3.7) is equal — up to an error of o(N/φ(q)) — to

(3.11)
1

J !

∑
m≤x

(λ(m),q)=1

∑
dJ ,...,d1 w-smooth

(dj ,q)=1 ∀j
2|dj ∀j

∑
PJ ,...,P1 distinct

Lm<Pj ∀j
PJ ···P1≤x/m

sw(Pj−1)=dj ∀j∏J
j=1(Pj−1)≡am,d (mod q)

1.

(The subscripted condition 2 | dj could be omitted at this stage but will prove useful later.) Note
that am,d determines a well-defined coprime residue class mod q, since am,d is a rational number
with numerator and denominator prime to q.

Following [PSR], we view the condition on
∏J

j=1(Pj − 1) in (3.11) as cutting out a collection of

possible tuples (P1, . . . , PJ) mod q. Let

(3.12) Vm,d(q) = {(a1, . . . , aJ) mod q : gcd

( J∏
i=1

aj(aj − 1), q

)
= 1,

J∏
j=1

(aj − 1) ≡ am,d mod q}.

Then (3.11) can be rewritten as

(3.13)
1

J !

∑
m≤x

(λ(m),q)=1

∑
dJ ,...,d1 w-smooth

(dj ,q)=1 ∀j
2|dj ∀j

∑
v∈Vm,d(q)

∑
PJ ,...,P1 distinct

Lm<Pj ∀j
PJ ···P1≤x/m

sw(Pj−1)=dj ∀j
Pj≡aj mod q ∀j

1;

this expression (3.13) will serve as our basic approximation to the left-hand side of (3.6).

Analogous manipulations reveal that the count of convenient n ≤ x with (λ(n), q) = 1 is (pre-
cisely) equal to

(3.14)
1

J !

∑
m≤x

(λ(m),q)=1

∑
dJ ,...,d1 w-smooth

(dj ,q)=1 ∀j
2|dj ∀j

∑
PJ ,...,P1 distinct

Lm<Pj ∀j
PJ ···P1≤x/m

sw(Pj−1)=dj ∀j

1.
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Rather than estimate (3.13) or (3.14) directly, our strategy to prove (3.6) is to directly compare
(3.13) and (3.14).

View (3.13) as having the sum on P1 innermost. We now argue that (in a precise sense) on
average over the m,d,v, and PJ , . . . , P2 from (3.13),

(3.15)
∑

Lm<P1≤x/mP2···PJ
P1 ̸=P2,...,PJ

P1≡a1 (mod q)
sw(P1−1)=d1

1 ≈ 1

φ2(q)

∑
Lm<P1≤x/mP2···PJ

P1 ̸=P2,...,PJ
sw(P1−1)=d1

1.

The left-hand side of (3.15) is the sum on P1 in (3.13); thus, we are asserting with this ap-
proximation that the mod q congruence condition on P1 in (3.13) can essentially be removed by
insertion of a factor of 1/φ2(q). To argue this will assume that

(3.16) Lm < x/mP2 · · ·Pj;

otherwise (3.15) is (trivially) an equality.

To save on notation, write d for d1 and a for a1. We start by estimating for each T ≥ y the count
of p ≤ T with p ≡ a (mod q) and sw(p−1) = d. This is a sieve problem: We start with the set P
of primes p ≤ T with p ≡ a (mod q) and p ≡ 1 (mod d), which we view as having approximate
size X := Li(T )/φ(d)φ(q). To enforce the condition sw(p− 1) = d, we remove (sieve out) those
p ∈ P for which p−1

d
is divisible by a prime at most w. By the definition of Vm,d(q), the integer

a− 1 is coprime to q, and so any prime divisor of p−1
d

must be coprime to q. Thus, we need only
sieve by those primes up to w not dividing q.

Let e be a squarefree, w-smooth number with (e, q) = 1. The count of p ∈ P for which e | p−1
d

is
precisely the count of primes up to T belonging to a certain coprime progression mod deq; it is
therefore

(3.17)
Li(T )

φ(de)φ(q)
+O(E(T ; qde)),

where (anticipating an application of the Bombieri–Vinogradov theorem) we have set

E(X;M) := max
2≤Y≤X

max
A mod M
(A,M)=1

∣∣∣∣π(Y ;M,A)− Li(Y )

φ(M)

∣∣∣∣ .
Setting g(e) := φ(d)/φ(de), the main term in (3.17) is X g(e). Now g is multiplicative in e, and g
satisfies the Iwaniec condition (with κ = 1): If 3

2
≤ w1 ≤ w2 ≤ w, then

∏
w1<p≤w2, p∤q(1−g(p))−1 ≤

(1 + O(1/ logw1))
logw2

logw1
, where the implied constant is absolute. So we are set up to apply the

Fundamental Lemma of the Sieve (see, e.g., [Kou19, Theorem 18.11, p. 190]), which yields

(3.18) #{p ≤ T : p ≡ a (mod q), sw(p− 1) = d}

=

(
Li(T )

φ(d)φ(q)

∏
p≤w
p∤q

(1− g(p))

)(
1 +O(u−u/2)

)
+O

(∑
e≤wu

E(T ; qde)

)
,

where u ≥ 1 is a parameter at our disposal. Letting

z := exp((log x)1/4),
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we choose u so that wu = z (i.e., u = (log x)1/8). Inserting this choice of u and simplifying, the
right-hand side of (3.18) becomes

(3.19)

(
1

2

∏
2<p≤w

p− 2

p− 1

)
Li(T )

φ(d)φ2(q)
· φ(dodd)

2

doddφ2(dodd)

+O

(
T

φ(d)φ(q)
exp(−(log x)1/8) +

∑
e≤z

E(T ; qde)

)
,

where dodd denotes the largest odd divisor of d.

