
MAXIMALLY ELASTIC QUADRATIC FIELDS

PAUL POLLACK

Abstract. Recall that for a domain R where every nonzero nonunit factors into irreducibles, the
elasticity of R is defined as

sup
{s

r
: π1 · · ·πr = ρ1 · · · ρs, with all πi, ρj irreducible

}
.

We call a quadratic field K maximally elastic if the ring of integers of K is a UFD and each element of
{1, 3

2 , 2,
5
2 , 3, . . . }∪{∞} appears as an elasticity of infinitely many orders inside K. This corresponds

to the orders in K exhibiting, to the extent possible for a quadratic field, maximal variation in terms
of the failure of unique factorization. Assuming the Generalized Riemann Hypothesis, we prove
that K = Q(

√
2) is universally elastic, and we provide evidence for a conjectured characterization

of maximally elastic quadratic fields.

1. Introduction

Let R be an atomic domain, meaning an integral domain where every nonzero nonunit factors into
irreducibles. The elasticity ρ(R) is defined as the supremum of all ratios s/r, where r and s range
over those pairs of positive integers for which

π1 · · · πr = ρ1 · · · ρs for some irreducibles πi, ρj of R.

This concept was introduced by Valenza [Val90] in the context of rings of integers of number fields.
Later this same notion was considered for arbitrary Dedekind domains with finite class group by
Steffan [Ste86] (who however did not use the term ‘elasticity’).1 In the general form appearing
here, the definition is due to Anderson–Anderson [AA92].

As a simple illustration, ρ(R) = 1 precisely when two factorizations into irreducibles of the same
nonzero nonunit element always have the same length. In this case, the domain R is called a
half-factorization domain (or HFD). Actually, the study of HFDs predates the notion of elasticity;
Carlitz showed in 1960 that the ring of integers ZK of a number field K is half-factorial exactly
when K has class number 1 or 2 [Car60].

For number fields K the elasticity of ZK is completely determined, as a function of the class group
of K, in work of Valenza (op. cit.), Steffan (op. cit.), and Narkiewicz [Nar95]: It is 1 if K is a
UFD and otherwise is half the Davenport constant of the class group of K. (While the Davenport
constant lurks in the background of our work below, it will not be used explicitly, and so we refer
the reader to the cited papers for the definition.) Less is known about elasticity of nonmaximal
orders, although several quite general theorems of Halter-Koch [HK95] can be applied here. For
example, suppose O is an order in the number field K. Then ρ(O) <∞ if and only if, for every
prime ideal P of O, there is precisely one prime ideal of ZK lying above P ; this is [HK95, Corollary
4]. Halter-Koch’s work also provides useful upper and lower bounds on ρ(O), although it is still a
non-routine matter in most instances to compute the exact value.

2020 Mathematics Subject Classification. Primary 13F15; Secondary 11R11, 11R54.
1The publication dates are misleading here; Valenza’s manuscript was submitted already in 1980.
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Perhaps unsurprisingly, the orders for which the most is known are those belonging to quadratic
number fields. In [PL01], M. Picavet-L’Hermitte calculates ρ(O) whenever O is a quadratic order
of class number 1. (The definition of the class group of an order is recalled in §2 below.) Necessary
and sufficient conditions for a quadratic order O to be half-factorial have given by Halter-Koch
[HK83] and Coykendall [Coy01]. In [Coy01] (and [CC00]) one also finds the remarkable result that
Z[
√
−3] is the unique nonmaximal imaginary quadratic half-factorial order.

Coykendall conjectured (op. cit.) that Z[
√
2] contains infinitely many orders that are HFDs. This

conjecture was resolved by the author in [Pol] under the assumption of the Generalized Riemann
Hypothesis (GRH).2 In this paper we prove, again conditionally on GRH, that Z[

√
2] enjoys a

much stronger property.

It will be shown below (see Lemma 2.2) that the elasticity of any quadratic order O belongs to the
set

E := {1, 3
2
, 2,

5

2
, 3, . . . } ∪ {∞}.

We call a quadratic field K maximally elastic if (a) the maximal order of K is a UFD, and (b)
each element of E occurs as the elasticity of infinitely many orders in O. This definition expresses
the requirement that K exhibit the maximal possible variation in the factorization behavior of
its orders. (Note that it would not be sensible to strengthen (a) to require infinitely many orders
to be UFDs. UFDs are integrally closed and so only the maximal order has a shot at possessing
unique factorization.)

Theorem 1.1 (conditional on GRH). Q(
√
2) is maximally elastic.

It is natural to wonder how unique Q(
√
2) is in this regard. As explained in [Pol], results of

Halter-Koch (op. cit.), Coykendall (op. cit.), and Alan [Ala16] imply that for a quadratic field K
to contain infinitely many half-factorial orders, it is necessary that K be real, have class number 1
or 2, and that the fundamental unit of K have norm −1. Thus, the following conjecture is the
most optimistic one could hope for.

Conjecture 1.2. Let K be a real quadratic field with class number 1 and fundamental unit of
norm −1. Then K is maximally elastic.

In §4 we provide what we view as strong evidence for Conjecture 1.2. Namely, we show that
Conjecture 1.2 follows from the GRH and a plausible-seeming hypothesis (Conjecture 4.1) on the
distribution of certain special primes associated to K.

Without assuming any unproved hypothesis, it was proved in [Pol] that some real quadratic field K
possesses infinitely many HFD orders. It seems to be a difficult problem to prove unconditionally
the existence of a maximally elastic quadratic field. We hope the interested reader will take up
this challenge.

2. Algebraic groundwork for the proof of Theorem 1.1

Lemma 2.1. Let O be an order in a quadratic field K. If π is an element of O for which |Nπ| is
prime, then π is prime in O.

2For us GRH refers to the claim that all nontrivial zeros of all Dedekind zeta functions lie on ℜ(s) = 1
2 .
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Proof. For any quadratic order O and any nonzero α ∈ O, it is well-known that |O/αO| = |Nα|.
(See for instance Exercise 7.14 on p. 120 of [Cox22], whose solution appears on p. 382 of the same
reference.) So in our setup, O/πO ∼= Fp for the prime number p = |Nα|. Hence, πO is a prime
ideal of O and π is a prime element of O. □

When m is a nonzero integer, we write Ω(m) for the number of rational primes dividing m, counted
with multiplicity. For example, Ω(15) = Ω(−9) = 2.

Lemma 2.2. Let O be an order in a quadratic field K. Then

(1) ρ(O) =
1

2
sup{Ω(Nπ) : irreducible π ∈ O}.

