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ABSTRACT. For each positive integer n, we denote by w*(n) the number of shifted-prime divisors

p—1ofmn,ie.,
w*(n) = Z 1.
p—1in
First introduced by Prachar in 1955, this function has interesting applications in primality testing
and bears a strong connection with counting Carmichael numbers. Prachar showed that for a

certain constant ¢y > 0,
" logn
w*(n) > exp (co (oglog n)2>
for infinitely many n. This result was later improved by Adleman, Pomerance and Rumely, who
established an inequality of the same shape with (loglogn)? replaced by loglogn. Assuming
the Generalized Riemann Hypothesis for Dirichlet L-functions, Prachar also proved the stronger

inequality
1 logn
* —log?2 1
w (n)>exp<<2 0g 2+ o )) loglogn>

for infinitely many n. By refining the arguments of Prachar and of Adleman, Pomerance and

Rumely, we improve on their results by establishing
logn

loglogn

w*(n) > exp <<log (1 +2\/5> + 0(1)) lo?iZn) (under GRH),

for infinitely many n.

w*(n) > exp (0.6736 log2 - ) (unconditionally),

1. INTRODUCTION

For each n € N, let w*(n) count the number of shifted primes of the form p — 1 dividing n, that is,

w*(n) == Z 1.

p—1in

This function has found interesting applications in primality testing [1] and is closely related to
counting Carmichael numbers [2]. It is easy to see that w*(n) > 1 with equality if and only if n
is odd. On the other hand, the function w* can attain fairly large values infinitely often. Indeed,
Prachar, who initiated the study of w* in his influential work [16], showed that there is some
absolute constant ¢; > 0 such that

W (n) > exp (Cl(lo;o%w> (1.1)

for infinitely many n. Assuming the Generalized Riemann Hypothesis for Dirichlet L-functions
(GRH), he was able to save a loglogn factor and provide a lower bound for ¢;. More precisely, he
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proved that GRH implies the inequality

W (n) > exp ((% log 2 + 0(1)> ﬂ) (12)

log logn

for infinitely many n. Nearly three decades later, Adleman, Pomerance and Rumely [1] improved
Prachar’s unconditional lower bound (1.1) to

W (n) > exp (c M) , (1.3)

2 log logn

along a sequence of n tending to infinity, where cs > 0 is some absolute constant. This lower
bound has the same shape as Prachar’s GRH-conditional lower bound (1.2), up to the constant
factor. They also conjectured that the constant %log2 in (1.2) can in fact be upgraded to log 2.
It is worth noting that the conjectured constant log 2 would be best possible, since

o) < 7o) < exp (g2 o) )

for sufficiently large n [9, Theorem 317], where 7(n) denotes the number of positive divisors of n.
Interestingly, this conjecture, if true, would imply that the Carmichael function A(n), which may
be defined as the exponent of the multiplicative group (Z/nZ)*, satisfies

o log A(n) 1
lim inf = ;
n—oo (loglogn)logloglogn  log2

an observation first made by Erdés, Pomerance, and Schmutz [5].

The study of w* was recently revived by Murty and Murty [14]. For each k € N, we define the
kth moment of w* by

My (z) = » nzgmw (n)".

These moments encode useful information about the distribution of w*. A quick application of
Mertens’ theorem [9, Theorem 427] yields M;(z) = loglogz 4+ O(1). In the same paper [16],
Prachar showed that My(z) < (logx)?. In their recent work [14], Murty and Murty [14] proved
the estimate (loglogz)® < My(z) < logz and conjectured the asymptotic formula My(z) ~
Cylog z with some constant Cy > 0. Two years later, Ding [4] achieved the order matching lower
bound Ms(z) > log x. More recently, Pomerance and the first author [7] established the estimate
M;(z) < (log z)* and made the more general conjecture that for each k > 2 there exists a constant
C), > 0 such that My (z) ~ Cr(logz)%*~*~1. Based on a heuristic argument, the first author [6] also
conjectured that Cy = ((2)%¢(3)/¢(6), where ( is the Riemann zeta-function. Despite the fact that
no asymptotic formula is currently known even for a single value of k > 2, quite recently Gabdullin
8] pinned down the correct order of magnitude for My (), showing that My(z) = (logz)¥ —+~1
for every fixed k£ > 2.

