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My plan in this talk to discuss two recent papers, both on the theme
of multiplicative orders modulo p. Both papers are joint work, but
with different authors, namely ...
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Out of chaos. . .

Let a be an integer, a 6= 0,±1. For each integer m relatively prime to
a, we define

`a(m) = multiplicative order of a mod m.

In other words, `a(m) is the least positive integer ` for which

a` ≡ 1 (mod m).

Fermat/Euler: `a(m) | ϕ(m), and in particular, `a(p) | p − 1.

We are interested in understanding the distribution of `a(p) as p
varies, either with a fixed, or a belonging to a finite set.
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There is nothing like looking, if you want to find
something. – J.R.R. Tolkien

Fix a = 2 and write `(p) rather than `2(p).

There are 78498 primes p ≤ 106. And `(p) is defined for 78497 of
these.

For 29341 of these, have `(p) = p − 1.
For 22092 of these, have `(p) = (p − 1)/2.
For 5233 of these, have `(p) = (p − 1)/3.
For 3655 of these, have `(p) = (p − 1)/4.
For 1477 of these, have `(p) = (p − 1)/5.

These cases account for about 79% of the primes p ≤ 106.
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Artin’s primitive root conjecture

Conjecture (E. Artin, 1927)

Fix a ∈ Z, not a square, and not ±1. There are infinitely many primes
p for which `a(p) = p − 1. In fact, the number of primes p ≤ x with
`(p) = p − 1 is

∼ C (a)π(x),

where C (a) is an explicitly described positive constant.

When a = 2, he predicts

C (2) =
∏
p

(
1− 1

p(p − 1)

)
= 0.3739558...

Of the 78498 primes p ≤ 106, 29341 have 2 as a primitive root:
29341/78498 = 0.37378 . . . .
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So close and yet so far

Hooley (1967): Artin’s conjecture is correct ... assuming GRH!

Hooley’s work implies that (on GRH) `(p) is usually fairly close to
p − 1. If ξ(x)→∞ as x →∞, no matter how slowly, then almost all
primes p satisfy

p − 1

`(p)
< ξ(p).

“Almost all”: Asymptotically 100%.

Pappalardi and others (e.g., Kurlberg and Pomerance) have
quantitative estimates for the size of the exceptional set given ξ(.).

First half of this talk: What can we say unconditionally?
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Theorem (Heath-Brown, Gupta–Murty)

At least one of 2, 3, 5 is a primitive root for infinitely many primes p.
That is, there is some a ∈ {2, 3, 5} such that

`a(p) = p − 1

for infinitely many primes p. Moreover, 2, 3, 5 can be replaced with
any three distinct primes.

Their proofs give: � x/(log x)2 such primes p ≤ x .

Question
What kind of lower bound on `a(p) can be shown to hold for a
positive proportion of primes p? Or for almost all primes p?
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Ram Murty
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Theorem (Hooley)

Fix ε > 0. Fix a /∈ {0,±1}. For almost all primes p,

`a(p) > p1/2−ε.

Proof.
We give the proof when a = 2.

Suppose p ≤ x and `2(p) ≤ p1/2−ε ≤ x1/2−ε := X . Then

p | 2`2(p) − 1 | (21 − 1)(22 − 1) · · · (2bXc − 1).

The product is < 2X
2

and so has < X 2 = x1−2ε prime factors. And
X 2 is asymptotically 0% of π(x), as x →∞.
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This observation was extended by Matthews.

Theorem (Matthews)

Fix ε > 0 and fix a positive integer k.
Suppose a1, . . . , ak are multiplicatively independent nonzero integers.
Then for almost all primes p, the order of the subgroup mod p
generated by a1, . . . , ak is at least

p
k

k+1
−ε.

The proof is similar: With a1, . . . , ak as above, one shows there are
few primes “dividing” the rational numbers

an11 · · · a
nk
k − 1,

for nonzero tuples (n1, . . . , nk) ∈ Zk of small height, meaning
max |ni | ≤ n(1−ε)/(k+1).
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Theorem (Kurlberg–Pomerance)

For each fixed a /∈ {0,±1}, Kurlberg–Pomerance showed that a
positive proportion of primes p satisfy

`a(p) > p0.677.

