Statistics associated with reductions of elliptic curves modulo p

The University of Georgia

Paul Pollack

New approaches in probabilistic and multiplicative number theory

December 12, 2014

Introduction

Fix an elliptic curve E / \mathbb{Q}. We know that for each prime p of good reduction,

$$
\# E\left(\mathbb{F}_{p}\right)=p+1-a_{p}
$$

where $\left|a_{p}\right| \leq 2 \sqrt{p}$. Moreover,

$$
E\left(\mathbb{F}_{p}\right) \cong \mathbb{Z} / d_{p} \mathbb{Z} \oplus \mathbb{Z} / e_{p} \mathbb{Z}
$$

for uniquely determined positive integers d_{p} and e_{p} where $d_{p} \mid e_{p}$. The integers d_{p} and e_{p} are the invariant factors of the group.

We would like to understand how the d_{p} and e_{p} behave as p varies over primes of good reduction.

A prototypical result

Question: How often is $d_{p}=1$?
Theorem (Serre, 1977)
Assume GRH. Let E / \mathbb{Q} be a fixed elliptic curve with an irrational 2-torsion point. Then $E\left(\mathbb{F}_{p}\right)$ is cyclic for a well-defined positive proportion of primes p.

If E has CM, the GRH assumption can be omitted (Murty, 1979 and Cojocaru, 2003).

Titchmarsh's divisor problem

The Titchmarsh divisor problem asks one to estimate

$$
\sum_{p \leq x} \tau(p-1)
$$

Under GRH, Titchmarsh (1931) showed that as $x \rightarrow \infty$,

$$
\sum_{p \leq x} \tau(p-1) \sim \frac{\zeta(2) \zeta(3)}{\zeta(6)} x
$$

The assumption of GRH was eventually removed by Linnik (1963). Today, the result can be thought of as a fairly simple corollary of the Brun-Titchmarsh and Bombieri-Vinogradov results.

Titchmarsh's divisor problem

What would an analogue for elliptic curves look like?
Akbary and Ghioca (2012): Observed that
$d \mid p-1 \Longleftrightarrow p$ splits completely in $\mathbb{Q}\left(\zeta_{d}\right)$. Since $\mathbb{Q}(E[d])$ is analogous to $\mathbb{Q}\left(\zeta_{d}\right)$, an analogue of $\tau(p-1)$ would be

Theorem
Fix an elliptic curve E / \mathbb{Q}. As $x \rightarrow \infty$, we have
$\sum_{p \leq x} \tau\left(d_{p}\right) \sim c_{E} \pi(x)$. Here GRH is assumed unless E has $C M$.

5 of 27

Of course, one could be more naive about the analogue one considers.

What about just $\sum_{p \leq x} \tau\left(\# E\left(\mathbb{F}_{p}\right)\right)$?
Theorem (P.)
Fix E / \mathbb{Q}. If E has $C M$, then $\sum_{p \leq x} \tau\left(d_{p} e_{p}\right) \sim c_{E} x$, as $x \rightarrow \infty$, where c_{E} is a positive constant depending on E.

Of course, one could be more naive about the analogue one considers.

What about just $\sum_{p \leq x} \tau\left(\# E\left(\mathbb{F}_{p}\right)\right)$?
Theorem (P.)
Fix E / \mathbb{Q}. If E has $C M$, then $\sum_{p \leq x} \tau\left(d_{p} e_{p}\right) \sim c_{E} x$, as $x \rightarrow \infty$, where c_{E} is a positive constant depending on E.

If we do not assume E has CM, but do assume GRH, $\sum_{p \leq x} \tau\left(d_{p} e_{p}\right) \asymp x$.

The Akbary-Ghioca result has been extended by Felix and Murty (2013) to estimate other sums of the form

$$
\sum_{p \leq x} f\left(d_{p}\right)
$$

They assume one can write $f=\sum_{d \mid n} g(d)$ where $\sum_{d \leq x}|g(d)|$ is appropriately bounded.

Example

Assume E / \mathbb{Q} is an elliptic curve with CM . Fix $0<\alpha<1$. As $x \rightarrow \infty$,

$$
\sum_{p \leq x} d_{p}^{\alpha} \sim c_{E, \alpha} \cdot \pi(x)
$$

where $c_{E, \alpha}>0$.

The last example suggests studying the mean value of d_{p}, and also of e_{p}.

Information about these mean values should encode how near to cyclic $E\left(\mathbb{F}_{p}\right)$ is, on average.

The last example suggests studying the mean value of d_{p}, and also of e_{p}.

