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Introduction

Fix an elliptic curve E/Q. We know that for each prime p of good
reduction,

#E(Fp) = p + 1− ap,

where |ap| ≤ 2
√

p. Moreover,

E(Fp) ∼= Z/dpZ⊕ Z/epZ,

for uniquely determined positive integers dp and ep where dp | ep.
The integers dp and ep are the invariant factors of the group.

We would like to understand how the dp and ep behave as p
varies over primes of good reduction.
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A prototypical result

Question: How often is dp = 1?

Theorem (Serre, 1977)
Assume GRH. Let E/Q be a fixed elliptic
curve with an irrational 2-torsion point.
Then E(Fp) is cyclic for a well–defined
positive proportion of primes p.

If E has CM, the GRH assumption can be omitted (Murty, 1979
and Cojocaru, 2003).
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Titchmarsh’s divisor problem

The Titchmarsh divisor problem asks one to estimate∑
p≤x

τ(p − 1).

Under GRH, Titchmarsh (1931) showed that as x →∞,∑
p≤x

τ(p − 1) ∼ ζ(2)ζ(3)

ζ(6)
x .

The assumption of GRH was eventually removed by Linnik (1963).
Today, the result can be thought of as a fairly simple corollary of
the Brun–Titchmarsh and Bombieri–Vinogradov results.
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Titchmarsh’s divisor problem

What would an analogue for elliptic curves look like?

Akbary and Ghioca (2012): Observed that
d | p − 1⇐⇒ p splits completely in Q(ζd ). Since Q(E [d ]) is
analogous to Q(ζd ), an analogue of τ(p − 1) would be∑

d : p splits completely in Q(E [d ])

1

︸ ︷︷ ︸
in fact, this is τ(dp)

.

Theorem
Fix an elliptic curve E/Q. As x →∞, we have∑

p≤x τ(dp) ∼ cEπ(x). Here GRH is assumed unless E has CM.
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Of course, one could be more naive about the analogue one
considers.

What about just
∑

p≤x τ(#E(Fp))?

Theorem (P.)
Fix E/Q. If E has CM, then

∑
p≤x τ(dpep) ∼ cEx, as x →∞,

where cE is a positive constant depending on E.

If we do not assume E has CM, but do assume GRH,∑
p≤x τ(dpep) � x.
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The Akbary–Ghioca result has been extended by Felix and Murty
(2013) to estimate other sums of the form∑

p≤x

f (dp).

They assume one can write f =
∑

d |n g(d) where
∑

d≤x |g(d)| is
appropriately bounded.

Example
Assume E/Q is an elliptic curve with CM. Fix 0 < α < 1. As
x →∞, ∑

p≤x

dαp ∼ cE ,α · π(x),

where cE ,α > 0.
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The last example suggests studying the mean value of dp, and
also of ep.

Information about these mean values should encode how near to
cyclic E(Fp) is, on average.

Theorem (Freiberg–Kurlberg, 2014)
Fix E/Q. Then as x →∞,

∑
p≤x ep ∼ cE

x2

log x , for some cE > 0.
GRH is assumed if E does not have CM.
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Theorem (Freiberg–Kurlberg, 2014)
Fix E/Q. As x →∞,

∑
p≤x ep ∼ cE

x2

log x , for some cE > 0. GRH is
assumed if E does not have CM.

Since also
∑

p≤x p � x2

log x , we see that ep is of average order
const · p.

Since dpep = p + 1− ap ∼ p, this suggests that dp is usually
bounded.

Theorem (Duke, 2003)
Let ψ(p) be any function that tends to∞. Then dp < ψ(p) for
almost all primes p. GRH is assumed if E does not have CM.
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Duke’s result tells us about the normal order of dp. What about the
average order?

Question
What is the asymptotic behavior of

∑
p≤x dp?

This question was proposed by Kowalski (2001), who conjectured
that ∑

p≤x

dp ∼ cEπ(x) if E does not have CM

∼ cEx if E has CM.

If E does not have CM, there has been very little progress towards
the upper bound; e.g., even on GRH, x1+o(1) is unknown (to me).
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Suppose E/Q is a fixed elliptic curve with CM. Then

x
log log x

log x
�

∑
p≤x

dp � x
√

log x (Kowalski, 2001)

∑
p≤x

dp � x log log x (Kim, 2014).

Kowalski’s argument was fleshed out by Felix and Murty (2013),
who noted a small improvement:∑

p≤x dp

x log log x/ log x
→∞.

Theorem (Freiberg and P., 2014)
For large x, we have

∑
p≤x dp � x.
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Part II: Proofs
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The average number of divisors of #E(Fp)

Fix an elliptic curve E/Q without CM. We claimed that on GRH,∑
p≤x

τ(#E(Fp)) � x .

To prove this, one would like to write τ(·) =
∑

d |· 1, and to reverse
the order: ∑

d≤2x

#{p ≤ x : d | #E(Fp)}.

The summand can be understood for d < x1/10. This is enough to
get a lower bound.
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To get an upper bound, one has to replace the sum over all
divisors with a quantity sensitive only to small divisors.

Theorem
Uniformly for n ≤ x,

τ(n)�θ

∑
d |n

d≤xθ

1 +
∑
r≥1

Mr
∑
d |n

xθ/4<d≤xθ

p|d⇒p≤x1/r

1,

where
Mr = min{2r+1,exp(log x/ log log x)}.

