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Abstract. For each positive integer n, we denote by ω∗(n) the number of shifted-prime divisors
p− 1 of n, i.e.,

ω∗(n) :=
∑

p−1|n

1.

First introduced by Prachar in 1955, this function has interesting applications in primality testing
and bears a strong connection with counting Carmichael numbers. Prachar showed that for a
certain constant c0 > 0,

ω∗(n) > exp

(
c0

log n

(log log n)2

)
for infinitely many n. This result was later improved by Adleman, Pomerance and Rumely, who
established an inequality of the same shape with (log log n)2 replaced by log log n. Assuming
the Generalized Riemann Hypothesis for Dirichlet L-functions, Prachar also proved the stronger
inequality

ω∗(n) > exp

((
1

2
log 2 + o(1)

)
log n

log logn

)
for infinitely many n. By refining the arguments of Prachar and of Adleman, Pomerance and
Rumely, we improve on their results by establishing

ω∗(n) > exp

(
0.6736 log 2 · log n

log log n

)
(unconditionally),

ω∗(n) > exp

((
log

(
1 +

√
5

2

)
+ o(1)

)
log n

log logn

)
(under GRH),

for infinitely many n.

1. Introduction

For each n ∈ N, let ω∗(n) count the number of shifted primes of the form p− 1 dividing n, that is,

ω∗(n) :=
∑
p−1|n

1.

This function has found interesting applications in primality testing [1] and is closely related to
counting Carmichael numbers [2]. It is easy to see that ω∗(n) ≥ 1 with equality if and only if n
is odd. On the other hand, the function ω∗ can attain fairly large values infinitely often. Indeed,
Prachar, who initiated the study of ω∗ in his influential work [16], showed that there is some
absolute constant c1 > 0 such that

ω∗(n) > exp

(
c1

log n

(log log n)2

)
(1.1)

for infinitely many n. Assuming the Generalized Riemann Hypothesis for Dirichlet L-functions
(GRH), he was able to save a log log n factor and provide a lower bound for c1. More precisely, he

1



2 KAI (STEVE) FAN AND PAUL POLLACK

proved that GRH implies the inequality

ω∗(n) > exp

((
1

2
log 2 + o(1)

)
log n

log log n

)
(1.2)

for infinitely many n. Nearly three decades later, Adleman, Pomerance and Rumely [1] improved
Prachar’s unconditional lower bound (1.1) to

ω∗(n) > exp

(
c2

log n

log log n

)
, (1.3)

along a sequence of n tending to infinity, where c2 > 0 is some absolute constant. This lower
bound has the same shape as Prachar’s GRH-conditional lower bound (1.2), up to the constant
factor. They also conjectured that the constant 1

2
log 2 in (1.2) can in fact be upgraded to log 2.

It is worth noting that the conjectured constant log 2 would be best possible, since

ω∗(n) ≤ τ(n) ≤ exp

(
(log 2 + o(1))

log n

log log n

)
for sufficiently large n [9, Theorem 317], where τ(n) denotes the number of positive divisors of n.
Interestingly, this conjecture, if true, would imply that the Carmichael function λ(n), which may
be defined as the exponent of the multiplicative group (Z/nZ)×, satisfies

lim inf
n→∞

log λ(n)

(log log n) log log log n
=

1

log 2
,

an observation first made by Erdős, Pomerance, and Schmutz [5].

The study of ω∗ was recently revived by Murty and Murty [14]. For each k ∈ N, we define the
kth moment of ω∗ by

Mk(x) :=
1

x

∑
n≤x

ω∗(n)k.

These moments encode useful information about the distribution of ω∗. A quick application of
Mertens’ theorem [9, Theorem 427] yields M1(x) = log log x + O(1). In the same paper [16],
Prachar showed that M2(x) ≪ (log x)2. In their recent work [14], Murty and Murty [14] proved
the estimate (log log x)3 ≪ M2(x) ≪ log x and conjectured the asymptotic formula M2(x) ∼
C2 log x with some constant C2 > 0. Two years later, Ding [4] achieved the order matching lower
bound M2(x) ≫ log x. More recently, Pomerance and the first author [7] established the estimate
M3(x) ≍ (log x)4 and made the more general conjecture that for each k ≥ 2 there exists a constant

Ck > 0 such that Mk(x) ∼ Ck(log x)
2k−k−1. Based on a heuristic argument, the first author [6] also

conjectured that C2 = ζ(2)2ζ(3)/ζ(6), where ζ is the Riemann zeta-function. Despite the fact that
no asymptotic formula is currently known even for a single value of k ≥ 2, quite recently Gabdullin
[8] pinned down the correct order of magnitude for Mk(x), showing that Mk(x) ≍ (log x)2

k−k−1

for every fixed k ≥ 2.