Here is their simple proof: By a result of Baker–Harman, a positive
proportion of p are such that p − 1 has a prime factor > p0.677. If
`a(p) is divisible by that prime, then `a(p) > p0.677 also. If not, then
`a(p) < (p − 1)/p0.677 < p0.323, which is very rare (0% of primes, by
Hooley).
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Almost all?

Hooley’s exponent 1
2 has resisted improvement for more than 50 years.

The “record” result in this direction is due to Erdős and Murty and
replaces 1

2 − ε with 1
2 + ε(p): If ε(p) is any function tending to 0 as

p →∞, then

`a(p) > p
1
2
+ε(p)

for almost all primes p.

Komal and I showed that we can break the “1
2 -barrier” for a slightly

different question.
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Theorem (Agrawal and P., 2020)

Fix ε > 0. For almost all primes p, there is an a ∈ {2, 3, 6, 12, 18}
with

`a(p) > p8/15−ε.

Note that 8/15 = 1/2 + 1/30.

One can replace 2, 3, 6, 12, 18 with a, b, ab, a2b, ab2 for
multiplicatively independent nonzero integers a, b.
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Our proof uses the results of Hooley and Matthews, along with the
following undergraduate-level exercise, applied to the multiplicative
group mod p.

Proposition

Let G be a cyclic group of order M whose order is divisible by p but
not p2, with generator g . Let logg : G → Z/MZ be the “discrete log”
base g . Then for each a ∈ G ,

p | order of a⇐⇒ p - logg (a).
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To prove the 8/15 theorem, we look at the prime factorization of the
product

`2(p)`3(p)`6(p)`12(p)`18(p).

Let L = lcm[`2(p), `3(p)].

Observe that each of 2, 3, 6, 12, 18 has order dividing L. Hence, every
prime dividing our 5-fold product divides L.

Using the elementary group theoretic fact described above, we show
that “typically” a prime dividing L divides at least four of the five
terms in the product.
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What is it we really show about L = lcm[`2(p), `3(p)]?

Let F = blog log pc!. We show that for almost all primes p,

L4 | F `2(p)`3(p)`6(p)`12(p)`18(p).

Note that F is small: in particular, F < pε.

Hence,
`2(p)`3(p)`6(p)`12(p)`18(p) > L4p−ε.

The result of Matthews gives L > p2/3−ε, almost always.

Hence,
`2(p)`3(p)`6(p)`12(p)`18(p) > p8/3−5ε.

Now take fifth roots and view LHS as a geometric mean.
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A remark

One can get exponents larger than 8/15 but working with larger sets.

Theorem
For each ε > 0, there is a finite set A such that, for almost all primes
p, some a ∈ A satisfies

`a(p) > p1−ε.

Consequently (Pigeonhole Principle), there is a (fixed) a ∈ A such
that

`a(p) > p1−ε

on a set of primes p of upper density at least 1/|A| > 0.

For example, there is a positive integer a such that, on a set of primes
p of positive upper density,

`a(p) > p0.999.
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One can also get this going for composite numbers.

Let `∗a(n) be the length of the period of the sequence a, a2, a3, . . .
modulo n. Then for almost all n, there is an a ∈ {2, 3, 6, 12, 18} with

`∗a(n) > n8/15−ε.

Again this goes through for a, b, ab, a2b, ab2 if a, b are
multiplicatively independent.

One can also incorporate the +ε(p) improvement of Erdős–Murty. As
an example, if ε(p)→ 0, then for almost all primes p, there is an
a ∈ {2, 3, 6, 12, 18} with

`a(p) > p8/15+ε(p).

19 of 32



Part II: Mersenne numbers

We would like to understand arithmetic properties of Mersenne
numbers 2n − 1.

As an example of a natural question, it would be good to understand
the average order of the arithmetic function

ω(2n − 1) =
∑

p|2n−1

1.

We have only very weak results on this problem: with `(p) = `2(p), it
comes down to estimating

∑
p≤x

1
`(p) , which appears very difficult.
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The situation gets easier if we replace the summand 1 with a weight
that dampens the sensitivity to small values of `(p). With this in
mind, we let

f (n) =
∑

p|2n−1

1

p
.

Then the average order problem becomes tractable:∑
n≤x

f (n) =
∑
n≤x

∑
p|2n−1

1

p

=
∑
p>2

1

p

∑
n≤x
`(p)|n

1 ≈ x
∑
p>2

1

p`(p)
.

