The maximal size of the k-fold divisor function for very large k

Paul Pollack

Abstract. Let $d_{k}(n)$ denote the number of ways of writing n as an (ordered) product of k positive integers. When $k=2$, Wigert proved in 1907 that

$$
\begin{equation*}
\log d_{k}(n) \leq(1+o(1)) \log k \frac{\log n}{\log \log n} \quad(n \rightarrow \infty) \tag{*}
\end{equation*}
$$

In 1992, Norton showed that $\left(^{*}\right)$ holds whenever $k=o(\log n)$; this is sharp, since $\left(^{*}\right)$ holds with equality when n is a product of the first several primes. In this note, we determine the maximal size of $\log d_{k}(n)$ when $k \gg \log n$. To illustrate: Let $\kappa>0$ be fixed, and let $k, n \rightarrow \infty$ in such a way that $k / \log n \rightarrow \kappa$; then

$$
\log d_{k}(n) \leq\left(s+\kappa \sum_{p \text { prime }} \sum_{\ell \geq 1} \frac{1}{\ell p^{\ell s}}+o(1)\right) \log n
$$

where $s>1$ is implicitly defined by $\sum_{p \text { prime }} \frac{\log p}{p^{s}-1}=\frac{1}{\kappa}$. Moreover, this upper bound is optimal for every value of κ. Our results correct and improve on recent work of Fedorov.

1. Introduction.

For integers k, n with $k \geq 2$ and $n \geq 1$, we let $d_{k}(n)$ denote the number of ways of writing n as an ordered product of k positive integers; we abbreviate $d_{2}(n)$ to $d(n)$. The maximal order of $d(n)$ was first investigated by Runge [Run85] in 1885, who showed that $d(n)=o\left(n^{\epsilon}\right)($ as $n \rightarrow \infty)$ for each fixed $\epsilon>0$. (He used this result to prove that 100% of quintic polynomials $x^{5}+u x+v \in \mathbb{Z}[x]$, when ordered by height, are not solvable by radicals.) Developing Runge's method, Wigert [Wig07] showed in 1907 that

$$
\begin{equation*}
\log d(n) \leq(1+o(1)) \log 2 \frac{\log n}{\log \log n}, \quad \text { as } n \rightarrow \infty \tag{1}
\end{equation*}
$$

The estimate (1) is easily shown to be sharp, holding with equality when n is a product of the first several prime numbers.

Several authors have proved results analogous to (1) valid for large classes of arithmetic functions. See, for example, [DF58, SSR75, Shi80, BP87]. From any

2010 Mathematics Subject Classification. Primary 11N56; Secondary 11N37, 11N64.
of these, one can establish for each fixed k a $d_{k}(n)$-analogue of (1), namely

$$
\begin{equation*}
\log d_{k}(n) \leq(1+o(1)) \log k \frac{\log n}{\log \log n}, \quad \text { as } n \rightarrow \infty .^{1} \tag{2}
\end{equation*}
$$

In 1992, Norton made a detailed study of the maximum size of $d_{k}(n)$ in various ranges of k vs. n (see [Nor92, Theorem 1.29]). An elegant consequence of his results is that (2) holds uniformly in the range $k=o(\log n)$. This corollary, together with the observation that (1) is sharp (shown again by considering 'primorial' values of n), is recorded as Corollary 1.36 in [Nor92]. Norton goes on to write (in notation changed to match ours) "We have not been able to prove a result as precise as Corollary 1.36 when $k \gg \log n$." In this note, we present sharp upper bounds on $\log d_{k}(n)$ in the range $k \gg \log n$ left open by Norton.

Independent investigations into the maximal size of $\log d_{k}(n)$, with k allowed to grow with n, have been carried out recently by Fedorov. For instance, in [Fed13b], Fedorov shows that (2) holds uniformly for $k=o(\log n)$ (seemingly unaware of Norton's priority). In the same paper, he considers the situation when $k / \log n \rightarrow \infty$, showing that then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\log d_{k}(n)}{\log (k / \log n) \cdot \frac{\log n}{\log 2}}=1 \tag{3}
\end{equation*}
$$

Fedorov says that his proofs involve several cases, and in [Fed13b] he restricts attention to when $k=(\log n)^{1+o(1)}$. (But see also [Fed13a], which gives detailed arguments when $\frac{\log k}{\log \log n}$ tends to 0 or ∞.) In the survey paper [CF15], Chubarikov and Fedorov also claim a sharp result when $k / \log n \rightarrow \kappa$ for a fixed $\kappa \in] 0, \infty[$ (see Theorem 3.5 on p. 34 there). They assert that a proof can be found in [Fed13a], but that paper does not seem to contain the stated theorem or its proof. Moreover, the result itself is incorrect.