If we forget the mod q congruence condition on p and estimate the total number of p ≤ T with
sw(p − 1) = d, we obtain an identical estimate to (3.19), but with all occurrences of q replaced
by 1. Thus, writing ∆ = ∆(m,d,v, PJ , . . . , P2) for the magnitude of the difference between the
two sides of (3.15),

(3.20) ∆ ≪ ∆1 +∆2 +∆3,

where

∆1 = J +
x exp(−(log x)1/8)

mP2 · · ·PJφ(d)φ2(q)
, ∆2 =

∑
e≤z

E

(
x

mP2 · · ·PJ

; qde

)
, and

∆3 =
1

φ2(q)

∑
e≤z

E

(
x

mP2 · · ·PJ

; de

)
.

When d is large, the bound

(3.21) ∆ ≪ x/mdP2 · · ·PJ

will be more useful than (3.20); (3.21) is obvious, since the count of primes 1 mod d to x/mP2 · · ·PJ

is smaller than x/mdP2 · · ·PJ .

Let us show, using (3.20) and (3.21), that

(3.22)
∑

m,d,v,PJ ,...,P2

∆(m,d,v, PJ , . . . , P2) ≪ x/(log x)A+2,

where m,d,v, PJ , . . . , P2 are restricted by the conditions of summation in (3.13) and by (3.16).

We take first the cases when d ≤ z. Here we appeal to (3.20), considering separately the
contributions from ∆1,∆2,∆3. It is easy to handle ∆1: Since x/mP2 · · ·PJ > Lm ≥ y, we

have J ≪ x exp(−(log x)1/8)
mP2···PJφ(d)φ2(q)

. Summing x exp(−(log x)1/8)
mP2···PJφ(d)φ2(q)

on all m ≤ x, all primes P2, . . . , PJ ≤ x

and all d ≤ z gives a quantity of size O( x
φ2(q)

exp(−(log x)1/9)). Since P2, . . . , PJ and d together

determine d and the components a2, . . . , aJ of v, and since there are at most φ2(q) choices for
a1 mod q, we conclude that ∆1 contributes only O(x exp(−(log x)1/9)) to the left-hand side of
(3.22).

Since φ2(q) ≤ q ≤ (log x)A, the ∆2 piece will be satisfactorily handled if

(3.23)
∑
m≤x

∑
P2,...,PJ

P2···PJ≤x/my

∑
d≤z

∑
e≤z

E

(
x

mP2 · · ·PJ

; qde

)
= O(x/(log x)2A+2).
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(We use again that P2, . . . , PJ and d determine d and a2, . . . , aJ . Note that the restrictions
in (3.23) on m,P2, . . . , PJ , and d are implied by the conditions of summation in (3.13), the
assumption (3.16), and our present stipulation that d ≤ z.) Trivially, E(x/mP2 · · ·PJ ;M) ≪
x/φ(M)mP2 · · ·PJ whenever M ≤ x/mP2 · · ·PJ . So by Cauchy–Schwarz and the Bombieri–
Vinogradov theorem (bearing in mind that qz2 < y1/3 ≤ (x/mP2 · · ·PJ)

1/3),∑
d,e≤z

E

(
x

mP2 · · ·PJ

; qde

)
≤
∑

M≤qz2

τ(M) · E
(

x

mP2 · · ·PJ

;M

)

≪

(
x

mP2 · · ·PJ

∑
M≤qz2

τ(M)2

φ(M)

)1/2
 ∑

M≤qz2

E

(
x

mP2 · · ·PJ

;M

)1/2

≪

(
x(log x)4

mP2 · · ·PJ

)1/2(
x

mP2 · · ·PJ(log x)4A+12

)1/2

,

which is O((x/mP2 · · ·PJ)(log x)
−2A−4). Summing on m ≤ x and P2, . . . , PJ ≤ x, this is

O(x/(log x)2A+2), which is acceptable for (3.23). The errors induced by ∆3 can be treated
entirely analogously; we leave the tedious but inglorious details to the reader.

To handle the contributions to (3.22) from cases where d > z, it is enough (appealing now to
(3.21)) to show that

(3.24)
∑
m≤x

∑
P2,...,PJ≤x

∑
d>z

P+(d)≤w

x

mdP2 · · ·PJ

= O(x/(log x)2A+2).

By (3.3),
∑

d>z, P+(d)≤w 1/d≪ (logw) exp(−1
2
(log x)1/8). This yields (3.24) after crudely bound-

ing the sums on m,P2, . . . , PJ . Thus, we have (3.22).

We conclude from (3.22) that

1

J !

∑
m≤x

(λ(m),q)=1

∑
dJ ,...,d1 w-smooth

(dj ,q)=1 ∀j
2|dj ∀j

∑
v∈Vm,d(q)

∑
PJ ,...,P1 distinct

Lm<Pj ∀j
PJ ···P1≤x/m

sw(Pj−1)=dj ∀j
Pj≡aj mod q ∀j

1

=
1

φ2(q)

1

J !