Proof. Here and below we use a tilde to denote conjugation in K. If π is irreducible and Ω(Nπ) = r,
we may write ππ̃ = ±p1 · · · pr with all the pi rational primes. After decomposing the pi into
irreducibles of O, we are left with a product of two irreducibles equal to a product of at least r
irreducibles. Hence, ρ(O) ≥ 1

2
r = 1

2
Ω(Nπ). This proves the lower bound implicit in (1) and so

establishes (1) whenever the right-hand side there is infinite.

Now suppose the right-hand side of (1) is finite, say equal to R. Clearly R ≥ 1, since each rational
prime p inert in K is irreducible in O, and 1

2
Ω(Np) = 1 for these p.

Take any two factorizations of the same nonzero nonunit element into irreducibles, say

π1 · · · πr = ρ1 · · · ρs,

arranged so that r ≤ s. If any ρj is prime in O, it must divide some πi; canceling, we arrive at
two factorizations with r − 1 and s− 1 irreducibles, respectively. If any of the primes on the new
right-hand side is irreducible, we can cancel again. Continuing, we are led to a product of r − k
irreducibles equal to one of s− k irreducibles (for some k ≥ 0), say

π′
1 · · · π′

r−k = ρ′1 · · · ρ′s−k,

where none of the ρ′j are prime in O. If r − k = 0, then s− k = 0, so s = k = r and s/r = 1 ≤ R.

Otherwise, 0 < r − k ≤ s− k, and s
r
≤ s−k

r−k
. By Lemma 2.1, the norm of each ρ′j has at least two

prime factors, and so

R(r − k) ≥ Ω(N(π′
1 · · · π′

r−k)) = Ω(N(ρ′1 · · · ρ′s−k)) ≥ 2(s− k).

Hence, s
r
≤ s−k

r−k
≤ 1

2
R, which completes the proof of the upper bound in (1). □

Remarks. In the terminology of [AA92], the mapping α 7→ Ω(Nα) is a length function on O. Our
proof of the upper bound half of (1) follows the argument for Theorem 2.1 in [AA92].

Recall that the orders in a quadratic field K are naturally parametrized by positive integers f : If
O is an order in K, then its index (as an additive subgroup) f := [ZK : O] is finite, and

O = {α ∈ ZK : α ≡ a (mod fZK) for some a ∈ Z}.

Conversely, given f ∈ Z>0 this last display defines an order in ZK with index f . See for instance
[Cox22, p. 105]. We refer to f as the conductor of O. In the sequel, the order of conductor f will
be denoted Of . The ambient field K will always be clear from context.
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Let O be an order of conductor f in a quadratic field K. With IK the group of fractional ideals of
K, we let IK(f) denote the subgroup of IK generated by those nonzero ideals of ZK comaximal
with fZK . (So IK(1) = IK .) Write PK,Z(f) for the subgroup of IK(f) generated by the ideals αZK ,
where α ≡ a (mod fZK) for some rational integer a coprime to f . The (ring) class group Cl(O) of
O is defined as the quotient IK(f)/PK,Z(f). The class number of O is h(O) := #Cl(O). We write
h(K) for the class number of K, corresponding in this picture to O = ZK .

For real quadratic K, the numbers h(O) and h(K) are related by the following relative class number
formula; this is proved as Theorem 2 on p. 217 of [Coh80].

Relative class number formula. Let K be a real quadratic field with discriminant ∆ and
fundamental unit ε0. Let O be the order of conductor f inside K. Then

h(O) = h(K)ψ∆(f)/u,

where

ψ∆(f) := f
∏
p|f

(
1−

(
∆

p

)
p−1

)
,

and u (the unit index of O) is the least positive integer with εu0 ∈ O.

The next lemma is due essentially to Weber [Web82]. We sketch a modern proof.

Lemma 2.3. Let O be an order in a quadratic field K. Every class in Cl(O) is represented by
infinitely many degree one prime ideals of ZK.

Proof (sketch). Let f be the conductor of O. The group Cl(O) = IK(f)/PK,Z(f) is a generalized
ideal class group of K for the modulus fZK . By the existence theorem of global class field
theory, there is an abelian extension L/K for which the Artin map sets up an isomorphism
Cl(O) ∼= Gal(L/K). (See [Cox22, Chapter 8] for a lucid discussion of the main statements of global
class field theory.) Applying the Chebotarev density theorem to L/K, the set of prime ideals of
ZK (comaximal with fZK) that represent a given class in Cl(O) has Dirichlet density 1/h(O). As
the prime ideals of degree larger than 1 make up a set of density zero, the lemma follows. □

Lemma 2.4. Let K be a quadratic field of class number 1. Let O be the order of conductor pk

inside K, where p is an odd prime inert in K and k ∈ Z>0. Then Cl(O) is cyclic.

Proof. Write K = Q(
√
D) with D squarefree. Choose w ∈ ZK whose mod pZK reduction generates

the multiplicative group of the finite field ZK/pZK . Then as shown by Halter-Koch [HK72], the

group G := (ZK/p
kZK)

× has as a basis the mod pkZK images of g1 := wp2k−2
, g2 := 1 + p

√
D, and

g3 := 1 + p; furthermore, these elements have respective orders p2 − 1, pk−1, and pk−1 in G.

Hence, if H is any subgroup of G containing g3 mod pkZK , then G/H is generated by the mod
pkZK reductions of g1 and g2. Since g1 and g2 have coprime orders in G/H, it follows that G/H is
cyclic with generator g1g2.

To deduce the lemma, we use (for the first time in this proof) that ZK is a PID. There is a
surjective homomorphism G→ Cl(O) mapping α mod pkZK to the class of the ideal αZK . Since
g3ZK ∈ PK,Z(p

k), the corresponding kernel H contains g3 mod pk, and Cl(O) ∼= G/H. □
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The next two lemmas are our workhorse results; they compute the elasticities of the orders we will
use to prove Theorem 1.1.

The following basic observation will be used repeatedly in subsequent arguments. Let K be a
quadratic field and let f ∈ Z>0. Suppose α, β ∈ Of and that β divides α in ZK . Suppose further
that β ≡ b (mod fZK), where b is a rational integer with gcd(b, f) = 1. Then β divides α in Of .
For the proof, write α = βγ and reduce mod fZK . If α ≡ a (mod fZK) with a ∈ Z, then γ ≡ ab−1

(mod f), where b−1 denotes a (rational integer) inverse of b mod fZK . Thus, γ ∈ Of .

Lemma 2.5. Let K be a quadratic field of class number 1. Let O be an order of conductor pk in
the quadratic field K, where p is an odd prime inert in K and k ∈ Z>0. Let h be the class number
of O. Then

ρ(O) = k +
1

2
(h− 1).