The main objective of this paper is to furnish explicit values for the constant c2 appearing in (1.3).
Perhaps a bit surprisingly, we are able to obtain unconditionally a numerical value for c2 which
is slightly larger than 2

3
log 2, hence surpassing the constant 1

2
log 2 in Prachar’s GRH-conditional

lower bound (1.2). Under GRH, our argument yields a numerical value for c2 which exceeds
(log 2)2. The following theorem provides a precise statement of our results.
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Theorem 1.1. There exist infinitely many n such that

ω∗(n) > exp

(
0.6736 log 2 · log n

log log n

)
. (1.4)

Moreover, if GRH is true, then we have

ω∗(n) > exp

((
log

(
1 +

√
5

2

)
+ o(1)

)
log n

log log n

)
(1.5)

for infinitely many n.

2. An overview of Prachar’s argument

We first outline Prachar’s simple proof of (1.2) upon which our proof of Theorem 1.1 is built. In
what follows, the letter p always denotes a prime. We write π(x) for the number of primes p ≤ x,
and let π(x; d, a) count the number of primes p ≤ x with p ≡ a (mod d).

Suppose that x is sufficiently large. Let ϵ ∈ (0, 1) be arbitrary, and put

k =
∏

p≤(1−ϵ) log x

p = x1−ϵ+o(1).† (2.1)

Under GRH we have [13, Corollary 13.8]

π(x; d, 1) =
Li(x)

φ(d)
+O

(√
x log x

)
≫ x

φ(d) log x

uniformly for all positive integers d ≤
√
k, where

Li(x) :=

∫ x

2

dt

log t
.

For each 1 ≤ d ≤
√
k dividing k, denote by Ad the number of pairs (m, p), where m ∈ N and p is

prime, such that m, p ≤ x,

p ≡ 1 (mod d) and gcd(m, k) =
k

d
. (2.2)

Let A record the total number of pairs (m, p) with m, p ≤ x satisfying the congruence m(p− 1) ≡
0 (mod k). Every pair counted by Ad, for some d | k, d ≤

√
k, is counted by A. Moreover, an

individual pair is counted by Ad for at most one d. Since the number of choices for p is clearly
π(x; d, 1), and since the count of m is at least ⌊x/k⌋φ(d), we have

Ad ≥ π(x; d, 1)
⌊x
k

⌋
φ(d) ≫ x2

k log x
,

†In fact, Prachar [16] took

k =
∏

p≤(1/2−ϵ) log x

p.

However, this appears to be a misstep: This choice of k only yields the smaller constant 1
4 log 2 rather than 1

2 log 2
asserted in [16] and (1.2).
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from which it follows that

A ≥
∑
d≤

√
k

d|k

Ad ≫
x2

k log x

∑
d≤

√
k

d|k

1 ≥ τ(k)x2

2k log x
.

On the other hand, each pair (m, p) counted by A yields a positive integer n = m(p − 1) ≤ x2

divisible by k. Thus,

A ≤
∑
n≤x2

k|n

#{(m, p) : m, p ≤ x and n = m(p− 1)}.

Combining the above upper and lower bounds for A, we deduce that there exists some large n ≤ x2

which is divisible by k and admits

≫ τ(k)x2/(k log x)

x2/k
=

τ(k)

log x
=

2π((1−ϵ) log x)

log x
> exp

(
(log 2− 2ϵ)

log x

log log x

)
representations of the form n = m(p− 1). For this particular n, we have

ω∗(n) ≥ exp

(
(log 2− 2ϵ)

log x

log log x

)
> exp

((
1

2
log 2− 2ϵ

)
log n

log log n

)
,

as desired.

In the argument outlined above, the representations n = m(p−1) counted by Ad all have m, p ≤ x

and d ≤
√
k, with k defined by (2.1). In the next section, we shall prove Theorem 1.1 by adjusting

the choices for k, d,m, p. We use insights from the theory of anatomy of integers to maximize the
total number of representations n = m(p− 1) counted by A.

3. Refining Prachar’s argument: Proof of Theorem 1.1

We start by proving the GRH-conditional inequality (1.5). Suppose that x is sufficiently large.
Put

ϵ := (log log x)−1/2 and u :=
3 +

√
5

4
, (3.1)

and set

k :=
∏

p≤(u−ϵ) log x

p

= xu−ϵ exp

(
O

(
log x

log log x

))
.