The main objective of this paper is to furnish explicit values for the constant ¢y appearing in (1.3).
Perhaps a bit surprisingly, we are able to obtain unconditionally a numerical value for ¢o which
is slightly larger than %log 2, hence surpassing the constant %log 2 in Prachar’s GRH-conditional
lower bound (1.2). Under GRH, our argument yields a numerical value for ¢, which exceeds
(log2)?. The following theorem provides a precise statement of our results.
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Theorem 1.1. There exist infinitely many n such that

1
w*(n) > exp ( 0.67361log2 - L (1.4)
loglogn

Moreover, if GRH is true, then we have

w*(n) > exp ((log <1 +2\/3> + 0(1)) 1;;%) (1.5)

2. AN OVERVIEW OF PRACHAR’S ARGUMENT

for infinitely many n.

We first outline Prachar’s simple proof of (1.2) upon which our proof of Theorem 1.1 is built. In
what follows, the letter p always denotes a prime. We write m(x) for the number of primes p < x,
and let 7(x;d, a) count the number of primes p < x with p = a (mod d).

Suppose that x is sufficiently large. Let € € (0, 1) be arbitrary, and put

k= H p =l et | (2.1)

p<(-e)loga
Under GRH we have [13, Corollary 13.§]
Li(x) x
m(x;d, 1) = + O (Vxlogx) > ———o
) (d) ( ) p(d)logx
uniformly for all positive integers d < vk, where
Li(x) = i
5 logt

For each 1 < d < vk dividing k, denote by A, the number of pairs (m,p), where m € N and p is
prime, such that m,p < x,

_k
=
Let A record the total number of pairs (m, p) with m, p < x satisfying the congruence m(p —1) =
0 (mod k). Every pair counted by Ag, for some d | k,d < vk, is counted by A. Moreover, an

individual pair is counted by A, for at most one d. Since the number of choices for p is clearly
7(x;d, 1), and since the count of m is at least |z/k|p(d), we have

p=1(modd) and gecd(m,k) (2.2)

x x?

Aaz wl@id 1) |7 o(d) >

klogx’

fIn fact, Prachar [16] took

k= H p.

p<(1/2—¢)log e

However, this appears to be a misstep: This choice of k only yields the smaller constant ilog 2 rather than % log 2
asserted in [16] and (1.2).
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from which it follows that

x? 7(k)x?
A> A 1> .
- Z d>>klogx % — 2klogx

On the other hand, each pair (m,p) counted by A yields a positive integer n = m(p — 1) < z?
divisible by k. Thus,

AL Z#{(m,p): m,p<xand n=m(p—1)}.

n<z?
kin

Combining the above upper and lower bounds for A, we deduce that there exists some large n < x?
which is divisible by k£ and admits

r(k)2?/(klogz) 7(k) 2r((1-9lez) log x
= - log 2 — 2¢) —28L
> 2 /k log log = > exp | (log ) log log

representations of the form n = m(p — 1). For this particular n, we have

| 1 1
w*(n) > exp <(1og2 — 2¢) ogx ) > exp <(§log2 — 26) ﬂ) 7

loglog loglogn

as desired.

In the argument outlined above, the representations n = m(p—1) counted by A4 all have m,p < x
and d < vk, with k defined by (2.1). In the next section, we shall prove Theorem 1.1 by adjusting
the choices for k, d, m,p. We use insights from the theory of anatomy of integers to maximize the
total number of representations n = m(p — 1) counted by A.

3. REFINING PRACHAR’S ARGUMENT: PROOF OF THEOREM 1.1

We start by proving the GRH-conditional inequality (1.5). Suppose that x is sufficiently large.
Put

,1/2 3—}-\/6

¢ = (loglog x) and wu = T (3.1)

k= H D

p<(u—e)logz

=z""“exp | O log z .
log log x

We will show momentarily that there is a set D of divisors of k, where each d € D obeys the

estimate 1
. ogx
S < ((loglogx)2>) ’ (3:2)
and where, with X = x2+

4D > oxp ((log (1 +2‘/5> + 0(1)) 1;;{%) | (3.3)

Let us see now how this claim implies (1.5).

and set
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For each d € D, let A; denote the number of pairs (m,p) with m < y; = z*/d and p < «x,
satisfying the same conditions described in (2.2). By inclusion-exclusion, the number of choices

for m is ( (
o(d)  ya o(d) "
1=22 2 L o) > 2L
> i g TOrd) > T
m/<yq/(k/d)
(m/,d)=1

since 7(d) < exp (O (10{;%();))’ and

eld) ya _ p(d) 2" log x
d kd- d & P\ egloga) )