Proof. Using Lemma 2.3, let P be a degree one prime ideal of ZK that is comaximal with pZK

and generates Cl(O). Write P = πZK , with π ∈ ZK .

To bound ρ(O) from below, we will show that at least one of α := pkπh−1 and α′ := pkπh−1ε0
must be irreducible in O. The lower bound half of the lemma then follows from Lemma 2.2, since
1
2
Ω(Nα) = 1

2
Ω(Nα′) = k + 1

2
(h− 1).

Suppose α = βγ, where β and γ are nonunits of O. After changing the signs of β and γ if necessary,
we can write

β = paπbεc0, γ = pa
′
πb′εc

′

0 ,

where a, b, c and a′, b′, c′ are nonnegative integers with a+ a′ = k, b+ b′ = h− 1, and c+ c′ = 0. If
a = 0, then πbεc0 ∈ O, implying that P b represents the identity of Cl(O). Since 0 ≤ b < h while P
has order h in Cl(O), this forces b = 0, contradicting that β is a not a unit. Thus a ̸= 0. Similarly,
a′ ̸= 0. Since a and a′ are positive integers summing to k, both a, a′ < k. It follows that πbεc0 and
πb′εc

′
0 belong to Op. Hence,

(2) πh−1 = (πbεc0)(π
b′εc

′

0 ) ∈ Op.

An entirely analogous argument shows that if α′ is not irreducible in O, then

πh−1ε0 ∈ Op.

So if neither α nor α′ is irreducible, then πh−1 and πh−1ε0 both belong to Op. Let u, u
′ be rational

integers with πh−1 ≡ u (mod pZK), π
h−1ε0 ≡ u′ (mod pZK). Since πZK and pZK are comaximal,

both u and u′ are coprime to p. Then ε0 ≡ u′u−1 (mod pZK), where u
−1 is a rational integer that

inverts u mod pZK . Hence ε0 ∈ Op.

We can obtain a contradiction as follows. Since P generates Cl(O), it also generates Cl(Op). (We
use here that IK(p) = IK(p

k) while PK,Z(p
k) ⊆ PK,Z(p), so that Cl(Op) can be viewed as a quotient

of Cl(O) = Cl(Opk).) By (2), P h−1 is the identity of Cl(Op), and therefore

h(Op) | h− 1 = h(O)− 1.

On the other hand, h(Op) | h(O). Hence, h(Op) = 1. But ε0 ∈ Op, so that the relative class
number formula makes the contrasting assertion that h(Op) = p+ 1.

To argue for the upper bound on ρ(O), we let α be an arbitrary irreducible of O and we factor α
over ZK , say α = peπ1 · · · πrε, where e ≥ 0, the πi are primes of ZK generating ideals comaximal
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with pZK , and ε is a unit. (We include ε in our potential factorization to handle the case when
r = 0; otherwise, it can be absorbed into one of the πi.)

If any of the πi lie above a prime q that is inert in ZK , then q divides α in ZK , and q is an element
of O for which qZK and pZK are comaximal. So we are set up to apply our ‘basic observation’ and
conclude that q divides α in O. Since q is not a unit, it must be that α is an associate of q. Then
1
2
Ω(Nα) = 1 ≤ k + 1

2
(h− 1). So for the sake of proving our upper bound, we can suppose each of

the πi lie above rational primes that are split or ramified in K. In particular, each Nπi is itself a
rational prime (up to sign).

Suppose that r ≥ h. In this case, some nonempty subsequence of π1ZK ,. . . , πhZK multiplies to the
identity in Cl(O). (Here is the easy proof, well-known in the theory of Davenport constants: If
none of the h ideals π1ZK , π1π2ZK , . . . , π1 · · · πhZK represents the identity in Cl(O), the pigeonhole
principle forces two of these to coincide in Cl(O), say π1 · · · πiZK = π1 · · · πjZK , with i < j. Then
πi+1 · · · πjZK is trivial in Cl(O).) Thus, after possibly reordering the πi, we can write

π1 · · · πjZK = γZK ,

for some j ∈ {1, 2, . . . , h} and some γ ∈ O. Observe that γ divides α in ZK and that γZK is
comaximal with pZK , so that γ divides α in O. Since γ is not a unit in O, it must be that α is a
ZK-associate of π1 · · · πj, forcing

1

2
Ω(Nα) =

1

2
j ≤ 1

2
h < k +

1

2
(h− 1).

So for the sake of proving our target upper bound, we can assume r ≤ h− 1.

We can also assume that e ≤ k: If e > k, then writing α = p · (pe−1π1 · · · πr) yields a nontrivial
factorization of α in O. Since e ≤ k and r ≤ h− 1,

1

2
Ω(Nα) = e+

1

2
r ≤ k +

1

2
(h− 1),

and the lemma is proved. □

Lemma 2.6. Let K be a real quadratic field of class number 1. Let p be a prime inert in K with
h(Op) = 1. Suppose that q is a prime distinct from p which is inert in K and that

h(Oq) = h(Oqk) = 2,

where k ∈ Z>0. Suppose also that gcd(q q+1
2
, p+ 1). Then ρ(Opqk) = k + 1

2
.

Proof. We write ∆ for the discriminant of K and we let O = Opqk . We start by showing that
h(O) = 2. Since Op has class number 1 while Oqk has class number 2, the order Op has unit index
ψ∆(p) = p+ 1 while Oqk has unit index 1

2
ψ∆(q

k) = 1
2
(q + 1)qk−1. As gcd(ψ∆(p),

1
2
ψ∆(q

k)) = 1, it

follows that O has unit index 1
2
ψ∆(p)ψ∆(q

k) = 1
2
ψ∆(pq

k). Thus, h(O) = 2.

Next, we exhibit an irreducible α in O with Ω(Nα) = 2k+1; by Lemma 2.2, this will show that the
elasticity is at least as large as claimed. Let P be a degree one prime ideal of ZK comaximal with
pqZK and representing the nontrivial ideal class of Cl(Oq). Write P = πZK . Since Cl(Op) = 1, we
have πεa0 ∈ Op for some a ∈ Z. We let

α = qkπεa0.
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Clearly, α ∈ O and Ω(Nα) = 2k + 1, so we focus on proving that α is irreducible in O. After
reordering and possibly changing signs, any factorization of α over ZK has the form

qk1εa10 · qk2πεa20 ,
where k1 + k2 = k and a1 + a2 = a. For the factorization to be nontrivial, we need that k1 > 0, so
that k2 = k − k1 < k. But then the second factor above cannot land in O: qk2πεa20 ∈ O implies
πεa20 ∈ Oqk−k2p ⊆ Oq, and this contradicts the choice of P .