The main goal of this paper is to prove a sharp upper estimate for $\log d_{k}(n)$ in the regime $k / \log n \rightarrow \kappa$, thus correcting the work of Chubarikov and Fedorov.

Our starting point is the trivial inequality $d_{k}(n) n^{-s} \leq \sum_{m \geq 1} d_{k}(m) m^{-s}=\zeta(s)^{k}$. Here, as usual, $\zeta(s)$ is the Riemann zeta function. Taking the logarithm and rearranging,

$$
\begin{align*}
\log d_{k}(n) & \leq s \log n+k \log \zeta(s) \\
& =\log n(s+\kappa \log \zeta(s)), \quad \text { where } \quad \kappa:=\frac{k}{\log n} . \tag{4}
\end{align*}
$$

For each $\kappa>0$, the function $s \mapsto s+\kappa \log \zeta(s)$ is continuous on $] 1, \infty[$ and diverges to ∞ both as $s \downarrow 1$ and as $s \rightarrow \infty$. Thus, it makes sense to define

$$
F(\kappa):=\min _{s>1}(s+\kappa \log \zeta(s))
$$

[^0]Plugging the minimizing value of s into (4) yields

$$
\begin{equation*}
\log d_{k}(n) \leq F(\kappa) \log n \tag{5}
\end{equation*}
$$

where as above we write $\kappa=k / \log n$. Since $F(\kappa)$ is easily seen to be continuous on $] 0, \infty[$, (5) implies (for instance) that whenever $k / \log n$ tends to a positive limit, we have $\log d_{k}(n) \leq(F(\kappa)+o(1)) \log n$, where $\kappa=\lim \frac{k}{\log n}$.

So far there is little new here. Though (5) is not noted explicitly in Norton's work, its immediate parent (4) appears as [Nor92, eq. (5.2)] (see also [DNR99, Théorème 1.1]). Our main theorem is that the simple bound (5) is in fact sharp when $k / \log n \rightarrow \kappa$ for $\kappa \in] 0, \infty\left[.{ }^{2}\right.$

Theorem 1. For each fixed $\kappa>0$, there is a sequence of positive integers k, n with $k / \log n \rightarrow \kappa$ such that

$$
\log d_{k}(n)=(F(\kappa)+o(1)) \log n, \quad \text { as } n \rightarrow \infty
$$

Suppose now that $\kappa>0$, and that $k, n \rightarrow \infty$ with $k \sim \kappa \log n$. In this case, the right-hand side of (2) is asymptotic to $\log n$. But trivially $F(\kappa)>1$, so that Theorem 1 implies the failure of (2). Hence, Norton's range $k=o(\log n)$ for the validity of (2) is best possible.

We mentioned above Fedorov's result (3) concerning the case when $k / \log n \rightarrow \infty$. By analyzing the behavior of $F(\kappa)$ for large κ, we are able to sharpen the upper bound on $\log d_{k}(n)$ in (3), incorporating a secondary term.

ThEOREM 2. Whenever $\kappa:=k / \log n \rightarrow \infty$, we have

$$
\begin{equation*}
\log d_{k}(n) \leq \frac{\log \kappa}{\log 2} \log n+\left(\frac{1+\log \log 2}{\log 2}+o(1)\right) \log n \tag{6}
\end{equation*}
$$

It is routine - if a bit tedious - to check with Stirling's formula that equality holds in (6) whenever $n=2^{\ell}$ and all of k, ℓ and k / ℓ tend to infinity. (One should first recall that $d_{k}\left(2^{\ell}\right)=\binom{\ell+k-1}{\ell}$.) Thus, (6) is sharp.

REmark. If one defines $d_{k}(n)$ as the coefficient of n^{-s} in the Dirichlet series of $\zeta(s)^{k}$, then the restriction to integral values of k is unnecessary. The entire above discussion remains valid for all real $k \geq 2$. In fact, Norton's results in [Nor92] are stated in this more general context.