We will show momentarily that there is a set D of divisors of k, where each d ∈ D obeys the
estimate

d = x
1
2
−ϵ exp

(
O

(
log x

(log log x)2

))
, (3.2)

and where, with X := x
1
2
+u,

#D ≥ exp

((
log

(
1 +

√
5

2

)
+ o(1)

)
logX

log logX

)
. (3.3)

Let us see now how this claim implies (1.5).
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For each d ∈ D, let Ad denote the number of pairs (m, p) with m ≤ yd := xu/d and p ≤ x,
satisfying the same conditions described in (2.2). By inclusion-exclusion, the number of choices
for m is ∑

m′≤yd/(k/d)
(m′,d)=1

1 =
φ(d)

d
· yd
k/d

+O(τ(d)) ≫ φ(d)

d
· x

u

k
,

since τ(d) ≤ exp
(
O
(

log x
log log x

))
, and

φ(d)

d
· yd
k/d

=
φ(d)

d
· x

u

k
≫ exp

(
log x

2(log log x)1/2

)
.

Our estimate (3.2) for d, along with the choice of ϵ in (3.1), implies that d ≤ x1/2/(log x)3 (say),
so that

π(x; d, 1) =
Li(x)

φ(d)
+O

(√
x log x

)
≫ x

φ(d) log x
.

It follows that for all d ∈ D,

Ad ≫ π(x; d, 1)
φ(d)

d
· x

u

k
≫ xu+1

kd log x
=

xu+ 1
2
+ϵ

k log x
exp

(
O

(
log x

(log log x)2

))
. (3.4)

Therefore, ∑
d∈D

Ad ≫ #D xu+ 1
2
+ϵ

k log x
exp

(
O

(
log x

(log log x)2

))
. (3.5)

On the other hand, if (m, p) is counted by some Ad, then m(p− 1) is a multiple of k and

m(p− 1) ≤
(
max
d∈D

yd
)
x = xu+ 1

2
+ϵ exp

(
O

(
log x

(log log x)2

))
. (3.6)

Reasoning as in §2, we conclude upon comparing (3.5) and (3.6) that there is a large multiple n
of k, not exceeding the final expression in (3.6), with

ω∗(n) ≥ #D
log x

exp

(
O

(
log x

(log log x)2

))
.

Substituting the lower bound (3.3) for #D gives

ω∗(n) ≥ exp

((
log

(
1 +

√
5

2

)
+ o(1)

)
logX

log logX

)

≥ exp

((
log

(
1 +

√
5

2

)
+ o(1)

)
log n

log log n

)
,

where we use in the second line that n ≤ X1+o(1).

To show the existence of the set D, we employ the probabilistic method. Let

L = (u− ϵ) log x and R = π(L).

Furthermore, set

ρ =
1
2
− ϵ

u− ϵ
.
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We introduce i.i.d. Bernoulli random variables vr, for each prime r ≤ L, where every vr takes the
value 1 with probability ρ. Then

d :=
∏
r≤L

rvr

is a random divisor of k. We proceed to study the distribution of d.

It is straightforward to compute the expectation and variance of the random variable log d =∑
r≤L vr log r: We have

E[log d] =
∑
r≤L

E[vr log r] = ρ
∑
r≤L

log r =

(
1

2
− ϵ

)
log x+O(L/(logL)3),

V[log d] =
∑
r≤L

V[vr log r] = ρ(1− ρ)
∑
r≤L

(log r)2 ≪
∑
r≤L

(log r)2 ≪ L logL.

This latter estimate implies, via Chebyshev’s inequality, that | log d− E[log d]| > L2/3 with prob-
ability O(L−1/3 logL) = o(1). Thus, with probability 1 + o(1),∣∣∣∣log d− (1

2
− ϵ

)
log x

∣∣∣∣ ≤ |log d− E[log d]|+
∣∣∣∣E[log d]− (1

2
− ϵ

)
log x

∣∣∣∣
≤ L2/3 + L/(logL)2 < 2L/(logL)2. (3.7)

Let D be the set of divisors d of k for which | log d− (1
2
− ϵ) log x| < 2L/(logL)2. For each d ∈ D,

the desired estimate (3.2) holds, and we have just seen that P(d ∈ D) = 1 + o(1), as x → ∞. We
proceed to translate this probability bound into a lower bound on #D. In fact, we will obtain the
claimed lower bound (3.3) for a certain convenient subset of D.