To prove the elasticity is no larger than claimed, we let α be any irreducible of O and we show
Ω(α) ≤ 2k + 1. We can factor α over ZK as

paqbπ1 · · · πrε,
where a and b are nonnegative integers, π1, . . . , πr (with r ≥ 0) are primes of ZK generating ideals
comaximal with pqZK , and ε is a unit of ZK .

As in the last proof we can assume each Nπi is prime in Z (up to sign); otherwise, Ω(Nα) ≤ 2 <
2k + 1. Also, a ≤ 1 and b ≤ k; otherwise, we could have factored α over O as p · α

p
or q · α

q
.

Suppose that r > 1. Then either π1ZK , π2ZK , or π1π2ZK represents the identity of Cl(O) and so
π1, π2, or π1π2 has a ZK-associate in O. This associate is a ZK-divisor of α and so (by our basic
observation) also an O-divisor of α. Since α is irreducible over O, this implies Ω(Nα) ≤ 2 < 2k+1.
Summarizing, we may assume b ∈ {0, 1, . . . , k} and that a, r ∈ {0, 1}.

So to have Ω(Nα) > 2k + 1, either α = pqkε or α = pqkπ1ε. Neither is possible. If α = pqkε, then
α admits the nontrivial O-factorization α = pε−a

0 · qkεεa0, where a ∈ Z is chosen to ensure ε−a
0 ∈ Oqk

and εεa0 ∈ Op. Here the conditions on a can be satisfied simultaneously as they amount to putting
a in certain residue classes modulo 1

2
(q+1)qk−1 and modulo p+1, and gcd(1

2
(q+1)qk−1, p+1) = 1.

Similarly, we can factor pqkπ1ε over O as pε−a
0 · qkπ1εεa0 for a suitably chosen integer a. Here it is

crucial there be some ZK-associate of π1ε belonging to Op, which is guaranteed by h(Op) = 1. □

The next two lemmas will be proved by analytic methods in §3.

Lemma 2.7 (assuming GRH). Let K = Q(
√
2). For each positive integer h not divisible by 4,

there are infinitely many primes p that are inert in K and have h(Op) = h.

Lemma 2.8 (assuming GRH). Let K = Q(
√
2). There are infinitely many primes p inert in K

with gcd(p+ 1, 15) = 1 and h(Op) = 1.

We finish this section by showing how to complete the proof of Theorem 1.1 assuming Lemmas 2.7
and 2.8.

Lemma 2.9. Let K be a quadratic field, and let p be an odd prime. Suppose η ∈ ZK is congruent,
modulo pZK, to a rational integer that is relatively prime to p. If η ∈ Opi \ Opi+1, then ηp ∈
Opi+1 \ Opi+2.

Proof. By hypothesis, η ∈ Op and so i ≥ 1. Write η = u+ piν, where u ∈ Z and ν ∈ ZK . Then
gcd(u, p) = 1 and ν /∈ Op. Taking pth powers, ηp = up + up−1pi+1ν + p2i+1γ for some γ ∈ ZK .
(We use here that p is odd.) Thus, ηp ≡ up (mod pi+1ZK), so that ηp ∈ Opi+1 . If ηp ∈ Opi+2 ,
then up + up−1pi+1ν is congruent, mod pi+2ZK , to some rational integer v. Necessarily v ≡ up
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(mod pi+1Z) and up−1ν ≡ v−up

pi+1 (mod pZK). Selecting u
′ ∈ Z as a multiplicative inverse of u mod

p, we deduce that ν ≡ u′p−1 v−up

pi+1 (mod pZK). Here the right-hand side lies in Z, and so ν ∈ Op

after all, a contradiction. □

Proof of Theorem 1.1. From the result of Halter-Koch alluded to in the introduction [HK95,
Corollary 4], the elasticity ∞ occurs for any order whose conductor is divisible by a prime split in
K. To see this, note that if p is any prime dividing the conductor f of O, then P := pZ+ fZK is
a prime ideal of O, and every prime of ZK that lies above p also lies above P . So if p is split in
K, then there are two distinct prime ideals of ZK lying above P , yielding ρ(O) = ∞. (It is also
possible to prove ρ(O) = ∞ in these cases using Lemma 2.2.)

Now we turn to the finite elasticities. By Lemmas 2.5 and 2.7, each elasticity from {1, 3
2
, 2, 5

2
, . . . }

is realized infinitely often, except possibly those of the form 2m+ 1
2
, with m ∈ Z>0. To fill in the

gaps, we use Lemma 2.6. Let q = 5. The order O5 has unit index 3, with ε30 = 7+ 5
√
2 ∈ O5 \ O25.

Repeated application of Lemma 2.9 yields ε3·5
j−1

0 ∈ O5j \ O5j+1 , for each j = 1, 2, 3, . . . . So for
every positive integer k, the order O5k has unit index 3 · 5k−1 so that h(O5k) = 2. Taking p as in
the conclusion of Lemma 2.8, and applying Lemma 2.6, we find ρ(O5kp) = k + 1

2
. Varying k and p

completes the proof of the theorem. □

3. Orders in Z[
√
2] with inert prime conductor and prescribed class number:

Proofs of Lemmas 2.7 and 2.8

Throughout this section, K = Q(
√
D) (with D squarefree) is a real quadratic field with discriminant

∆ and fundamental unit ε0 of norm −1. For each rational prime p inert in K, we let

u = u(p) denote the unit index of Op,

u′ = u′(p) denote the order of η := ε20 viewed in the group (ZK/pZK)
×.

While it is u that is directly relevant to the proof of Lemma 2.7, it is u′ that our methods allow us
to control. Fortunately, u and u′ are easily related.

Since ηu
′
= ε2u

′
0 ≡ 1 (mod pZK), we see that εu

′
0 ≡ ±1 (mod pZK), and so u | u′. To get a relation

in the opposite direction, observe that εu0 ≡ a (mod pZK) for some rational integer a coprime to p,
and hence ηu(p−1)/2 = (εu0)

p−1 ≡ 1 (mod pZK). Thus, u
′ | up−1

2
. Also, ηp+1 ≡ η ·ηp ≡ η · η̃ ≡ Nη ≡ 1

(mod pZK). Hence, u
′ | p+ 1 and so u′ | gcd(up−1

2
, p+ 1) | u gcd(p−1

2
, p+ 1) | 2u. We conclude that

u and u′ share the same odd part.

To understand the 2-part of u, we take cases according to the residue class of p modulo 4. Notice
that

(ε
(p+1)/2
0 )2 ≡ ε0 · εp0 ≡ ε0 · ε̃0 ≡ −1 (mod pZK).

