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Abstract. Let dk(n) denote the number of ways of writing n as an (ordered)
product of k positive integers. When k = 2, Wigert proved in 1907 that

(*) log dk(n) ≤ (1 + o(1)) log k
log n

log log n
(n→∞).

In 1992, Norton showed that (*) holds whenever k = o(log n); this is sharp, since (*)
holds with equality when n is a product of the first several primes. In this note, we
determine the maximal size of log dk(n) when k � log n. To illustrate: Let κ > 0
be fixed, and let k, n→∞ in such a way that k/ log n→ κ; then

log dk(n) ≤

(
s+ κ

∑
p prime

∑
`≥1

1

`p`s
+ o(1)

)
log n,

where s > 1 is implicitly defined by
∑
p prime

log p
ps−1 = 1

κ . Moreover, this upper bound

is optimal for every value of κ. Our results correct and improve on recent work of
Fedorov.

1. Introduction.

For integers k, n with k ≥ 2 and n ≥ 1, we let dk(n) denote the number of ways
of writing n as an ordered product of k positive integers; we abbreviate d2(n) to d(n).
The maximal order of d(n) was first investigated by Runge [Run85] in 1885, who
showed that d(n) = o(nε) (as n→∞) for each fixed ε > 0. (He used this result to
prove that 100% of quintic polynomials x5 + ux+ v ∈ Z[x], when ordered by height,
are not solvable by radicals.) Developing Runge’s method, Wigert [Wig07] showed
in 1907 that

(1) log d(n) ≤ (1 + o(1)) log 2
log n

log log n
, as n→∞.

The estimate (1) is easily shown to be sharp, holding with equality when n is a
product of the first several prime numbers.

Several authors have proved results analogous to (1) valid for large classes of
arithmetic functions. See, for example, [DF58, SSR75, Shi80, BP87]. From any
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of these, one can establish for each fixed k a dk(n)-analogue of (1), namely

(2) log dk(n) ≤ (1 + o(1)) log k
log n

log log n
, as n→∞.1

In 1992, Norton made a detailed study of the maximum size of dk(n) in various ranges
of k vs. n (see [Nor92, Theorem 1.29]). An elegant consequence of his results is
that (2) holds uniformly in the range k = o(log n). This corollary, together with the
observation that (1) is sharp (shown again by considering ‘primorial’ values of n), is
recorded as Corollary 1.36 in [Nor92]. Norton goes on to write (in notation changed
to match ours) “We have not been able to prove a result as precise as Corollary 1.36
when k � log n.” In this note, we present sharp upper bounds on log dk(n) in the
range k � log n left open by Norton.

Independent investigations into the maximal size of log dk(n), with k allowed to
grow with n, have been carried out recently by Fedorov. For instance, in [Fed13b],
Fedorov shows that (2) holds uniformly for k = o(log n) (seemingly unaware of
Norton’s priority). In the same paper, he considers the situation when k/ log n→∞,
showing that then

(3) lim sup
n→∞

log dk(n)

log(k/ log n) · logn
log 2

= 1.

Fedorov says that his proofs involve several cases, and in [Fed13b] he restricts
attention to when k = (log n)1+o(1). (But see also [Fed13a], which gives detailed
arguments when log k

log logn
tends to 0 or ∞.) In the survey paper [CF15], Chubarikov

and Fedorov also claim a sharp result when k/ log n→ κ for a fixed κ ∈]0,∞[ (see
Theorem 3.5 on p. 34 there). They assert that a proof can be found in [Fed13a], but
that paper does not seem to contain the stated theorem or its proof. Moreover, the
result itself is incorrect.

The main goal of this paper is to prove a sharp upper estimate for log dk(n) in
the regime k/ log n→ κ, thus correcting the work of Chubarikov and Fedorov.

Our starting point is the trivial inequality dk(n)n−s ≤
∑

m≥1 dk(m)m−s = ζ(s)k.
Here, as usual, ζ(s) is the Riemann zeta function. Taking the logarithm and rear-
ranging,

log dk(n) ≤ s log n+ k log ζ(s)

= log n(s+ κ log ζ(s)), where κ :=
k

log n
.(4)

For each κ > 0, the function s 7→ s+κ log ζ(s) is continuous on ]1,∞[ and diverges
to ∞ both as s ↓ 1 and as s→∞. Thus, it makes sense to define

F (κ) := min
s>1

(s+ κ log ζ(s)) .

1In fact, it was known to Ramanujan that for fixed k the right-hand side of (2) may be replaced
with log k · Li(log n) plus a small error term ([Ram00, §39], [Ram97, §57]; see also [Pil44]). More
general results were given by Heppner [Hep73] and Nicolas [Nic80]. But this interesting line of
thought is somewhat orthogonal to the philosophy of this note.
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Plugging the minimizing value of s into (4) yields

(5) log dk(n) ≤ F (κ) log n,

where as above we write κ = k/ log n. Since F (κ) is easily seen to be continuous on
]0,∞[, (5) implies (for instance) that whenever k/ log n tends to a positive limit, we
have log dk(n) ≤ (F (κ) + o(1)) log n, where κ = lim k

logn
.