The mean and variance of Ω(d) =
∑

r≤L vr satisfy E[Ω(d)] = ρR, V[Ω(d)] ≪ R. So if we let E
denote the set of d | k with |Ω(d) − ρR| > R2/3, then P(d ∈ E) = o(1) by another application of
Chebyshev’s inequality. We put D′ := D \ E and observe that

P(d ∈ D′) ≥ P(d ∈ D)− P(d ∈ E) = 1 + o(1).

If d ∈ D′, then vr = 1 for ρR+O(R2/3) primes r ≤ L, while vr = 0 for (1− ρ)R+O(R2/3) primes
r ≤ L. Hence, each d ∈ D′ carries a probability mass of

ρρR(1− ρ)(1−ρ)R exp(O(R2/3)).

In order for the probability masses corresponding to d ∈ D′ to sum to 1 + o(1), it must be that

#D ≥ #D′ ≥ ρ−ρR(1− ρ)−(1−ρ)R exp(O(R2/3)). (3.8)

Since R = (1 + o(1))u log x
log log x

while ρ = 1
2u

+ o(1), we have

ρ−ρR(1− ρ)−(1−ρ)R exp(O(R2/3)) = exp((C + o(1)) log x/ log log x), (3.9)



THE MAXIMAL ORDER OF THE SHIFTED-PRIME DIVISOR FUNCTION 7

where

C =
1

2
log (2u) +

(
u− 1

2

)
log

2u

2u− 1

=

(
u+

1

2

)
log

2u

2u− 1
+

(
log

√
2u− log

2u

2u− 1

)
=

(
u+

1

2

)
log

1 +
√
5

2
,

noting for the last line that 2u
2u−1

= 1+
√
5

2
=

√
2u. Finally, since X = x

1
2
+u,(

u+
1

2

)
log x

log log x
= (1 + o(1))

logX

log logX
. (3.10)

The lower bound (3.3) on #D follows from (3.8), (3.9) and (3.10).

The unconditional inequality (1.4) follows in a similar fashion, using the following result of Harman
(see [11, Theorem 1.2]) as a proxy for the GRH.

Proposition 3.1. There is an absolute constant δ > 0 making the following true.

For each η > 0, there are constants K ≥ 2 and c > 0 such that the following holds. Suppose

K < d < x0.4736, and p | d ⇒ p < dδ.

Furthermore, assume that for every f | d and primitive character χ mod f ,

L(s, χ) ̸= 0 for Re(s) > 1− 1

(log d)3/4
, |Im(s)| ≤ exp(η(log d)3/4). (3.11)

Then for every a with gcd(a, d) = 1, we have

π(x; d, a) ≥ cx

φ(d) log x
.

Put

ϵ := (log log x)−1/2 and θ := 0.4736,

and define u ≈ 1.2694 to be the unique point at which the function

fθ(t) :=
1

t+ 1− θ

(
θ log

t

θ
− (t− θ) log

(
1− θ

t

))
=

t log t− (t− θ) log(t− θ)− θ log θ

t+ 1− θ
(3.12)

attains its global maximum fθ(u) ≈ 0.4669 on [θ,∞).

Below, we describe how Proposition 3.1 can be used to find a positive integer k |
∏

p≤(u−ϵ) log x p,
along with a set D of divisors of k, where each d ∈ D has the property that

π(x; d, 1) ≫ x

φ(d) log x
. (3.13)

Furthermore, D will be selected in such a way that each d ∈ D obeys the estimate

d = xθ−ϵ exp

(
O

(
log x

(log log x)2

))
, (3.14)
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and such that

#D ≥ exp

(
(C ′ + o(1))

log x

log log x

)
= exp

(
(fθ(u) + o(1))

log Y

log log Y

)
, (3.15)

with

Y := xu+1−θ, and C ′ := θ log
u

θ
− (u− θ) log

(
1− θ

u

)
= (u+ 1− θ)fθ(u).

After k and D have been located, the rest of the argument can be carried out as before. For each
d ∈ D, let Ad denote the number of pairs (m, p) with m ≤ yd = xu/d and p ≤ x, satisfying the
conditions in (2.2). Then we have

Ad ≫ π(x; d, 1)
φ(d)

d
· x

u

k
≫ xu+1

kd log x
=

xu+1−θ+ϵ

k log x
exp

(
O

(
log x

(log log x)2

))
,

and ∑
d∈D

Ad ≫
xu+1−θ+ϵ

k log x
exp

(
(fθ(u) + o(1))

log Y

log log Y

)
.