Our estimate (3.2) for d, along with the choice of € in (3.1), implies that d < z'/2/(logz)? (say),

so that (@)
Li(x x
m(x;d, 1) = +0 (Vxlogz) > ———.
wd =" + OV > e
It follows that for all d € D,
gp(d) g :Eu—i-l wu+%+e log T
A id, 1) ——— - — = Ol —— . 3.4
a > md )= > e = Fogr S\ oglog o (34)
Therefore,
ut3+e 1
S A 4D e ( (L)) | (35)
= klog x (loglog z)
On the other hand, if (m,p) is counted by some A4, then m(p — 1) is a multiple of k and
1 log x
_ < — u+;+e _ e
m(p—1) < (Igleag;yd)x x exp (O ((loglog:p)2>> . (3.6)

Reasoning as in §2, we conclude upon comparing (3.5) and (3.6) that there is a large multiple n

of k, not exceeding the final expression in (3.6), with
#D log
* > O ————— .
win) 2 log x P (loglog )2

Substituting the lower bound (3.3) for #D gives

w*(n) > exp ((log (1 +2\/5> + 0(1)) lolgoingXX>

> exp ((log (1 +2\/5> + 0(1)) loz)i)gn> ;

where we use in the second line that n < X1to(),
To show the existence of the set D, we employ the probabilistic method. Let
L=(u—¢€)logx and R=mn(L).

Furthermore, set
1_¢
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We introduce i.i.d. Bernoulli random variables v,, for each prime r < L, where every v, takes the
value 1 with probability p. Then
=]

r<L

is a random divisor of k. We proceed to study the distribution of d.

It is straightforward to compute the expectation and variance of the random variable logd =
> <r Urlogr: We have

Ellogd] = ZE[UT logr] = leogr = (% — e) logz + O(L/(log L)?),

r<L r<L

Vllogd] = ZV[UT logr] = p(1 —p) Z(log r)? < Z(log r)?> < Llog L.

r<L r<L r<L

This latter estimate implies, via Chebyshev’s inequality, that |logd — E[logd]| > L*?® with prob-
ability O(L™'/3log L) = o(1). Thus, with probability 1 + o(1),

1
log d — (5 —e) log

Let D be the set of divisors d of k for which |logd — (3 — €)logz| < 2L/(log L)?. For each d € D,
the desired estimate (3.2) holds, and we have just seen that P(d € D) =1+ o(1), as  — co. We
proceed to translate this probability bound into a lower bound on #D. In fact, we will obtain the
claimed lower bound (3.3) for a certain convenient subset of D.

1
< |logd — Ellog d]| + ‘]E[log d| — (5 — e) log

< IL*® 4+ L/(log L)* < 2L/(log L)?. (3.7)

The mean and variance of Q(d) = >_, . v, satisfy E[Q(d)] = pR, V[Q(d)] < R. So if we let £

denote the set of d | k with [Q(d) — pR| > R*3, then P(d € £) = o(1) by another application of
Chebyshev’s inequality. We put D' := D \ £ and observe that

PdeD)>PdeD)-Pde&)=1+0(1).

If d € D', then v, = 1 for pR 4+ O(R?*/?) primes r < L, while v, = 0 for (1 — p)R + O(R??) primes
r < L. Hence, each d € D' carries a probability mass of

P = p)I TP exp(O(RY?)).
In order for the probability masses corresponding to d € D’ to sum to 1+ o(1), it must be that

#D > #D' > p (1 — p) P exp(O(RY?)). (3.8)

Since R = (1 + 0(1))ub§izx while p = 5 + o(1), we have

p (1 — p)” P exp(O(RY?)) = exp((C + o(1)) log 2/ log log ), (3.9)
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where

1 1 2u
= —log (2 —-h
C 2og(u)—|—(u 2) 085

1 2u 2u
- )1 log v/2u — 1
<“+2> Og2u—1+(0g 0g2u—1>
1

1 +5
= — 11
(u+2) og 5 ,

noting for the last line that 2331 = %5 = v/2u. Finally, since X = :E%J““,

1 log x log X
= =(1 1)——————. 1
(u + 2) log log x (14 of >)log log X (3.10)

The lower bound (3.3) on #D follows from (3.8), (3.9) and (3.10).

The unconditional inequality (1.4) follows in a similar fashion, using the following result of Harman

(see [11, Theorem 1.2]) as a proxy for the GRH.

Proposition 3.1. There is an absolute constant 6 > 0 making the following true.

For each n > 0, there are constants K > 2 and ¢ > 0 such that the following holds. Suppose
K<d<az®b and pld=p<d.