∑
m≤x

(λ(m),q)=1

∑
dJ ,...,d1 w-smooth

(dj ,q)=1 ∀j
2|dj ∀j

∑
v∈Vm,d(q)

∑
PJ ,...,P1 distinct

Lm<Pj ∀j
PJ ···P1≤x/m

sw(Pj−1)=dj ∀j
Pj≡aj mod q ∀j≥2

1 +O(x/(log x)A+2).

In fact, our arguments justify an error term of O(x/J !(log x)A+2), but the extra factor of J ! is
otiose here.

Proceeding in exactly the same manner, we can successively remove the mod q congruence
conditions on P2, P3, . . . , PJ . At each step, we introduce a new factor of 1/φ2(q) and a new
error of size O(x/(log x)A+2). (Actually the error introduced after the jth step could be esti-
mated as O(x/J !φ2(q)

j−1(log x)A+2), but O(x/(log x)A+2) is all we need.) Since Jx/(log x)A+2 =
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o(N/φ(q)), we make the following deduction: Up to an error of o(N/φ(q)), the count of conve-
nient n ≤ x with λ(n) ≡ a (mod q) is

(3.25)
1

φ2(q)J
1

J !

∑
m≤x

(λ(m),q)=1

∑
dJ ,...,d1 w-smooth

(dj ,q)=1 ∀j
2|dj ∀j

∑
PJ ,...,P1 distinct

Lm<Pj ∀j
PJ ···P1≤x/m

sw(Pj−1)=dj ∀j

#Vm,d(q).

Up to this point, it was only necessary to assume that q is odd. We now tack on the hypothesis

that 3 ∤ q. Lemma 2.4 then implies that #Vm,d(q) = (1 + o(1))φ2(q)J

φ(q)
, uniformly in the values

of m and d from (3.25). Hence, the size of (3.25) is (1 + o(1))/φ(q) times that of (3.14). Since
(3.14) counts convenient n ≤ x with (λ(n), q) = 1, the relation (3.6) follows. This completes the
proof of Theorem 1.2.

4. Interlude

Our proof of Theorem 1.2 does not yield weak uniform distribution when 3 | q. However, one
can show by these methods that the only obstruction to weak uniform distribution mod q arises
from an obstruction modulo 3. The following proposition makes this precise.

Proposition 4.1. Fix A > 0. As x→ ∞,

(4.1) #{n ≤ x : λ(n) ≡ a (mod q)} =
2 + o(1)

φ(q)
#{n ≤ x : λ(n) ≡ a (mod 3)}+ o(N/φ(q)),

uniformly in the choice of coprime residue class a mod q, where q is odd, 3 | q, and q ≤ (log x)A.

In the remainder of this section we describe how to adapt the proof of Theorem 1.2 to obtain
Proposition 4.1. Note that by Lemmas 3.1 and 3.2, to prove Proposition 4.1 it suffices to establish
the “convenient version” of (4.1), where n is restricted to convenient values in both sets.

We start from (3.25), which (as we know already) counts convenient solutions n ≤ x to λ(n) ≡ a
(mod q), up to an error of o(N/φ(q)). The new twist is that when 3 | q, the sets Vm,d(q) are
no longer uniformly of size ∼ φ2(q)

J/φ(q). In fact, since each a with a(a− 1) coprime to q has
a− 1 ≡ 1 (mod 3), the set Vm,d(q) is empty unless am,d ≡ 1 (mod 3).

Suppose we are in the case that am,d ≡ 1 (mod 3); here we say that m and d are compatible.
Then #Vm,d(q) = #Vm,d(q0) ·#V ′, where

V ′ = {(a1, . . . , aJ) mod 3k : each aj ≡ 2 (mod 3),
J∏

j=1

(aj − 1) ≡ am,d (mod 3k)}.

By Lemma 2.4, #Vm,d(q0) = (1 + o(1))φ2(q0)
J/φ(q0). Also, #V ′ = (3k−1)J−1: every choice of

a1, . . . , aJ−1 ≡ 2 (mod 3) determines a unique aJ . As (3k−1)J−1 = 2φ2(3
k)J/φ(3k), we deduce

that #Vm,d(q) = (2 + o(1))φ(q)J/φ(q) for compatible m and d.

We can recast the compatibility condition by by referring back to (3.9) and the definition (3.10)
of am,d: For m,d, and P1, . . . , PJ as in (3.25),

m and d are compatible ⇐⇒ λ(mPJ · · ·P1) ≡ a (mod 3).

Here we have used that each Pj − 1 ≡ 1 (mod 3).
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Combining the observations of the previous two paragraphs, we find that (3.25) has size

(2 + o(1))

φ(q)


1

J !

∑
m≤x

(λ(m),q)=1

∑
dJ ,...,d1 y-smooth

(dj ,q)=1 ∀j
2|dj ∀j

∑
PJ ,...,P1 distinct

Lm<Pj ∀j
PJ ···P1≤x/m

sw(Pj−1)=dj ∀j
λ(mPJ ···P1)≡a (mod 3)

1.


.

The bracketed expression is precisely analogous to (3.14); it counts convenient n ≤ x with
(λ(n), q) = 1 and λ(n) ≡ a (mod 3). We have therefore shown the ‘convenient version’ of (4.1)
and completed the proof of Proposition 4.1.

5. Uniformity to log3 x when 3 | q: Proof of Theorem 1.1

In view of Proposition 4.1, Theorem 1.1 follows from our next result.