2. Large values of $d_{k}(n)$ where $k / \log n \rightarrow \kappa$: Proof of Theorem 1

We choose $s \in] 1, \infty\left[\right.$ to minimize $s+\kappa \log \zeta(s)$. By elementary calculus, $-\frac{\zeta^{\prime}}{\zeta}(s)=$ κ^{-1}; that is,

$$
\sum_{p \text { prime }} \frac{\log p}{p^{s}-1}=\frac{1}{\kappa}
$$

[^1]For each prime p, let

$$
\beta_{p}=\left(p^{s}-1\right)^{-1}
$$

With z a parameter at our disposal and $t:=z^{s}$, we let

$$
n:=\prod_{p \leq z} p^{\left\lfloor\beta_{p} t\right\rfloor}
$$

so that

$$
\begin{aligned}
\log n & =\sum_{p \leq z}\left(\beta_{p} t+O(1)\right) \log p=t \sum_{p \leq z} \frac{\log p}{p^{s}-1}+O(z) \\
& =t\left(-\frac{\zeta^{\prime}}{\zeta}(s)+O\left(\sum_{p>z} \frac{\log p}{p^{s}}\right)\right)+O\left(t^{1 / s}\right)=\frac{t}{\kappa}+O\left(t^{1 / s}\right)
\end{aligned}
$$

The final expression is asymptotic to t / κ, as $z \rightarrow \infty$. Thus, putting $k:=\lfloor t\rfloor$, we see that $k / \log n \rightarrow \kappa$.

Moreover,

$$
\log d_{k}(n)=\sum_{p \leq z} \log \binom{k+\left\lfloor\beta_{p} t\right\rfloor-1}{k-1}
$$

Routine (but tedious) calculations with Stirling's formula reveal that

$$
\log \binom{k+\left\lfloor\beta_{p} t\right\rfloor-1}{k-1}=t \log \left(1+\beta_{p}\right)+t \beta_{p} \log \left(1+1 / \beta_{p}\right)+O(\log t)
$$

and so

$$
\begin{aligned}
\log d_{k}(n) & =t \sum_{p \leq z} \log \left(1+\beta_{p}\right)+t \sum_{p \leq z} \beta_{p} \log \left(1+1 / \beta_{p}\right)+O\left(t^{1 / s}\right) \\
& =t \log \left(\prod_{p \leq z}\left(1-p^{-s}\right)^{-1}\right)+t s \sum_{p \leq z} \frac{\log p}{p^{s}-1}+O\left(t^{1 / s}\right) \\
& =t\left(\log \zeta(s)+O\left(z^{1-s}\right)\right)+t s\left(-\frac{\zeta^{\prime}}{\zeta}(s)+O\left(z^{1-s}\right)\right)+O\left(t^{1 / s}\right) \\
& =t\left(\log \zeta(s)+\frac{s}{\kappa}\right)+O\left(t^{1 / s}\right) .
\end{aligned}
$$

The final right-hand side is asymptotic to $t \kappa^{-1} F(\kappa)$, as $z \rightarrow \infty$. Since t is asymptotic to $\kappa \log n$, the theorem follows.

3. When $k / \log n \rightarrow \infty$: Proof of Theorem 2

By (5), it suffices to show that as $\kappa \rightarrow \infty$,

$$
F(\kappa)=\frac{\log \kappa}{\log 2}+\frac{1+\log \log 2}{\log 2}+o(1)
$$

Since $\kappa^{-1} \rightarrow 0$, the value $s=s_{0}(\kappa)$ satisfying $-\frac{\zeta^{\prime}}{\zeta}(s)=\kappa^{-1}$ tends to infinity as $\kappa \rightarrow \infty$. In fact, since

$$
-\frac{\zeta^{\prime}}{\zeta}(s)=\sum_{p \text { prime }} \sum_{\ell \geq 1} \frac{\log p}{p^{\ell s}} \sim \frac{\log 2}{2^{s}}, \quad \text { as } s \rightarrow \infty
$$

we have that $2^{s_{0}(\kappa)} \sim \kappa \log 2$. Hence,

$$
s_{0}(\kappa)=\frac{\log \kappa}{\log 2}+\frac{\log \log 2}{\log 2}+o(1)
$$

Moreover,

$$
\log \zeta(s)=\sum_{p \text { prime }} \sum_{\ell \geq 1} \frac{1}{\ell p^{\ell s}} \sim \frac{1}{2^{s}} \sim \frac{1}{\log 2}\left(-\frac{\zeta^{\prime}}{\zeta}(s)\right), \quad \text { as } s \rightarrow \infty
$$

and so

$$
\begin{aligned}
F(\kappa) & =s_{0}(\kappa)+\kappa \log \zeta\left(s_{0}(\kappa)\right) \\
& =\left(\frac{\log \kappa}{\log 2}+\frac{\log \log 2}{\log 2}+o(1)\right)+(1+o(1)) \kappa \cdot \frac{1}{\kappa \log 2} \\
& =\frac{\log \kappa}{\log 2}+\frac{1+\log \log 2}{\log 2}+o(1),
\end{aligned}
$$

as desired.