If p ≡ −1 (mod 4), then
√
−1 /∈ Fp, and so ε

(p+1)/2
0 /∈ Op. So u | p+ 1 while u ∤ p+1

2
, implying that

the 2-part of u is the same as that of p+ 1. If p ≡ 1 (mod 4), then
√
−1 ∈ Fp, and ε

(p+1)/2
0 ∈ Op.

Thus, u divides the odd number p+1
2
, and u itself is odd.

With h as in Lemma 2.7, let h′ denote the odd part of h. To prove Lemma 2.7 we will produce
primes p, inert in K, satisfying

p ≡ −1 (mod h′), where u′ has the same odd part as
p+ 1

h′
,
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and also

p ≡

{
−1 (mod 4) if h is odd (i.e., h = h′),

1 (mod 4) if h is even (i.e., h = 2h′).

Our work in the last few paragraphs implies that u = p+1
h

for such primes p, and so h(Op) = h.
Conversely, any prime p inert in K with h(Op) = h satisfies these two displayed conditions.

The primes we seek will come out of an application of the (GRH-conditional) Chebotarev density
theorem by adapting a method of Chen [Che02] (see also related work of Roskam [Ros00]). A very
similar adaptation was carried out by [Kat03]; however Kataoka’s main theorems control a quantity
subtly different than the ones relevant to our work. Rather than attempt to shoehorn Kataoka’s
intermediate calculations into our narrative we have chosen to keep the exposition self-contained.

The following version of Chebotarev’s theorem is taken from Serre’s paper [Ser81]; let K = Q in
equation 20R there. Below, Li(x) denotes the logarithmic integral, defined by Li(x) =

∫ x

2
dt/ log t,

while FrobL/Q, p refers to the conjugacy class in Gal(L/Q) of Frobenius elements of primes above p.

Chebotarev density theorem (assuming GRH). Let L/Q be a Galois extension, and let C
be a subset of Gal(L/Q) stable under conjugation. For all x ≥ 2,

#{primes p ≤ x : FrobL/Q, p ⊆ C } =
|C |

[L : Q]
Li(x) +O

|C |x1/2 log
(
[L : Q]x

∏
ℓ|∆L

ℓ

) .

Here the implied constant is absolute.

All number fields appearing below will be subfields of C. For each odd positive integer d coprime
to ∆, we let

Ld = K(ζd, ε
1/d
0 ).

Here and below, ζm = exp(2πi/m), and roots of odd order of real numbers are understood as
taking their real values.

Lemma 3.1. Let d be an odd positive integer with gcd(d,∆) = 1. Then Ld/Q is Galois with
[Ld : Q] = 2d · φ(d).

Proof. Since ε−1
0 = −ε̃0, we see that ε̃

1/d
0 = −1/ε

1/d
0 . So we can view Ld as the splitting field over

Q of (xd − ε0)(x
d − ε̃0) = x2d − Tr(ε0)x

d − 1, implying that Ld/Q is Galois.

To compute the degree of this extension, we first observe that K ⊆ Q(ζ|∆|) and that Q(ζ|∆|) is
linearly disjoint from Q(ζd) (since gcd(d,∆) = 1). Thus K is linearly disjoint from Q(ζd) and
[K(ζd) : K] = φ(d). Next, we claim that ε0 is not an ℓth power in K(ζd) for any prime ℓ dividing d.

Suppose otherwise. Then K(ε
1/ℓ
0 ) ⊆ K(ζd). Since K(ζd) is abelian over K, it must be that K(ε

1/ℓ
0 )

is also abelian over K. Taking any σ ∈ Gal(K(ε
1/ℓ
0 )/K), we see that

σ(ε
1/ℓ
0 )

ε
1/ℓ
0

is a real ℓth root of

1, and so (as ℓ is odd) σ(ε
1/ℓ
0 ) = ε

1/ℓ
0 . Since this holds for every σ, it must be that ε

1/ℓ
0 ∈ K. But

this is absurd, since ε0 is the fundamental unit of K. Now Capelli’s characterization of irreducible
binomials (see [Lan02, Theorem 9.1, p. 297]) implies that xd − ε0 is irreducible over K(ζd), so that

[Ld : Q] = [K(ζd, ε
1/d
0 ) : Q] = [K(ζd, ε

1/d
0 ) : K(ζd)][K(ζd) : K][K : Q] = d · φ(d) · 2,

as desired. □
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Write ε0 =
1
2
(u0 + v0

√
D). It is important for the statement of our next lemma that every prime p

not dividing dDv0 is unramified in Ld. To prove this, notice that p is unramified in Ld whenever
the polynomial Fd(x) := x2d − Tr(ε0)x

d − 1 appearing in the proof of Lemma 3.1 has no multiple
roots in F̄p. If p ∤ d, each F̄p-root of F

′
d(x) has 2x

d = Tr(ε0) = u0, and so for x to also be a root of
Fd(x) requires 4 + u20 = Dv20 to vanish mod p.

The following lemma paves the way for an application of Chebotarev’s theorem. (Compare with
[Che02, Lemma 1.4].) Let σ0 denote the nontrivial automorphism of K/Q, and let τ denote complex
conjugation. For each odd positive integer d with gcd(d,∆) = 1, we let

Cd = {σ ∈ Gal(Ld/Q) : σ|K = σ0, σ|Q(ζd) = τ |Q(ζd), σ
2 = id.}

It is straightforward to check that Cd, viewed as a subset of Gal(Ld/Q), is stable under conjugation.

Lemma 3.2. Let d be an odd positive integer with gcd(d,∆) = 1. The following are equivalent for
primes p not dividing dDv0:

(i) p is inert in K, p ≡ −1 (mod d), and η
p+1
d ≡ 1 (mod pZK),

(ii) FrobLd/Q, p ⊆ Cd.

Proof. Suppose (i) holds, and let σ ∈ FrobLd/Q, p. Since p is inert in K, we have that σ|K ∈
FrobK/Q, p = {σ0}. So σ|K = σ0. Moreover, σ|Q(ζd) ∈ FrobQ(ζd)/Q, p, so that (recalling p ≡ −1
(mod d))

σ|Q(ζd)(ζd) = ζpd = ζ−1
d = τ(ζd);

hence, σ|Q(ζd) = τ |Q(ζd). To show σ2 = id. it suffices, in view of what has already been shown, to

check that σ2 acts trivially on η1/d.

Let P be a prime of Ld lying above p for which σ is the Frobenius element of P . Then

η1/dσ(η1/d) ≡ η1/d · (η1/d)p ≡ (((η)1/d)d)
p+1
d ≡ η

p+1
d ≡ 1 (mod P ).