Theorem 5.1. Let a ∈ {±1}. As x→ ∞,

(5.1) #{n ≤ x : (λ(n), q) = 1, λ(n) ≡ a (3)} ∼ 1

2
#{n ≤ x : (λ(n), q) = 1},

uniformly for integers q ≤ log3 x where q is odd and 3 | q.

Our strategy for proving Theorem 5.1 shares many features with the proof of Theorem 1.1 but
we must select certain parameters rather differently. In particular, the reader should be warned
that y, w, and Lm will be (re)used with different (but related) meanings.

We start by refreshing our notion of convenient. We will now call n ≤ x convenient if P+(n) >

y := x1/
√

log3 x and P+(n)2 ∤ n. Thus, n is convenient precisely when we can write

(5.2) n = mP, where Lm := max{P+(m), y} < P.

We continue to use N to denote the count of n ≤ x with (λ(n), q) = 1. The following statement
is the analogue of Lemma 3.1 for our new definition of inconvenient.

Lemma 5.2. The number of inconvenient n ≤ x with (λ(n), q) = 1 is o(N).

Proof. The number of n ≤ x divisible by the square of a prime exceeding y is o(x/y) and thus
also o(N). All other inconvenient n ≤ x with (λ(n), q) = 1 are y-smooth and divisible only by p
with (p− 1, q) = 1. The sieve bounds the number of such n ≤ x as

≪ x
∏
p≤y

(p−1,q)>1

(
1− 1

p

) ∏
y<p≤x

(
1− 1

p

)
≪ x

log x

∏
p≤y

(p−1,q)=1

(
1− 1

p

)−1

≪ x

log x
exp

( ∑
p≤y

(p−1,q)=1

1

p

)
=

x

(log x)1−α
exp(O((log2(3q))

2)) · 1

(log3 x)
α/2

,
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where we used Proposition 2.2 to estimate on the sum on p. Comparing with (2.2), keeping in
mind the lower bound (2.1) and the upper bound q ≤ log3 x, this is seen to be o(N). (In fact, it
is o(N/ exp(

√
log4 x)).) □

In view of Lemma 5.2, Theorem 5.1 will be established once it is shown that

(5.3) #{convenient n ≤ x : (λ(n), q) = 1, λ(n) ≡ a (mod 3)}

=
1

2
#{convenient n ≤ x : (λ(n), q) = 1}+ o(N).

For convenient n with n = mP as in (5.2),

(5.4) λ(n) =
λ(m)(P − 1)

(λ(m), P − 1)
.

The following “near-identity” for (λ(m), P − 1) is the linchpin of our proof. Let

w := log2 x.

Lemma 5.3. Among all convenient n ≤ x with (λ(n), q) = 1, all but o(N) satisfy

(λ(m), P − 1) = sw(P − 1).

Proof. First, we may restrict attention to convenient n = mP ≤ x for which

(i) m is not divisible by the square of a prime exceeding log3 x.

Since y < P ≤ x/m, the number of convenient n corresponding to a given m is bounded by
π(x/m), which is ≪ x/m log (x/m) ≪ x/m log y = x

√
log3 x/m log x. Thus, an upper bound for

the number of exceptions to (i) follows from an upper bound for
∑

1/m.

Assuming (i) fails, write m = ℓ2m0 where ℓ > log3 x. As (λ(m), q) = 1, every p divid-
ing m0 has (p − 1, q) = 1. Hence, the reciprocal sum of possible m0 satisfies

∑
1/m0 ≪

exp(
∑

p≤x, (p−1,q)=1 1/p) ≪ (log x)α exp(O((log2(3q))
2)). Also,

∑
ℓ>log3 x

1/ℓ2 ≪ 1/ log3 x. It

follows that the number of exceptions to (i) is .

≪ x

(log x)1−α
exp(O((log2(3q))

2)) ·
√

log3 x

log3 x
.

This is o(N) (in fact, o(N/(log3 x)
1/3)) and so is acceptable for us.

We may further assume that

(ii) λ(m) is divisible by every positive integer s ≤ w′ := log2 x/(log3 x)
2 with (s, q) = 1.

Let s be a positive integer with s ≤ w′, (s, q) = 1, and suppose that s ∤ λ(m). Then m is divisible
only by primes p with p− 1 coprime to q and p− 1 not divisible by s. Invoking Proposition 2.2,∑ 1

m
≪ exp

( ∑
p≤x

(p−1,q)=1
s∤p−1

1

p

)
≪ (log x)α(1−1/φ(s)) exp(O((log2 (3q))

2)).
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Reasoning as in (i), the number of corresponding n is therefore

(5.5) ≪ x

(log x)1−α
exp(O((log2 (3q))

2)) ·
√

log3 x

(log x)α/φ(s)
.

As s ≤ w′,
(log x)α/φ(s) ≥ (log x)α/s ≥ exp(α(log3 x)

2),

and so the right-hand side of (5.5) is o(N/ exp((log3 x)
3/2)) (say). Summing on the at most w′

values of s, we obtain only o(N) exceptions to (ii).

Continuing, we can assume that

(iii) (λ(m), P − 1) has all prime factors at most w′′ := log2 x(log3 x)
2.