A majorant of this kind first appears in 1952 work of Erdős (see
also Wolke, Shiu, Tao, . . . ).
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Substituting in this majorant, reversing the order of summation,
using the David–Wu bound, and using standard results on the
distribution of smooths, we eventually find that∑

p≤x

τ(#E(Fp))� x ,

as claimed.
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The average of the first invariant factor mod p
Recall our claim that for CM curves,∑

p≤x

dp � x .

For simplicity, the CM curve is

E : y2 = x3 − x ,

which has CM by the ring of Gaussian integers Z[i].

For the primes p ≡ 3 (mod 4),

#E(Fp) = p + 1.

These are the supersingular primes. For these dp ≤ 2, and so
these can be ignored.
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Suppose instead that p ≡ 1 (mod 4). These are our ordinary
primes. Then p factors in Z[i] as

p = ππ̄,

where π ≡ 1 (mod (1 + i)3). (In other words, π is primary.)

Then
#E(Fp) = p + 1− (π + π̄) = N(π − 1),

and if we write π = ap + bpi , then

dp = gcd(ap − 1,bp)
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Using the identity dp =
∑

d |dp
φ(d), and remembering that

d2
p | dpep = #E(Fp) ≤ (

√
x + 1)2, we have∑

p≤x
p≡1 (mod 4)

dp =
∑
p≤x

p≡1 (mod 4)

∑
d |dp

φ(d)

=
∑

d≤
√

x+1

φ(d)
∑
p≤x

p≡1 (mod 4)
d |dp

1

=
1
2

∑
d≤
√

x+1

φ(d)
∑

N(π)≤x
N(π) prime,≡1 (mod 4)
π≡1 (mod [d ,(1+i)3])

1.
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OK, so ∑
p≤x

p≡1 (mod 4)

dp =
1
2

∑
d≤
√

x+1

φ(d)
∑

N(π)≤x
N(π) prime,≡1 (mod 4)
π≡1 (mod [d ,(1+i)3])

1.

Let’s look at the upper bound.
If we use Brun–Titchmarsh for Z[i], the inner sum is

� x
Φ(d) log 4x

d2

,

where Φ is the Euler function for Z[i].

Using this above and summing, we are led to Kim’s bound

� x log log x .
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To avoid losing a log log factor, we need to treat the d close to
√

x
more efficiently.

The part of the sum corresponding to d ≤ x1/3 is OK, by the
above argument, since then log 4x

d2 � log x . So suppose d > x1/3.

We now have to estimate∑
x1/3<d≤

√
x+1

φ(d)
∑

N(π)≤x
N(π) prime,≡1 (mod 4)
π≡1 (mod [d ,(1+i)3])

1.

In the inner sum, write π = ωd + 1. If N(π) ≤ x , then
N(ω) ≤ 4

√
x/d . If N(ωd + 1) is prime, clearly Im(ω) 6= 0.
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We invert the order of summation and after some simplifications,
we are left with the problem of bounding∑

N(ω)≤4
√

x
Im(ω)6=0

∑
x1/3<d≤4

√
x/N(ω)

N(ωd+1) prime

φ(d).

Replace φ(d) with 4
√

x/N(ω).
The problem comes down to counting d ∈ (x1/3,4

√
x/N(ω)] for

which the quadratic polynomial

N(ωd + 1) = N(ω)d2 + Tr(ω)d + 1

is prime.
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The upper bound sieve gives that this is

� S

√
x/N(ω)

log x
,

where S is a certain singular series depending on the particular
quadratic polynomial.

(We can assume 4
√

x/N(ω) > x1/3. This is why we get a
denominator proportional to log x .)

If S were 1, we could sum with no problems. To complete the
proof, one shows S averages to� 1 in a suitable sense. Here
mean value theorems for nonnegative multiplicative functions are
used.
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What about the lower bound?

Remember, we need to bound from below

1
2

∑
d≤
√

x+1

φ(d)
∑

N(π)≤x
N(π) prime,≡1 (mod 4)
π≡1 (mod [d ,(1+i)3])

1.

One’s first inclination is to truncate the sum on d use
Bombieri–Vinogradov; but the weights φ(d) complicate matters.

One can carry this out with a severe truncation, going only up to
(log x)A, and use B–V to get� x log log x/ log x (Felix and Murty),
with an arbitrarily large implied constant.
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Rather than try to bound

1
2

∑
d≤
√

x+1

φ(d)
∑

N(π)≤x
N(π) prime,≡1 (mod 4)
π≡1 (mod [d ,(1+i)3])

1

from below using an average result, we use a result about most
individual progressions.

Specifically, using work of Weiss — who proved a generalization
of Linnik’s theorem for algebraic number fields — we show that if
d is not divisible by a certain exceptional modulus, then we get a
lower bound on the inner sum of the correct order for d up to
some small power of x . This is enough.
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Under construction

There is a third variant of the Titchmarsh divisor problem one
could consider (suggested to us by Greg Martin): View τ(p− 1) as
counting the number of subgroups of F×p .

If s(G) denotes the number of subgroups of G, one could ask for
an estimate of ∑

p≤x

s(E(Fp)).
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In work in progress with Freiberg, we hope to show that when E
has CM, this sum is � x log x , for large x .

The starting point is the beautiful formula

s(Z/mZ× Z/nZ) =
∑

d |m, e|n

gcd(d ,e).

(Calhoun, 1987.)

Estimating the average of s(#E(Fp)) appears to require a hybrid
of the techniques used to study the average of τ(dpep) and the
average of dp.

26 of 27



Thank you!
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