Applying σ once again yields σ(η1/d)σ2(η1/d) ≡ 1 (mod P ), which compared with the previous
congruence shows

(3) σ2(η1/d) ≡ η1/d (mod P ).

It remains to promote the congruence (3) to an equality of elements. Notice that (σ2(η1/d))d =
σ2(η) = η, so that σ2(η1/d) = ζadη for some rational integer a. So from (3), P contains η1/d(ζad − 1)

and so also contains 1−ζad (since η1/d is a unit). Thus, either ζad = 1 or P contains
∏d−1

a′=1(1−ζa
′

d ) = d.
But P lies above p and p ∤ d. Hence, ζad = 1 and σ2(η1/d) = η1/d, which completes the proof that
(i) implies (ii).

Now suppose (ii) holds, and let σ ∈ FrobLd/Q, p. Starting from σ|K = σ0 and σ|Q(ζd) = τ |Q(ζd), the
reasoning from the first paragraph of the proof (now in reverse) gives that p is inert in K and that
p ≡ −1 (mod d). Continuing, (σ(η1/d))d = σ(η) = τ(η) = 1/η. Thus, σ(η1/d) = ζad/η

1/d, for some
integer a, and

η1/d = σ2(η1/d) = σ(ζad )/σ(η)
1/d = ζ−a

d · η1/d/ζad = ζ−2a
d η1/d.

Hence, ζ2ad = 1 and (as d is odd) also ζad = 1, so that σ(η1/d) = 1/η1/d. Letting P be a prime of Ld

above p having σ as its Frobenius,

η
p+1
d ≡ η1/dσ(η1/d) ≡ 1 (mod P ).
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Since P ∩ ZK = pZK , it follows that η
(p+1)/d ≡ 1 (mod pZK), finishing the proof that (ii) implies

(i). □

Lemma 3.3. |Cd| = 1 for every odd positive integer d coprime to ∆.

Proof. Since K and Q(ζd) are linearly disjoint with composite K(ζd), we have an isomorphism

Gal(K(ζd)/Q) −→∼ Gal(K/Q)×Gal(Q(ζd)/Q)

σ 7→ (σ|K , σ|Q(ζd)).

So there is a unique σ1 ∈ Gal(K(ζd)/Q) for which σ1|K = σ0 and σ1|Q(ζd) = τ |Q(ζd).

The elements of Cd are precisely those lifts σ of σ1 to an automorphism of Ld satisfying σ2 = id.

Each lift to Ld has σ(ε
1/d
0 )d = σ(ε0) = τ(ε0) = −1/ε0 and thus σ(ε

1/d
0 ) = −ζad/ε

1/d
0 , for some integer

a determined mod d. Moreover, as [Ld : K(ζd)] = d, each choice of a mod d corresponds to a
unique lift σ. Since

σ2(ε
1/d
0 ) = σ(−ζad/ε

1/d
0 ) = ε

1/d
0 ζ−2a

d ,

to satisfy σ2 = id. we must select the unique lift corresponding to a ≡ 0 (mod d). □

Proof of Lemma 2.7. We let K = Q(
√
2), which has discriminant ∆ = 8 and fundamental unit

ε0 = 1 +
√
2. Then gcd(d,∆) = 1 for all odd d and the fields Ld are unramified away from the

primes dividing 2d.

As above we let h′ denote the odd part of h. We set δ = −1 if h is odd and δ = 1 if h is even. A
prime p inert in K has h(Op) = h precisely when

(i) p ≡ δ (mod 4),

(ii) u′ and p+1
h′ share the same odd part.

We can rephrase (ii) as the requirement that h′ be the odd part of p+1
u′ . Actually, it is more

convenient to work with the weaker condition

(ii′) h′ is the largest odd factor of the y-smooth part of p+1
u′ , where y := log x.

(Recall that the y-smooth part of a positive integer is its largest divisor supported on primes not
exceeding y.) It will turn out that the difference between requiring (ii) and (ii′) is negligible.

Let P+(n) stand for the largest prime factor of n, with the convention that P+(1) = 1. Assume
x is large enough that P+(h) ≤ y. By inclusion-exclusion, we can write the count of inert p ≤ x
satisfying (i) and (ii′) as

(4)
∑
p≤x

p inert
p≡δ (mod 4)

h′| p+1
u′

∑
d odd

P+(d)≤y

d| p+1
u′h′

µ(d) =
∑
d odd

P+(d)≤y

µ(d)
∑
p≤x

p inert
p≡δ (mod 4)

dh′| p+1
u′

1.

Let us work on the inner sum. For primes p inert in K with p not dividing 2dh′,

dh′ | p+ 1

u′
⇐⇒ p ≡ −1 (mod dh′) and u′ | p+ 1

dh′

⇐⇒ p ≡ −1 (mod dh′) and η
p+1
dh′ ≡ 1 (mod pZK) ⇐⇒ FrobLdh′/Q, p ∈ Cdh′ ,
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using Lemma 3.2 for the last equivalence. The condition p ≡ δ (mod 4) can also be treated as a
Frobenius condition; it says that FrobQ(i)/Q, p is a certain singleton conjugacy class in Gal(Q(i)/Q).

We can detect the primes that simultaneously satisfy both Frobenius conditions by working in
the composite field L of Ldh′ and Q(i). We use here that the fields Q(i) and Ldh′ are linearly

disjoint. Otherwise, i ∈ Ldh′ = K(ζdh′ , ε
1/dh′

0 ). Since Ldh′/K(ζdh′) is an extension of odd degree
(in fact, degree dividing dh′), it must be that i ∈ K(ζdh′), so that K(ζdh′) = K(i, ζdh′). But
[K(ζdh′) : Q] = 2φ(dh′) whereas

[K(i, ζdh′) : Q] = [Q(
√
2, i, ζdh′) : Q] = [Q(ζ8, ζdh′) : Q] = [Q(ζ8dh′) : Q] = φ(8dh′) = 4φ(dh′),

a contradiction. This allows us to combine our conditions on FrobLdh′ , p
and FrobQ(i)/Q, p into the

single restriction that FrobL, p be a certain singleton conjugacy class of Gal(L/Q).

Since [L : Q] = 2[Ldh′ : Q] = 4dh′φ(dh′) and every prime that ramifies in L divides 2dh′, the
GRH-conditional Chebotarev theorem yields

(5)
∑
p≤x

p inert
p≡δ (mod 4)

dh′| p+1
u

1 =
1

4dh′φ(dh′)
Li(x) +O(x1/2 log(dx)).

Here and below, we suppress the dependence of implied constants on the fixed parameter h.