If (iii) fails, choose a prime ℓ > w′′ dividing λ(m) and P − 1. Our strategy will be to count
possibilities for P given m, ℓ and then sum on m, ℓ. If we assume temporarily that ℓ ≤ y1/3, we
can apply Brun–Titchmarsh: The number of P ≡ 1 (mod ℓ) with y < P ≤ x/m is

≪ x

mℓ log(x/mℓ)
≪

x
√
log3 x

mℓ log x
.

Since ℓ | λ(m) and (by (i)) ℓ2 ∤ m, we must be able to write m = pm0, where p ≡ 1
(mod ℓ). Since

∑
1/p ≪ log2 x/ℓ (taken over all p ≤ x with p ≡ 1 (mod ℓ)) and

∑
1/m0 ≪

(log x)α exp(O((log2 (3q))
2)) (taken over all m0 ≤ x divisible only by p with (p − 1, q) = 1), we

conclude that the count of exceptional n arising from a given ℓ ≤ y1/3 is

≪ x

(log x)1−α
exp(O((log2 (3q))

2)) ·
log2 x

√
log3 x

ℓ2
.

Summing on ℓ > w′′ gives a quantity that is o(N), in fact o(N/ log3 x). Above, we ignored the
cases when ℓ > y1/3. These are handled similarly, except that in place of Brun–Titchmarsh one
bounds the number of P trivially by x/mℓ. We leave to the reader to check that these cases
contribute o(N) (in fact, o(N/y1/4)).

We can also assume that

(iv) P − 1 has no prime factors in the interval (w′, w′′].

If (iv) fails, choose ℓ | P − 1 with ℓ ∈ (w′, w′′]. Arguing with Brun–Titchmarsh as in (iii), the
number of P given ℓ,m is ≪ x

√
log3 x/mℓ log x. Summing on m, the number of exceptions to

(iv) arising from a given ℓ is

≪ x

(log x)1−α
exp(O((log2 (3q))

2)) ·
√

log3 x

ℓ
.

Since
∑

ℓ∈(w,w′′] 1/ℓ≪ log4 x/ log3 x, there are o(N) exceptions to (iv) (in fact, o(N/(log3 x)
1/3))).

Conditions (iii) and (iv) ensure that (λ(m), P −1) divides sw(P −1). Furthermore, if (λ(m), P −
1) ̸= sw(P − 1), then there is a prime power pk, with p ≤ w′, p ∤ q, such that pk | P − 1 but
pk ∤ λ(m). By (ii), pk > w′, and so k > 1. Write s = pk and suppose to start with that s ≤ y1/3.
Arguing as in (iv) the number of n corresponding to a given s is

≪ x

(log x)1−α
exp(O((log2 (3q))

2)) ·
√

log3 x

s
.
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This is o(N) after being summed on proper prime powers s > w′; in fact, the sum on all
squarefull s > w′ is o(N/(log2 x)

1/3). When s > y1/3, we bound the count of P given m, s by
x/ms. Summing on all m ≤ x and all squarefull s > y1/3 gives a contribution of size o(x/y1/7)
(say), which is certainly also o(N). This completes the proof of Lemma 5.3. □

If n ≤ x is convenient with (λ(n), q) = 1, and n satisfies the conclusion of Lemma 5.3, then (by
(5.4)) λ(n) ≡ λ(m)(P − 1)/sw(P − 1) ≡ λ(m)/sw(P − 1) (mod 3). It follows that the count of
convenient n ≤ x with (λ(n), q) = 1 and λ(n) ≡ a (mod 3) is given by

(5.6)
∑
m≤x

(λ(m),q)=1

∑
d w-smooth

d≡aλ(m) (mod 3)
(d,q)=1, 2|d

∑
Lm<P≤x/m
sw(P−1)=d

1,

up to an error of o(N).

This sum on P in (5.6) is reminscent of (3.15) but (since w is now minuscule) can be estimated
satifactorily by a direct application of inclusion-exclusion. Let

(5.7) W =
1

2

∏
2<p≤w

p− 2

p− 1
, and define, for odd d, g(d) =

φ(d)2

dφ2(d)
.

A straightforward calculation shows that, as long as Lm < x/m,∑
Lm<P≤x/m
sw(P−1)=d

1 =
∑

e |
∏

p≤w p

µ(e) (π(x/m; 1, de)− π(Lm; 1, de))

= (Li(x/m)− Li(Lm))W
g(dodd)

φ(d)
+O

 ∑
e |

∏
p≤w p

Ẽ(x/m; de)

 ,

where

Ẽ(X;M) = max
2≤Y≤X

∣∣∣∣π(Y ;M, 1)− Li(Y )

φ(M)

∣∣∣∣ .
This estimate might be compared with with (3.19); note that φ2(q) is absent from the denomi-
nator of our new main term as there is no mod q congruence condition on P .

The contribution of the error terms when summed on the m, d from (5.6) can be estimated as in
our discussion of (3.15): We use Bombieri–Vinogradov and Cauchy–Schwarz to treat cases when
d ≤ y1/3; these total O(x/(log x)B) for any fixed B. To handle d > y1/3, we use the trivial bound
Ẽ(x/m; de) ≪ x/mφ(de), valid for all d, e. (It is important here that we work with Ẽ(x/m; de)
rather than E(x/m; de).) Since x/mφ(de) ≤ x/mφ(d)φ(e) and d/φ(d) ≪ logw for w-smooth d,∑

m≤x

∑
d>y1/3

P+(d)≤w

∑
e |

∏
p≤w p

x

mφ(de)
≪ x logw

(∑
m≤x

1

m

)( ∑
e w-smooth

1

φ(e)

) ∑
d>y1/3

P+(d)≤w

1

d
.