Each pair (m, p) counted by some Ad corresponds to a multiple m(p− 1) of k for which

m(p− 1) ≤ xu+1−θ+ϵ exp

(
O

(
log x

(log log x)2

))
.

Comparing the last two displays, we conclude that there is an n ≤ xu+1−θ+o(1) with

ω∗(n) ≥ exp

(
(fθ(u) + o(1))

log Y

log log Y

)
≥ exp

(
(fθ(u) + o(1))

log n

log log n

)
.

As fθ(u)/ log 2 = 0.67365 . . . > 0.6736, the estimate (1.4) follows.

To produce k and D, we borrow ideas and results from [10, pp. 647–648]. Let

W :=

(
2

5
log x

)3/4

.

As on p. 647 of [10], for some absolute constant η > 0, there is at most one primitive character
χ1 mod f1 of conductor

f1 < V := exp(η(log x)3/4)

for which L(s, χ1) has a zero ρ with

Re(ρ) > 1− 1

W
, |Im(ρ)| ≤ V. (3.16)

(This follows from the results on exceptional zeros appearing on pp. 93–95 of [3].) We will apply
Proposition 3.1 with this η. Note that if x0.4 < d < xθ, in order for (3.11) to fail, L(s, χ) must
have a zero ρ belonging to the region (3.16).

If the primitive character χ1 mod f1 of the last paragraph exists, we let p1 be a prime factor of f1.
Otherwise, we let p1 = 1. Let L = (u− ϵ) log x and R = π(L) (as before), and set

ρ =
θ − ϵ

u− ϵ
.
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We take

k =
∏
p≤L
p̸=p1

p = xu−ϵ exp

(
O

(
log x

log log x

))
,

and we let d =
∏

r|k r
vr , where the vr are i.i.d. Bernoulli random variables with each P(vr = 1) = ρ.

By our earlier arguments, a random d satisfies both

| log d− (θ − ϵ) log x| < L2/3 (3.17)

and

|Ω(d)− ρR| < R2/3 (3.18)

with probability 1 + o(1). (The possibly missing prime p1 has a negligible effect.) Let D0 be the
set of divisors d of k satisfying (3.17) and (3.18). We proceed to remove from D0 those d for which
there is a primitive character χ mod f , f | d, where (3.11) fails. Since gcd(d, p1) = 1, in these
cases we necessarily have f ≥ V . Furthermore, L(s, χ) has a zero in the region (3.16).

Zero density estimates (e.g., [12, Theorem 1] suffices here) show that there are no more than
exp(O((log x)1/4)) primitive characters χ mod f , f ≤ x, having a zero in the region (3.16). (Com-
pare with pp. 647–648 of [10].) From that set of characters, throw away those of conductors smaller
than V , and collect their remaining conductors in a set F . Then each d to be removed from D0

is divisible by some f ∈ F .

We fix f ∈ F and examine the probability that f | d. If f ∤ k, then P(f | d) = 0. Otherwise,
P(f | d) = ρω(f), where ω(f) denotes the number of distinct prime factors of f . Since

V ≤ f ≤ (u log x)ω(f),

we have

ω(f) ≥ log V

log(u log x)
=

η(log x)3/4

log(u log x)
.

Thus (for large x),

P(f | d) = ρω(f) < exp(−(log x)7/10).

Hence,

P(f | d for some f ∈ F) ≤ #F exp(−(log x)7/10) = o(1),

recalling for the last equality that #F ≤ exp(O((log x)1/4)).

Therefore, after removing all d ∈ D0 divisible by an f ∈ F , we are left with a set D of divisors
of k for which P(d ∈ D) = 1 + o(1). We see from (3.17) that each d ∈ D satisfies (3.14).
Furthermore, invoking (3.18) and repeating the argument leading to (3.3), we arrive at (3.15).
Finally, Proposition 3.1 furnishes the desired lower bound (3.13) on π(x; d, 1) for all d ∈ D.