We now insert (5) back into (4). The total contribution of the O-terms is at most x
1
2
+o(1). Indeed,

each d with P+(d) ≤ y and µ(d) ̸= 0 has d ≤
∏

ℓ prime≤y ℓ = x1+o(1) and x1/2 log(dx) = x
1
2
+o(1),

while the number of such d does not exceed 2π(y) = xo(1). The main term is given by

Li(x)

4h′

∑
d odd

P+(d)≤y

µ(d)

dφ(dh′)
=

Li(x)

4h′φ(h′)

∑
d1 odd

P+(d1)≤y
gcd(d1,h)=1

µ(d1)

d1φ(d1)

∑
d2 odd

ℓ|d2⇒ℓ|h

µ(d2)

d22
.

Here ∑
d1 odd

P+(d1)≤y
gcd(d1,h)=1

µ(d1)

d1φ(d1)
=

∏
2<p≤y
p∤h

(
1− 1

p(p− 1)

)
=

 ∏
p>2, p∤h

(
1− 1

p(p− 1)

) · (1 +O(1/ log x))

while ∑
d2 odd

ℓ|d2⇒ℓ|h

µ(d2)

d22
=

∏
p|h′

(
1− 1

p2

)
.

Piecing everything together, and keeping in mind that Li(x) = x/ log x+O(x/(log x)2), we conclude
that the count of inert primes p ≤ x satisfying (i) and (ii′) is

Ch
x

log x
+O

(
x

(log x)2

)
for a certain positive constant Ch (expressible as an Euler product).

It remains to account for the difference between conditions (ii) and (ii′). If p satisfies (ii′) but not
(ii), then p+1

u′ has a prime factor ℓ > y. We proceed to show that such p are rare by considering
different ranges for ℓ.
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Given a prime ℓ, we can bound the number of inert p ≤ x for which ℓ | p+1
u′ via the Chebotarev

density theorem. (This is almost the same application of Chebotarev had above, but now ℓ replaces
dh′, and there is no need to bring Q(i) into the picture since we do not care about p mod 4.) We
find that the count of such p is

≪ Li(x)

ℓφ(ℓ)
+ x1/2 log(ℓx) ≪ Li(x)

ℓ2
+ x1/2 log(ℓx).

We use this estimate in the range y < ℓ ≤ x1/2/(log x)2. Summing on ℓ from this interval, we
conclude that p+1

u′ has a prime factor ℓ from here for only O(x/(log x)2) inert primes p ≤ x.

Next, we handle the range x1/2/(log x)2 < ℓ ≤ x1/2(log x)2. If p+1
u′ is divisible by such an ℓ, then

certainly p ≡ −1 (mod ℓ). For a given ℓ, the Brun–Titchmarsh inequality guarantees that there
are ≪ x/ℓ log x corresponding p ≤ x. Summing on ℓ gives an upper bound of O( x

(log x)2
log log x).

Finally, suppose p+1
u′ is divisible by an ℓ > x1/2(log x)2. Then u′ < 2x1/2/(log x)2. Hence, ηj ≡ 1

(mod pZK) for some j < 2x1/2/(log x)2 and

p divides
∏

1≤j<2x1/2/(log x)2

N(1− ηj), over Z.

Each term in the product is a nonzero integer and the jth term has absolute value exp(O(j)). So
the product has absolute value exp(O(x/(log x)4)) and thus only O(x/(log x)4) prime divisors.

Assembling the above estimates, there are only O(x(log log x)/(log x)2) inert primes p ≤ x obeying
(ii′) but not (ii). We conclude that the number of inert p ≤ x with h(Op) = h is Chx/ log x +
O(x log log x/(log x)2). We let x tend to infinity to finish the proof of the lemma. □

Proof of Lemma 2.8. Again we take K = Q(
√
2). The primes p inert in K are precisely those

p ≡ 3, 5 (mod 8). We sift the primes p ≡ 3 (mod 8), p ≤ x, removing those for which p+ 1 has an
odd prime factor at most y := log log x. By the Siegel–Walfisz theorem, the number of surviving
primes is ∑

p≤x
p≡3 (mod 8)

∑
d|p+1
d odd

P+(d)≤y

µ(d) =
∑
d odd

P+(d)≤y

µ(d)

(
Li(x)

φ(8d)
+O(x/(log x)100)

)

=
Li(x)

4

∏
2<ℓ≤y
ℓ prime

(
ℓ− 2

ℓ− 1

)
+O(x/(log x)99),

which is ≫ 1
log y

x
log x

for large x. Certainly gcd(p+ 1, 15) = 1 for all these p once y ≥ 5.

We claim that almost all the remaining p are such that the odd part of u′ and the odd part of p+1
coincide. Since u and u′ share the same odd part, and the 2-part of u agrees with the 2-part of
p+ 1 when p ≡ 3 (mod 4), we find u = p+ 1 and h(Op) = 1. So once the claim is proved, we will
have produced many primes satisfying the conclusion of Lemma 2.8.

If p survives the sieving process but the odd part of u′ is smaller than the odd part of p+1, then there
is a prime ℓ > y dividing p+1

u′ . The number of p corresponding to an ℓ with y < ℓ ≤ x1/2/(log x)2 is
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(as in the last proof)

≪
∑

y<ℓ≤x1/2/(log x)2

(
Li(x)

ℓ2
+ x1/2 log(ℓx)

)
≪ 1

y

x

log x
,

which is of smaller order than 1
log y

x
log x

. The number of p corresponding to an ℓ > x1/2/(log x)2 is

O(x log log x/(log x)2) (again, by the reasoning of the last proof), and this is also o( 1
log y

x
log x

). □

4. Discussion of Conjecture 1.2

We do not know how to prove Conjecture 1.2, even assuming GRH. But we can show that Conjecture
1.2 follows from GRH coupled with a hypothesis on the distribution of certain quadratic field
analogues of Wieferich primes.

Recall that a (rational) prime p is a Wieferich prime if p2 | 2p−1 − 1. The only known Wieferich
primes are 1093 and 3511, and it has been checked that there are no others below 1017. It seems
likely that the set of Wieferich primes is infinite but that its counting function tends to infinity
too gradually for mortals of the present age to observe. In fact, Crandall, Dilcher, and Pomerance
[CDP97] conjecture that the count of Wieferich primes up to x is ∼ log log x, as x→ ∞.

Let K be a real quadratic field with discriminant ∆ and fundamental unit ε0. For each rational
prime p,

ε
p−(∆p)
0 ∈ Op.