By (3.3), the sum on d is O(exp(−(log x)9/10)). Since the sums on m and e are O(log x) and
O(logw) respectively, we see that those d > y1/3 also contribute O(x/(log x)B). In particular
(taking B = 1, say), the error terms are in total o(N).
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Therefore, up to an error of o(N), the count of convenient n ≤ x with (λ(n), q) = 1 and λ(n) ≡ a
(mod 3) is

(5.8) W
∑
m≤x

(λ(m),q)=1
Lm<x/m

(Li(x/m)− Li(Lm))
∑

d w-smooth
d≡aλ(m) (mod 3)

(d,q)=1, 2|d

g(dodd)

φ(d)
.

Carrying out the same arguments, but forgetting the mod 3 constraint on λ(n), will show that
the count of convenient n ≤ x with (λ(n), q) = 1 is

(5.9) W
∑
m≤x

(λ(m),q)=1
Lm<x/m

(Li(x/m)− Li(Lm))
∑

d w-smooth
(d,q)=1, 2|d

g(dodd)

φ(d)
,

up to an error of o(N). So to prove (5.3), it is enough to show that (5.8) is half of (5.9), to
within o(N). For this we zero in on the sums on d in (5.8) and (5.9).

It is expedient to group d sharing the same odd part d′. For each ϵ ∈ {±1},∑
d w-smooth
d≡ϵ (mod 3)
(d,q)=1, 2|d

g(dodd)

φ(d)
=

∑
d′ w-smooth
(d′,2q)=1

g(d′)

φ(d′)

∑
k≥1

2kd′≡ϵ (mod 3)

1

φ(2k)

=
2

3

∑
d′ w-smooth
d′≡ϵ (mod 3)
(d′,2q)=1

g(d′)

φ(d′)
+

4

3

∑
d′ w-smooth

d′≡−ϵ (mod 3)
(d′,2q)=1

g(d′)

φ(d′)
.

Hence, with χ denoting the nontrivial character mod 3,∣∣∣∣∣ ∑
d w-smooth
d≡1 (mod 3)
(d,q)=1, 2|d

g(dodd)

φ(d)
−

∑
d w-smooth

d≡−1 (mod 3)
(d,q)=1, 2|d

g(dodd)

φ(d)

∣∣∣∣∣ = 2

3

∣∣∣∣∣ ∑
d′ w-smooth
(d′,2q)=1

χ(d′)g(d′)

φ(d′)

∣∣∣∣∣.
We develop the sum on d′ as an Euler product, noting that g(p) = g(p2) = g(p3) = . . . :∑

d′ w-smooth
(d′,2q)=1

χ(d′)g(d′)

φ(d′)
=
∏
p≤w
p∤2q

(
1 +

χ(p)g(p)

p− 1

(
1− χ(p)

p

)−1
)
.

The term corresponding to p in our right-hand product has size 1+χ(p)/p+O(1/p2). Hence, the
product is ≪ exp(

∑
p≤w, p∤2q χ(p)/p), which is ≪ log2 (3q) exp(

∑
p≤w χ(p)/p) ≪ log2 (3q), using

in the last step the convergence of
∑

p χ(p)/p. It follows that the difference between (5.8) and

half of (5.9) is

≪ log2(3q) ·W
∑
m≤x

(λ(m),q)=1
Lm<x/m

(Li(x/m)− Li(Lm)) ≪ log2(3q) ·W
∑
m≤x

(λ(m),q)=1

x
√
log3 x

m log x

≪ x

(log x)1−α
exp(O((log2 (3q))

2)) ·W log2 (3q)
√
log3 x.
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As W ≪ 1/ logw ≪ 1/ log3 x and log2 (3q) ≪ log5 x, this last expression is o(N/(log3 x)
1/3) and

so in particular o(N). This completes the proof of Theorem 1.1.

6. Leading digits of λ(n) and ℓa(n)

The proofs of Theorems 1.3 and 1.4 proceed along similar lines to our argument for Proposition
4.1; in particular, we keep the definition (5.2) of ‘convenient’ and continue to write w for log2 x.

6.1. Proof of Theorem 1.3. By Lemma 5.2 with q = 1, all but o(x) values of n ≤ x are
convenient. Furthermore, among convenient n = mP ≤ x, all but o(x) have (λ(m), P − 1) =
sw(P − 1) (apply Lemma 5.3 with q = 1). It follows that

∑
n≤x λ(n)

iθ is equal to

(6.1)
∑
m≤x

Lm<x/m

λ(m)iθ
∑

d w-smooth
2|d

1

diθ

∑
Lm<P≤x/m
sw(P−1)=d

(P − 1)iθ,

up to an error of o(x).

As in §5, the sum on P can be estimated using inclusion-exclusion:∑
Lm<P≤x/m
sw(P−1)=d

(P − 1)iθ =
∑

e w-smooth

µ(e)
∑

P≡1 (mod de)
Lm<P≤x/m

(P − 1)iθ.

Summing by parts, ∑
P≡1 (mod de)
Lm<P≤x/m

(P − 1)iθ = Im/φ(de) +O(Ẽ(x/m; de) log x),

where

Im :=

∫ x/m

Lm

(t− 1)iθ

log t
dt.