Furthermore, assume that for every f | d and primitive character x mod f,

1
L(s,x) #0 for Re(s)>1— Tog /" IIm(s)| < exp(n(logd)**). (3.11)
Then for every a with ged(a,d) = 1, we have
cx
od > —.
m(@;d,a) 2 o(d)log

Put
e = (loglogz) "% and 6 :=0.4736,
and define u ~ 1.2694 to be the unique point at which the function
1 t 0 tlogt — (t — 6)log(t — 0) — Olog b
t)i=—— |Olog—- — (t—0)1 1—- = 12
)= = (108~ = 0ptog (1- 7)) Ll (3.12)

attains its global maximum fy(u) ~ 0.4669 on [0, 00).

Below, we describe how Proposition 3.1 can be used to find a positive integer k | Hpg(u_e) logz P>
along with a set D of divisors of k, where each d € D has the property that
m(x;d, 1) > (3.13)

o(d)logz
Furthermore, D will be selected in such a way that each d € D obeys the estimate

_ log x
=2 = 14
1= (0 gtz ) 514
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and such that

4D > exp <<c’ 4 o(1)) 8%

= exp ( (folu) +0(1) o), (3.15)
)= )

log log x
with

6
Y=z and = Glog% — (u—0)log (1 - —) =(u+1-—20)fp(u).
u
After k and D have been located, the rest of the argument can be carried out as before. For each

d € D, let A; denote the number of pairs (m,p) with m < y; = 2*/d and p < z, satisfying the
conditions in (2.2). Then we have

u u+1 u+1—60+¢ 1
Ad>>7r(x;d,1)@-%>> v v exp (O (&))7

d kdlog x B klog x (loglog x)?
and
xu+1—9+e IOgY
A _ 1) ———— ).
S a> T (Gl +of1) 28 )

deD

Each pair (m,p) counted by some A, corresponds to a multiple m(p — 1) of k for which

m(p —1) < x" T exp (O (loi)) .

(log log x)?

Comparing the last two displays, we conclude that there is an n < z*T1=0+o() with

w*(n) > exp ((fe(u) +o(1)) %) Z exp ((fg(u) +o(1)) loz)lgogn) .

As fo(u)/log2 = 0.67365... > 0.6736, the estimate (1.4) follows.
To produce k and D, we borrow ideas and results from [10, pp. 647-648]. Let

9 3/4
W = (glogx> .

As on p. 647 of [10], for some absolute constant n > 0, there is at most one primitive character
x1 mod f; of conductor

fi <V = exp(n(logx)*/*)
for which L(s, x1) has a zero p with

Re(p) > 1 — Im(p)| < V. (3.16)

1
W?
(This follows from the results on exceptional zeros appearing on pp. 93-95 of [3].) We will apply
Proposition 3.1 with this 1. Note that if 2% < d < 2%, in order for (3.11) to fail, L(s, x) must
have a zero p belonging to the region (3.16).

If the primitive character y; mod f; of the last paragraph exists, we let p; be a prime factor of f;.
Otherwise, we let py = 1. Let L = (u —¢)logx and R = w(L) (as before), and set

0 —¢€

T

p:
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1
k= szx“’eexp O o8t ,
log log
p<L

PF£DP1

We take

and we let d = [],, r*", where the v, are i.i.d. Bernoulli random variables with each P(v, = 1) = p.

By our earlier arguments, a random d satisfies both
|logd — (6 — €)log x| < L*/? (3.17)

and
1Q(d) — pR| < R*3 (3.18)

with probability 1+ o(1). (The possibly missing prime p; has a negligible effect.) Let Dy be the
set of divisors d of k satisfying (3.17) and (3.18). We proceed to remove from D, those d for which
there is a primitive character y mod f, f | d, where (3.11) fails. Since ged(d,p;) = 1, in these
cases we necessarily have f > V. Furthermore, L(s, x) has a zero in the region (3.16).

Zero density estimates (e.g., [12, Theorem 1] suffices here) show that there are no more than
exp(O((log x)/*)) primitive characters x mod f, f < z, having a zero in the region (3.16). (Com-
pare with pp. 647-648 of [10].) From that set of characters, throw away those of conductors smaller
than V', and collect their remaining conductors in a set F. Then each d to be removed from D,
is divisible by some f € F.

We fix f € F and examine the probability that f | d. If f { k, then P(f | d) = 0. Otherwise,
P(f | d) = p*), where w(f) denotes the number of distinct prime factors of f. Since

V < f < (ulogz)*Y),

we have

logV n(logz)®/*

w(f) =

~ log(ulogz) log(ulogz)’

Thus (for large z),
P(f | d) = p*) < exp(—(log)/1%).
Hence,
P(f | d for some f € F) < #F exp(—(logz)"1%) = o(1),
recalling for the last equality that #F < exp(O((log x)/*)).