4. Concluding remarks

We have seen that a key, common ingredient in Prachar’s argument and the proof of Theorem 1.1
is an inequality of the form

π(x; d, 1) ≫ x

φ(d) log x
(4.1)
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for d | k, where k is essentially the product of all primes p ≤ θ log x with some θ ∈ (0, 1). The
proof of Theorem 1.1 reveals that if (4.1) holds for some fixed θ ∈ (0, 1), then we have

ω∗(n) ≥ exp

((
max
t≥θ

fθ(t) + o(1)

)
log n

log log n

)
for infinitely many n, where fθ(t) is defined as in (3.12). In particular, the conjecture of Adleman,
Pomerance and Rumely [1] mentioned in the introduction, that

ω∗(n) ≥ exp

(
(log 2 + o(1))

log n

log log n

)
(4.2)

for infinitely many n, would follow if (4.1) holds for any fixed θ ∈ (0, 1) (since, for instance,
max
t≥θ

fθ(t) ≥ fθ(2θ) =
2θ
θ+1

log 2). As [2, Theorem 2.1] shows, the lower bound (4.1) is intimately

related to zero densities for Dirichlet L-functions. An implication of this is that our inequality
(1.5) still holds under the Density Hypothesis which is weaker than GRH.

Note that in Prachar’s argument, if we sum Ad over all divisors d of k instead, we would have∑
d|k

Ad ≫
x

k

∑
d|k

φ(d)π(x; d, 1) =
x

k

∑
p≤x

∑
d|k

d|p−1

φ(d) =
x

k

∑
p≤x

gcd(p− 1, k).

The last sum hints at the connection between the maximal order of ω∗ and the distribution of
smooth shifted primes p − 1. Given y ≥ 1, we say that n ∈ N is y-smooth if P+(n) ≤ y, where
P+(n) denotes the greatest prime factor of n, with the convention that P+(1) = 1. In other words,
y-smooth numbers are precisely those integers with no prime factors exceeding y. For x ≥ y ≥ 1,
we define the counting functions

Ψ(x, y) := #
{
n ≤ x : P+(n) ≤ y

}
,

π(x, y) := #
{
p ≤ x : P+(p− 1) ≤ y

}
.

In contrast to Ψ(x, y) whose asymptotic behavior is rather well-understood (see for instance [17,
Chapter III.5]), the function π(x, y) has remained elusive. Nevertheless, it is widely believed that
smooth shifted primes have the same asymptotic density relative to shifted primes as smooth
integers do relative to integers. Indeed, Pomerance [15] has conjectured that if x ≥ y ≥ 1, then

π(x, y)

π(x)
∼ Ψ(x, y)

x
(4.3)

as y → ∞. We conclude our paper with a demonstration that the Adleman–Pomerance–Rumely
conjecture (4.2) is an easy consequence of Pomerance’s conjecture (4.3).

Assume (4.3). Fix v > 0 and set y = v log x with x sufficiently large. The number of pairs (m, p),
with m, p ≤ x, P+(m) ≤ y, and P+(p− 1) ≤ y, is Ψ(x, y)π(x, y). Since each n = (m− 1)p ≤ x2 is
y-smooth, and since the number of y-smooth numbers up to x2 is precisely given by Ψ(x2, y), we
deduce from (4.3) that there is some large y-smooth number n ≤ x2 with at least

Ψ(x, y)π(x, y)

Ψ(x2, y)
∼ Ψ(x, y)2

Ψ(x2, y)
· π(x)

x
∼ Ψ(x, y)2

Ψ(x2, y)
· 1

log x
(4.4)
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representations as n = m(p− 1). By [17, Theorem III.5.2], we have

logΨ(x, y) =

(
1 +O

(
1

log log x

))
log x

log y

∫ 1

0

log

(
1 +

y

t log x

)
dt

=

(
1 +O

(
1

log log x

))
log x

log log x

∫ 1

0

log
(
1 +

v

t

)
dt,

and analogously,

logΨ(x2, y) =

(
1 +O

(
1

log log x

))
2 log x

log log x

∫ 1

0

log
(
1 +

v

2t

)
dt.

Since log(1 + z) ≥ z/(1 + z) for all z > −1, it follows that

log
Ψ(x, y)2

Ψ(x2, y)
=

(
log 2 +

∫ 1

0

log

(
1− t

2t+ v

)
dt +O

(
1

log log x

))
2 log x

log log x

≥
(
log 2−

∫ 1

0

t

t+ v
dt +O

(
1

log log x

))
2 log x

log log x

≥
(
log 2− 1

1 + v
+O

(
1

log log x

))
2 log x

log log x
.

Inserting this in (4.4), we find that this particular n has at least

Ψ(x, y)π(x, y)

Ψ(x2, y)
≫ exp

((
log 2− 1

1 + v
+O

(
1

log log x

))
2 log x

log log x

)
≥ exp

((
log 2− 1

v

)
log n

log log n

)
representations as n = m(p− 1). Since v > 0 is arbitrary, this verifies our claim that (4.2) follows
from (4.3).
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