(Here and below, we allow implied constants to depend on the fixed parameter θ.) Plugging
these estimates back into (6.1), the arguments of §5 will show that the accumulation of errors
terms is, in total, O(x/(log x)B), for any fixed B.

After simplifying the main terms (6.1) becomes, up to an error of o(x),

W
∑
m≤x

Lm<x/m

λ(m)iθIm
∑

d w-smooth
2|d

g(dodd)

φ(d)diθ
,

with W and g(d) as in (5.7). Grouping d sharing the same odd part d′ transforms this last
expression into

KθW
∑
m≤x

Lm<x/m

λ(m)iθIm
∑

d′ w-smooth
2∤d′

g(d′)

φ(d′)d′iθ
, where Kθ :=

∑
k≥1

1

φ(2k) · 2kiθ
.

The sum on d′ can be developed into an Euler product with the term associated to p of the form
1 + p−1−iθ + O(p−2), for each odd p ≤ w; hence, that sum is O(exp(ℜ

∑
2<p≤w p

−1−iθ)). By the

prime number theorem with de la Vallée Poussin error and Abel summation, the series
∑

p p
−1−iθ

converges. (A well-timed use of integration by parts is helpful in this calculation.) In particular,
the partial sums of p−1−iθ are O(1) (cf. [CLPSR, Lemma 4.3]). Thus, our sum on d′ is also O(1).
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Collecting estimates shows that
∑

n≤x λ(n)
iθ is, up to an error of o(x),

≪ W
∑
m≤x

Lm<x/m

|Im| ≪ W
∑
m≤x

Lm<x/m

x

m log(x/m)
≪

xW
√

log3 x

log x

∑
m≤x

1

m
≪ xW

√
log3 x≪ x√

log3 x
.

This completes the proof of Theorem 1.3.

6.2. Proof of Theorem 1.4. We need two additional lemmas whose proofs are deferred mo-
mentarily. Throughout this section, all implied constants may depend on a.

Lemma 6.1. Fix an integer a with |a| > 1. Among all convenient n = mP ≤ x with (a, n) = 1,
all but o(x) satisfy

(ℓa(m), ℓa(P )) = sw(ℓa(P )).

Lemma 6.2 (conditional on GRH). Fix an integer a with |a| > 1. Among all convenient
n = mP ≤ x with (a, n) = 1, all but o(x) are such that (P − 1)/ℓa(P ) is w-smooth.

Fix a ∈ Z with |a| > 1. If n ≤ x is convenient with (a, n) = 1 and n satisfies the conclusions of
both Lemmas 6.1 and 6.2, then

ℓa(mP ) = lcm[ℓa(m), ℓa(P )] = ℓa(m) · ℓa(P )

sw(ℓa(P ))
= ℓa(m) · P − 1

sw(P − 1)
.

From Lemmas 5.2 (with q = 1), 6.1, and 6.2, we deduce that
∑

n≤x, (n,a)=1 ℓa(n)
iθ coincides, up

to an error of o(x), with

(6.2)
∑
m≤x

(m,a)=1
Lm<x/m

ℓa(m)iθ
∑

d w-smooth
2|d

1

diθ

∑
Lm<P≤x/m
sw(P−1)=d

(P − 1)iθ.

This is nearly the same expression as (6.1); the only differences are that λ(m) has been replaced
by ℓa(m) and that m is now restricted to values coprime with a. It is straightforward to check
that the method used to bound (6.1) still applies, so that (6.2) is o(x) (in fact, O(x/

√
log3 x)).

Thus, it remains only to prove Lemmas 6.1 and 6.2.

For the proof of Lemma 6.1, we recall a result of Pappalardi on the frequency of primes p for
which ℓa(p) is divisible by a given d.

Proposition 6.3. Fix an integer a with |a| > 1. For all x ≥ 3, and all positive integers d,

(6.3) #{p ≤ x : p ∤ a, d | ℓa(p)} = βa(d)
x

log x
+O

(
τ(d)d · x

(
(log2 x)

2

log x

)7/6
)
,

where βa(d) is a constant depending only on a and d, and

(6.4) βa(d) ≍ 1/d.

The estimate (6.3) is a special case of [Pap15, Theorem 1] while (6.4) is implicit in the exact
expression for βa(d) obtained by Moree in [Mor05, Theorem 2]. We note that while the statement
of Theorem 1 in [Pap15] requires that x → ∞, the estimate (6.3) holds trivially for x ≥ 3 that
are bounded in terms of a.
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Proposition 6.3 implies the following analogue of Lemma 2.3, which seems of independent interest.

Lemma 6.4. Fix an integer a with |a| > 1. For each x ≥ 3 and each positive integer d,

(6.5)
∑

p≤x, p∤a
d|ℓa(p)

1

p
= βa(d) log2 x+O

(
log (3d)

φ(d)

)
,

where βa(d) is as in the statement of Proposition 6.3.

Lemma 6.4 is somewhat sharper than will be needed; it will suffice in our application that the
O-term in (6.5) is O(1).

Proof. First, observe that with x0 := exp(2d30),∑
p≤x0, p∤a
d|ℓa(p)

1

p
≤

∑
p≤x0

p≡1 (mod d)

1

p
≪ log2 x0

φ(d)
≪ log(3d)

φ(d)
.