So far there is little new here. Though (5) is not noted explicitly in Norton’s
work, its immediate parent (4) appears as [Nor92, eq. (5.2)] (see also [DNR99,
Théorème 1.1]). Our main theorem is that the simple bound (5) is in fact sharp when
k/ log n→ κ for κ ∈]0,∞[.2

Theorem 1. For each fixed κ > 0, there is a sequence of positive integers k, n
with k/ log n→ κ such that

log dk(n) = (F (κ) + o(1)) log n, as n→∞.

Suppose now that κ > 0, and that k, n→∞ with k ∼ κ log n. In this case, the
right-hand side of (2) is asymptotic to log n. But trivially F (κ) > 1, so that Theorem
1 implies the failure of (2). Hence, Norton’s range k = o(log n) for the validity of (2)
is best possible.

We mentioned above Fedorov’s result (3) concerning the case when k/ log n→∞.
By analyzing the behavior of F (κ) for large κ, we are able to sharpen the upper
bound on log dk(n) in (3), incorporating a secondary term.

Theorem 2. Whenever κ := k/ log n→∞, we have

(6) log dk(n) ≤ log κ

log 2
log n+

(
1 + log log 2

log 2
+ o(1)

)
log n.

It is routine — if a bit tedious — to check with Stirling’s formula that equality
holds in (6) whenever n = 2` and all of k, ` and k/` tend to infinity. (One should first
recall that dk(2

`) =
(
`+k−1
`

)
.) Thus, (6) is sharp.

Remark. If one defines dk(n) as the coefficient of n−s in the Dirichlet series of
ζ(s)k, then the restriction to integral values of k is unnecessary. The entire above
discussion remains valid for all real k ≥ 2. In fact, Norton’s results in [Nor92] are
stated in this more general context.

2. Large values of dk(n) where k/ log n→ κ: Proof of Theorem 1

We choose s ∈]1,∞[ to minimize s+ κ log ζ(s). By elementary calculus, − ζ′

ζ
(s) =

κ−1; that is, ∑
p prime

log p

ps − 1
=

1

κ
.

2By contrast, Chubarikov and Fedorov claim that lim supn→∞
log dk(n)

logn = log(1+κ log(2))
log(2) +

κ log
(

1 + 1
κ log 2

)
.
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For each prime p, let

βp = (ps − 1)−1.

With z a parameter at our disposal and t := zs, we let

n :=
∏
p≤z

pbβptc,

so that

log n =
∑
p≤z

(βpt+O(1)) log p = t
∑
p≤z

log p

ps − 1
+O(z)

= t

(
−ζ
′

ζ
(s) +O

(∑
p>z

log p

ps

))
+O(t1/s) =

t

κ
+O(t1/s).

The final expression is asymptotic to t/κ, as z →∞. Thus, putting k := btc, we see
that k/ log n→ κ.

Moreover,

log dk(n) =
∑
p≤z

log

(
k + bβptc − 1

k − 1

)
.

Routine (but tedious) calculations with Stirling’s formula reveal that

log

(
k + bβptc − 1

k − 1

)
= t log(1 + βp) + tβp log(1 + 1/βp) +O(log t),

and so

log dk(n) = t
∑
p≤z

log(1 + βp) + t
∑
p≤z

βp log(1 + 1/βp) +O(t1/s)

= t log

(∏
p≤z

(1− p−s)−1
)

+ ts
∑
p≤z

log p

ps − 1
+O(t1/s)

= t(log ζ(s) +O(z1−s)) + ts

(
−ζ
′

ζ
(s) +O(z1−s)

)
+O(t1/s)

= t
(

log ζ(s) +
s

κ

)
+O(t1/s).

The final right-hand side is asymptotic to tκ−1F (κ), as z →∞. Since t is asymptotic
to κ log n, the theorem follows.

3. When k/ log n→∞: Proof of Theorem 2

By (5), it suffices to show that as κ→∞,

F (κ) =
log κ

log 2
+

1 + log log 2

log 2
+ o(1).
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Since κ−1 → 0, the value s = s0(κ) satisfying − ζ′

ζ
(s) = κ−1 tends to infinity as

κ→∞. In fact, since

−ζ
′

ζ
(s) =

∑
p prime

∑
`≥1

log p

p`s
∼ log 2

2s
, as s→∞,

we have that 2s0(κ) ∼ κ log 2. Hence,

s0(κ) =
log κ

log 2
+

log log 2

log 2
+ o(1).

Moreover,

log ζ(s) =
∑
p prime

∑
`≥1

1

`p`s
∼ 1

2s
∼ 1

log 2

(
−ζ
′

ζ
(s)

)
, as s→∞,

and so

F (κ) = s0(κ) + κ log ζ(s0(κ))

=

(
log κ

log 2
+

log log 2

log 2
+ o(1)

)
+ (1 + o(1))κ · 1

κ log 2

=
log κ

log 2
+

1 + log log 2

log 2
+ o(1),

as desired.

Acknowledgements

The author acknowledges the generous support of the National Science Foundation
under award DMS-1402268. He also thanks Enrique Treviño for helpful discussions.

References
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