Acknowledgements

The author acknowledges the generous support of the National Science Foundation under award DMS-1402268. He also thanks Enrique Treviño for helpful discussions.

References

[BP87] B. Babanazarov and Ya. I. Podzharskĭ̌, On the maximal order of arithmetic functions, Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk (1987), 18-23, 93.
[CF15] V.N. Chubarikov and G. V. Fedorov, Multiplicative and additive problems of partitions of natural numbers, Continuous and distributed systems. II, Stud. Syst. Decis. Control, vol. 30, Springer, Cham, 2015, pp. 29-36.
[DF58] A. A. Drozdova and G. A. Frĕ̆man, The estimation of certain arithmetic functions, Elabuž. Gos. Ped. Inst. Učen. Zap. 3 (1958), 160-165.
[DNR99] J.-L. Duras, J.-L. Nicolas, and G. Robin, Grandes valeurs de la fonction d_{k}, Number theory in progress, Vol. 2 (Zakopane-Kościelisko, 1997), de Gruyter, Berlin, 1999, pp. 743-770.
[Fed13a] G. V. Fedorov, The greatest order of the divisor function with increasing dimension, Math. Montisnigri 28 (2013), 17-25.
[Fed13b] , The upper limit value of the divisor function with growing dimension, Dokl. Akad. Nauk 452 (2013), 141-143.
[Hep73] E. Heppner, Die maximale Ordnung primzahl-unabhängiger multiplikativer Funktionen, Arch. Math. (Basel) 24 (1973), 63-66.
[Nic80] J.-L. Nicolas, Grandes valeurs d'une certaine classe de fonctions arithmétiques, Studia Sci. Math. Hungar. 15 (1980), 71-77.
[Nor92] K. K. Norton, Upper bounds for sums of powers of divisor functions, J. Number Theory 40 (1992), 60-85.
[Pil44] S.S. Pillai, Highly composite numbers of the tth order, J. Indian Math. Soc. 8 (1944), 61-74.
[Ram97] S. Ramanujan, Highly composite numbers, Ramanujan J. 1 (1997), 119-153, Annotated and with a foreword by J.-L. Nicolas and G. Robin.
[Ram00] , Highly composite numbers [Proc. London Math. Soc. (2) 14 (1915), 347-409], Collected papers of Srinivasa Ramanujan, AMS Chelsea Publ., Providence, RI, 2000, pp. 78-128.
[Run85] C. Runge, Über die auflösbaren Gleichungen von der Form $x^{5}+u x+v=0$, Acta Math. 7 (1885), 173-186.
[Shi80] P. Shiu, The maximum orders of multiplicative functions, Quart. J. Math. Oxford Ser. (2) 31 (1980), 247-252.
[SSR75] D. Suryanarayana and R. Sitaramachandra Rao, On the true maximum order of a class of arithmetical functions, Math. J. Okayama Univ. 17 (1975), 95-101.
[Wig07] S. Wigert, Sur l'ordre de grandeur du nombre des diviseurs d'un entier, Ark. Mat. 3 (1907), no. 18, 1-9.

Department of Mathematics, University of Georgia, Athens, GA 30602
E-mail address: pollack@uga.edu

[^0]: ${ }^{1}$ In fact, it was known to Ramanujan that for fixed k the right-hand side of (2) may be replaced with $\log k \cdot \operatorname{Li}(\log n)$ plus a small error term ([Ram00, §39], $[\mathbf{R a m} \mathbf{9 7}, \S 57]$; see also [Pil44]). More general results were given by Heppner [Hep73] and Nicolas [Nic80]. But this interesting line of thought is somewhat orthogonal to the philosophy of this note.

[^1]: ${ }^{2}$ By contrast, Chubarikov and Fedorov claim that $\limsup _{n \rightarrow \infty} \frac{\log d_{k}(n)}{\log n}=\frac{\log (1+\kappa \log (2))}{\log (2)}+$ $\kappa \log \left(1+\frac{1}{\kappa \log 2}\right)$.