This implies (6.5) when 3 ≤ x ≤ x0 (keeping in mind that βa(d) ≪ 1/d). So we suppose now
that x > x0. Let N(t) be the number of primes p up to t, not dividing a, for which d | ℓa(p). By
Proposition 6.3,∑

x0<p≤x, p∤a
d|ℓa(p)

1

p
=

∫ x

x0

1

t
dN(t) = βa(d)

∫ x

x0

dt

t log t

+O

(
βa(d)

log x0
+ τ(d)d

(
(log2 x0)

2

log x0

)7/6

+ τ(d)d

∫ x

x0

1

t

(
(log2 t)

2

log t

)7/6

dt

)
.

The main term here has size βa(d)(log2 x−log2 x0) = βa(d) log2 x+O(log(3d)/d). Since τ(d)d ≤ d2

and ((log2 t)
2/ log t)7/6 ≪ (log t)−11/10, the O-terms are

≪ 1

d log x0
+ d2(log x0)

−11/10 + d2
∫ x

x0

t−1(log t)−11/10 dt≪ d−1.

Collecting estimates gives the lemma. □

Proof of Lemma 6.1. We claim all but o(x) convenient n ≤ x having (n, a) = 1 satisfy

(ii′) ℓa(m) is divisible by every positive integer s ≤ w′ := log2 x/(log3 x)
2,

(iii′) (ℓa(m), ℓa(P )) has all prime factors at most w′′ := log2 x(log3 x)
2, and

(iv′) ℓa(P ) has no prime factors in the interval (w′, w′′].

Conditions (iii′) and (iv′) are implied by conditions (iii) and (iv) from the proof of Lemma 5.3,
and so (from that proof, with q = 1) these two conditions admit only o(x) exceptions. Turning
to (ii′), fix a positive integer s ≤ w′. If s ∤ ℓa(m), then there is no prime p dividing m for which
s | ℓa(p). Hence,∑

m

1

m
≤

∏
p≤x, p∤a
s∤ℓa(p)

(
1− 1

p

)−1

≪ log x
∏

p≤x, p∤a
s|ℓa(p)

(
1− 1

p

)
≪ (log x) exp(−βa(s) log2 x).
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Given m, the number of possible P is O

(
x
√

log3 x

m log x

)
. It follows that the number of convenient

n ≤ x with (n, a) = 1 and s ∤ ℓa(n) is

≪ (x
√
log3 x) exp(−βa(s) log2 x) ≪ x exp(−(log3 x)

3/2),

using in the last step that βa(s) ≫ 1/s ≫ 1/w′. Summing on s ≤ w′ shows that the number of
exceptions to (ii′) is o(x).

We thus restrict to n satisfying all of (ii′)–(iv′). By (iii′) and (iv′), (ℓa(m), ℓa(P )) is a divisor
of sw(ℓa(P )). If it is a proper divisor, then there is a prime power pk with p ≤ w′ such that
pk | ℓa(P ) but pk ∤ ℓa(m). By (ii′), it must be that k > 1. Since s | ℓa(P ) | P − 1, we deduce
that P − 1 is divisible by a proper prime power s > w′. The number of convenient n of this
kind is shown to be o(x) in the paragraph concluding the proof of Lemma 5.3 (read now with
q = 1). □

Lemma 6.2 is very close in character to Li and Pomerance’s Proposition 1 in [LP03] and admits
a nearly identical proof. The next three results are taken from [LP03].

Lemma 6.5. Fix an integer a with |a| > 1. For all x ≥ 100, the number of integers n ≤ x
divisible by a prime p > w with ℓa(p) < p1/2/ log p is ≪ x/ log3 x.

Lemma 6.6. Let r be a prime. For all x ≥ 3, the number of integers n ≤ x divisible by a prime
p ≡ 1 (mod r) with

r2

4(log r)2
< p ≤ r2(log r)4

is ≪ x(log2 (2r))/r log r.

Lemma 6.7 (GRH-conditional). Suppose that r is an odd prime and that a is not an rth power.
Let Ar denote the set of primes p ≡ 1 (mod r) with a(p−1)/r ≡ 1 (mod p). For x ≥ 3, the number
of n ≤ x divisible by a prime p ∈ Ar with p ≥ r2(log r)4 is ≪ x/r log r + x log2 x/r

2.

Lemma 6.5 is the special case of [LP03, Lemma 1] where ψ(x) = log2 x. Lemmas 6.6 and 6.7 are
restatements of Lemmas 2 and 3 of [LP03], respectively.

Proof of Lemma 6.2 (following the proof of Proposition 1 in [LP03]). Suppose that (P−1)/ℓa(P )
has a prime factor r > w. Then P ≡ 1 (mod r) and ℓa(P ) | (P − 1)/r, so that a(P−1)/r ≡ 1
(mod P ). Hence, P is a prime factor of n belonging to the set Ar from Lemma 6.7.

Thus, it is enough to show that only o(x) positive integers n ≤ x have a prime factor p from any
of the sets Ar, where r > w is prime. We can assume by Lemma 6.5 that ℓa(p) > p1/2/ log p.

Since ℓa(p) ≤ p−1
r
, we must have p > r2

4(log r)2
. Noting that a cannot be an rth power (once x is

large), Lemmas 6.6 and 6.7 put the remaining n in a set of size

≪ x
∑
r>w

r prime

(
log2 r

r log r
+

log2 x

r2

)
≪ x

log4 x

log3 x
,

which is o(x). □
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