We say p is K-Wieferich of type 1 if p is split in K and εp−1
0 ∈ Op2 , and we say p is K-Wieferich

of type −1 if if p is inert in K and εp+1
0 ∈ Op2 . For example, 13 (type −1) and 31 (type +1) are

Q(
√
2)-Wieferich, since

(1 +
√
2)14 = 114243 + 132 · 478

√
2, and (1 +

√
2)30 = 152139002499 + 312 · 111944350

√
2.

A short gp/PARI script verifies that 13, 31, and 1546463 (type 1) are the only Q(
√
2)-Wieferich

primes up to 107.

Plausibly the count of K-Wieferich primes is ∼ log log x, as x→ ∞, for each fixed real quadratic
field K. The following radically more conservative conjecture suffices for our purposes.

Conjecture 4.1. For every fixed real quadratic field K, the limiting proportion of K-Wieferich
primes is 0%. More precisely, the count of K-Wieferich primes up to x is o(x/ log x), as x→ ∞.

The rest of this section is devoted to the proof of the following proposition.

Proposition 4.2. Conjecture 1.2 follows from Conjecture 4.1 and GRH.

Proof. Halter-Koch’s [HK95, Corollary 4] implies that the elasticity ∞ is realized by all orders Opm

(m = 1, 2, 3, . . . ), for any prime p that splits in K. (And Chebotarev’s density theorem furnishes
an endless supply of such p.) So we focus on the finite elasticities in E .

Let δ ∈ {±1}. We will show below that there are ≫ x/ log x odd primes p ≤ x that are inert in K,
satisfy p ≡ δ (mod 4), and have the odd part of u′ equal to the odd part of p+ 1. By Conjecture
4.1, this lower bound will continue to hold if we throw away p that are K-Wieferich.
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Suppose the claim to be proved. If δ = −1, then u = p + 1 for each of our primes p. Since p is
not K-Wieferich, Opk has unit index (p+ 1)pk−1, for every k = 1, 2, . . . (apply Lemma 2.9). Thus

h(Opk) = 1, so that Lemma 2.5 gives ρ(Opk) = k. If δ = 1, then u = p+1
2

and Opk has unit index
1
2
(p + 1)pk−1 for each k. Hence, h(Opk) = 2 and Lemma 2.5 gives ρ(Opk) = k + 1

2
. Varying δ, p,

and k completes the proof of Conjecture 1.

It remains to prove the claimed estimate. We borrow some ideas from [Pol, §3] (which in turn
draws from Heath-Brown’s paper [HB86]).

Write K = Q(
√
D) with D squarefree. The fields K, Q(

√
−3), and Q(

√
−1) are linearly disjoint:

Otherwise, there are three integers a1, a2, a3 ∈ {0, 1}, not all 0, with
Da1(−3)a2(−1)a3 ∈ (Q×)2.

Since D is not a square, at least one of a1 and a2 is nonzero. Then to have Da1(−3)a2(−1)a3 > 0,
it must be that a2 = a3 = 1. So 3Da1 ∈ (Q×)2, implying that D = 3 and K = Q(

√
3). But then

ε0 = 2 +
√
3 has norm 1 rather than −1.

By the Chebotarev density theorem, we can choose a prime p0 inert in K with p0 ≡ 1 (mod 3) and
p0 ≡ δ (mod 4); here the mod 3 and mod 4 conditions are to be viewed as splitting conditions on
p in Q(

√
−3) and Q(i), respectively. For each odd prime q dividing D, let uq = p0 or 4p0, chosen

so that q ∤ 1 + uq. (This is clearly possible for q > 3, while the congruence p0 ≡ 1 (mod 3) ensures
there is no obstruction for q = 3.) Choose U ∈ Z so that

U ≡ uq (mod q) for all odd primes q | D, and U ≡ p0 (mod 8),

and put V = 8D. Then gcd(U, V ) = 1, while U + 1 and V share no odd prime factors.

We now consider primes p ≡ U (mod V ). Certainly each such p ≡ p0 ≡ δ (mod 4). We can also
show that

(
∆
p

)
= −1, so that p is inert in K. To prove this last claim, recall that ∆ can be factored

as a product of prime discriminants −4,±8, and (−1)(ℓ−1)/2ℓ for prime numbers ℓ. So it suffices
to show that

(
∆∗

p0

)
=

(
∆∗

p

)
for each prime discriminant ∆∗. For ∆∗ ∈ {−4,±8}, this follows from

p ≡ U ≡ p0 (mod 8). For ∆∗ = (−1)(ℓ−1)/2ℓ, we have
(
∆∗

p

)
=

(
p
ℓ

)
; as p ≡ p0 or 4p0 modulo ℓ, the

symbol
(
p
ℓ

)
=

(
p0
ℓ

)
=

(
∆∗

p0

)
.

In what follows, we assume x ≥ 3 and that y is a real parameter with P+(|∆|) ≤ y ≤ log x. Implied
constants are to be understood as uniform in these x, y. We suppress the dependence of these
constants on K.

We sift the primes p ≡ U (mod V ), removing those for which p+ 1 has an odd prime factor not
exceeding y. Since gcd(U + 1, V ) has no odd prime factors, it is enough to carry out the sieve with
the odd primes up to y that do not divide V . Proceeding as in the last section, the Siegel–Walfisz
theorem gives that the count N1 (say) of remaining p ≤ x satisfies N1 ≫ 1

log y
x

log x
, as soon as

x exceeds a certain constant depending only on K. Furthermore, reasoning as in the proofs of
Lemmas 2.7 and 2.8, the number N2 (say) of these p for which the odd part of u′ is smaller than
that of p+ 1 is

≪ 1

y

x

log x
+
x log log x

(log x)2
.

(To carry out the Chebotarev argument here, we use that primes ℓ exceeding y are coprime
to ∆, so that Lemmas 3.1–3.3 all apply when d = ℓ.) Now choosing y as a sufficiently large
constant (depending only on K), we see that N1 > 2N2 for all x large enough in terms of K.
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Hence, N1 −N2 ≫ N1 ≫ x/ log x. This completes the proof of the claimed estimate and also of
Proposition 4.2. □

Remarks. Several questions about elasticities of general quadratic orders seem worthy of further
investigation. For instance, is it true that for every real quadratic field K, the set of elasticities
realized by infinitely many orders of K is cofinite in E? This does not seem easy but is perhaps
attackable assuming GRH and Conjecture 4.1.

If K is imaginary quadratic, it is not hard to show that each elasticity is attained by at most
finitely orders of K. To fix ideas, let K = Q(i), and let E ′ be the set of elasticities of orders in K.
Can one prove or disprove either of the following two assertions: (a) E ′ is cofinite in E , (b) (in the
opposite direction) the number of elements of E ′ not exceeding x is o(x), as x→ ∞?
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