Therefore, after removing all d € Dy divisible by an f € F, we are left with a set D of divisors
of k for which P(d € D) = 1+ o(1). We see from (3.17) that each d € D satisfies (3.14).
Furthermore, invoking (3.18) and repeating the argument leading to (3.3), we arrive at (3.15).
Finally, Proposition 3.1 furnishes the desired lower bound (3.13) on 7 (x;d, 1) for all d € D.

4. CONCLUDING REMARKS

We have seen that a key, common ingredient in Prachar’s argument and the proof of Theorem 1.1
is an inequality of the form
x

+d, 1 _—
m(z;d, 1) > ©(d)logx

(4.1)
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for d | k, where k is essentially the product of all primes p < #logx with some 6 € (0,1). The
proof of Theorem 1.1 reveals that if (4.1) holds for some fixed 6 € (0, 1), then we have

1
o) 2 e (e o0 + o)) o0

for infinitely many n, where fy(t) is defined as in (3.12). In particular, the conjecture of Adleman,
Pomerance and Rumely [1] mentioned in the introduction, that

w*(n) > exp <(log 2 + o(1)) k};%) (4.2)

for infinitely many n, would follow if (4.1) holds for any fixed 6 € (0,1) (since, for instance,
max fo(t) > fo(20) = %log 2). As [2, Theorem 2.1] shows, the lower bound (4.1) is intimately

related to zero densities for Dirichlet L-functions. An implication of this is that our inequality
(1.5) still holds under the Density Hypothesis which is weaker than GRH.

Note that in Prachar’s argument, if we sum A, over all divisors d of k instead, we would have

S A 2 edmlaid ) = 230D e(d) = 7> sed(p - L,k).

d|k d|k p<z d|k p<z

The last sum hints at the connection between the maximal order of w* and the distribution of
smooth shifted primes p — 1. Given y > 1, we say that n € N is y-smooth if P*(n) < y, where
P*(n) denotes the greatest prime factor of n, with the convention that P*(1) = 1. In other words,
y-smooth numbers are precisely those integers with no prime factors exceeding y. For x > y > 1,
we define the counting functions

U(z,y) =#{n<z: P*(n) <y},
m(z,y) =#{p<z: Pt(p—1)<y}.

In contrast to ¥(z,y) whose asymptotic behavior is rather well-understood (see for instance [17,

Chapter II1.5]), the function m(x,y) has remained elusive. Nevertheless, it is widely believed that

smooth shifted primes have the same asymptotic density relative to shifted primes as smooth

integers do relative to integers. Indeed, Pomerance [15] has conjectured that if z > y > 1, then
m(z,y)  Y(zy)

o " s (4.3)

as y — 0o. We conclude our paper with a demonstration that the Adleman—Pomerance-Rumely
conjecture (4.2) is an easy consequence of Pomerance’s conjecture (4.3).

Assume (4.3). Fix v > 0 and set y = vlogx with z sufficiently large. The number of pairs (m, p),
with m,p <z, Pt(m) <y, and PT(p—1) <y, is ¥(z,y)n(z,y). Since each n = (m —1)p < 2% is
y-smooth, and since the number of y-smooth numbers up to x? is precisely given by ¥(x?,y), we
deduce from (4.3) that there is some large y-smooth number n < z? with at least

U(,ym(ry) Y(@y)? w@) Y(@y)?® 1

(22, y) U(a2,y) x U(22,y) loga (4.4)
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representations as n = m(p — 1). By [17, Theorem II1.5.2], we have

1 1 !
log W(z,y) = (140 Og'”/log 1+ -2 ) at
loglog x logy Jo tlogx
:<1+

1 1 !
0 08T / log (1+9) dt,
log log x loglogx J, t
and analogously,

1 2logz (! v
log W(2?,y) = (1 log (14 5> ) dt.
og V(@) < O <loglogx>) loglogx/0 og< * 2t>

Since log(1 4 z) > z/(1 + 2) for all z > —1, it follows that

U(z,y)* y)? /1 13 1 2logx
log = ( log2 1 1l——— | dt
(952, Y) et 0 o8 2t +v O loglog x loglog x
bt 1 2logx
> | log2 — dt
N (og /0 t+w +O(10glogm>>loglogm

1 1 2logx
> |log2 ——+0 .
- (og 14—1}+ (loglogaj)) loglog

e find that this particular n has at least

Inserting this in (4.

4.4)
U(z, y)m(z,y) 1 1 2log
— log2 — ——+0

U (22, y) > e o8 I+w * loglogz ) ) loglogx

1 1
Z exp 10g2 — — ﬂ
log logn

representations as n = m(p — 1). Since v > 0 is arbitrary, this verifies our claim that (4.2) follows
from (4.3).
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