It is not hard to prove that the sum converges and that the
approximation is justified: 1

x

∑
n≤x f (n)→

∑
p>2

1
p`(p) .
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The function f (n) was introduced by Erdős, who was interested in
large values of f (n).

One way of constructing large values of f (n) is to make n divisible by
all of the small numbers. Choose z = 1

2 log x , and let n be the lcm of
all positive integers ≤ z . Then n ≤ x (for large x). Moreover,

f (n) =
∑

p|2n−1

1

p
=
∑
`(p)|n

1

p

≥
∑

2<p≤z

1

p
.

By a theorem of Mertens, for a certain constant C0 = 0.261 . . . ,∑
p≤z

1

p
= log log z + C0 + o(1)

= log log log x + C0 + o(1).
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So we know that for all large x , there are values of n ≤ x with

f (n) ≥ log log log x − 1

2
+ C0 + o(1).

In 1971, Erdős proved the remarkable result that this inequality is
sharp up to the constant addend: For some constant C , all large real
numbers x , and all n ≤ x ,

f (n) ≤ log log log x + C .
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Paul Erdős
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Theorem (Engberg, 2014)

Assume the GRH and the Elliott–Halberstam Conjecture. There is a
constant C1 ≈ 0.522 such that the following holds: For all large x,
there are values of n ≤ x for which

f (n) ≥ log log log x − 1

2
+ C0 + C1 + o(1).

This is sharp, in the sense that the reverse inequality holds for all
n ≤ x, as x →∞.

Here C1 =
∫∞
1 ρ(u)u−1 du, where ρ(u) is Dickman’s rho-function

(stay tuned).
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In the interests of time, I will focus on the lower bound implicit in the
theorem.

Once again, take n the lcm of the positive integers not exceeding
z := 1

2 log x , so that n ≤ x . Then

f (n) ≥
∑

2<p≤z

1

p

+
∑
p>z
`(p)|n

1

p

.

Since `(p) | p − 1, we can bound the remaining contribution from
below: ∑

p>z
`(p)|n

1

p
≥
∑
p>z
p−1|n

1

p
.
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Since `(p) | p − 1, we can bound the remaining contribution from
below: ∑

p>z
`(p)|n

1

p
≥
∑
p>z
p−1|n

1

p
.

If p − 1 | n, then P(p − 1) ≤ z . We argue that∑
p>z
p−1|n

1

p
=

∑
p>z

P(p−1)≤z

1

p
+ o(1).

To understand this last sum, we need to understand the frequency
with which shifted primes p − 1 have only small prime factors.
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Dickman: For each fixed u ≥ 0, the limiting proportion of n ≤ x with
P(n) ≤ x1/u exists. We call this ρ(u); that is,

ρ(u) = lim
x→∞

1

x
#{n ≤ x : P(n) ≤ x1/u}.

The function ρ(u) is positive but decays rapidly as u →∞, roughly
like u−u.

Granville: Assume the Elliott–Halberstam Conjecture. For each fixed
u ≥ 0, the limiting proportion of p − 1 ≤ x with P(p − 1) ≤ x1/u is
also given by ρ(u).
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Using Granville’s theorem, we prove (under EHC) that the function of
z given by ∑

p>z
P(p−1)≤z

1

p

converges as z →∞ to∫ ∞
1

ρ(u)u−1 du =: C1.

Collecting estimates shows (under EHC) that for all large x , there is
an integer n ≤ x with

f (n) ≥ log log log x − 1

2
+ C0 + C1 + o(1).

In fact, we can take n as the lcm of the numbers ≤ 1
2 log x .
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We prove that this is sharp by establishing that the same expression
serves as an upper bound, valid for all n ≤ x . How? Overarching
arguments are similar, but now need GRH.

Why? We replaced `(p) with p − 1 above. GRH is used to show that
this doesn’t make much difference, since the ratio (p − 1)/`(p) is
usually small.
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The method also allows us to handle certain relatives of f (n). For
example, let

g(n) =
∑

d |2n−1

1

d
.

Note that this is equal to

σ(2n − 1)/(2n − 1),

where σ is the usual sum-of-divisors function.

Assuming GRH and EHC, Zeb and I prove that as x →∞,

max
n≤x

g(n) ∼ 1

2
eγ+C1 log log x .
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Thank you your attention!
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