Information about these mean values should encode how near to cyclic $E\left(\mathbb{F}_{p}\right)$ is, on average.

Theorem (Freiberg-Kurlberg, 2014)
Fix E / \mathbb{Q}. Then as $x \rightarrow \infty, \sum_{p \leq x} e_{p} \sim c_{E} \frac{x^{2}}{\log x}$, for some $c_{E}>0$. GRH is assumed if E does not have CM.

Theorem (Freiberg-Kurlberg, 2014) Fix E / \mathbb{Q}. As $x \rightarrow \infty, \sum_{p \leq x} e_{p} \sim c_{E} \frac{x^{2}}{\log x}$, for some $c_{E}>0$. GRH is assumed if E does not have CM.

Since also $\sum_{p \leq x} p \asymp \frac{x^{2}}{\log x}$, we see that e_{p} is of average order const • p.

Theorem (Freiberg-Kurlberg, 2014)
Fix E / \mathbb{Q}. As $x \rightarrow \infty, \sum_{p \leq x} e_{p} \sim c_{E} \frac{x^{2}}{\log x}$, for some $c_{E}>0$. GRH is assumed if E does not have CM.

Since also $\sum_{p \leq x} p \asymp \frac{x^{2}}{\log x}$, we see that e_{p} is of average order const $\cdot p$.

Since $d_{p} e_{p}=p+1-a_{p} \sim p$, this suggests that d_{p} is usually bounded.

Theorem (Duke, 2003)
Let $\psi(p)$ be any function that tends to ∞. Then $d_{p}<\psi(p)$ for almost all primes p. GRH is assumed if E does not have CM.

Duke's result tells us about the normal order of d_{p}. What about the average order?

Question

What is the asymptotic behavior of $\sum_{p \leq x} d_{p}$?

Duke's result tells us about the normal order of d_{p}. What about the average order?

Question

What is the asymptotic behavior of $\sum_{p \leq x} d_{p}$?
This question was proposed by Kowalski (2001), who conjectured that

$$
\begin{aligned}
\sum_{p \leq x} d_{p} & \sim c_{E} \pi(x) & & \text { if } E \text { does not have } \mathrm{CM} \\
& \sim c_{E} X & & \text { if } E \text { has } \mathrm{CM} .
\end{aligned}
$$

If E does not have CM, there has been very little progress towards the upper bound; e.g., even on GRH, $x^{1+o(1)}$ is unknown (to me).

Suppose E / \mathbb{Q} is a fixed elliptic curve with $C M$. Then

$$
\begin{array}{rr}
x \frac{\log \log x}{\log x} \ll \sum_{p \leq x} d_{p} \ll x \sqrt{\log x} & \text { (Kowalski, 2001) } \\
\sum_{p \leq x} d_{p} \ll x \log \log x & \text { (Kim, 2014). }
\end{array}
$$

Kowalski's argument was fleshed out by Felix and Murty (2013), who noted a small improvement:

$$
\frac{\sum_{p \leq x} d_{p}}{x \log \log x / \log x} \rightarrow \infty
$$

Suppose E / \mathbb{Q} is a fixed elliptic curve with $C M$. Then

$$
\begin{aligned}
x \frac{\log \log x}{\log x} \ll & \sum_{p \leq x} d_{p} \ll x \sqrt{\log x} \\
& \sum_{p \leq x} d_{p} \ll x \log \log x
\end{aligned}
$$

(Kowalski, 2001)
(Kim, 2014).

Kowalski's argument was fleshed out by Felix and Murty (2013), who noted a small improvement:

$$
\frac{\sum_{p \leq x} d_{p}}{x \log \log x / \log x} \rightarrow \infty
$$

Theorem (Freiberg and P., 2014)
For large x, we have $\sum_{p \leq x} d_{p} \asymp x$.

Part II: Proofs

The average number of divisors of $\# E\left(\mathbb{F}_{p}\right)$

Fix an elliptic curve E / \mathbb{Q} without CM. We claimed that on $G R H$,

$$
\sum_{p \leq x} \tau\left(\# E\left(\mathbb{F}_{p}\right)\right) \asymp x
$$

To prove this, one would like to write $\tau(\cdot)=\sum_{d \mid}$. 1 , and to reverse the order:

$$
\sum_{d \leq 2 x} \#\left\{p \leq x: d \mid \# E\left(\mathbb{F}_{p}\right)\right\}
$$

The average number of divisors of $\# E\left(\mathbb{F}_{p}\right)$

Fix an elliptic curve E / \mathbb{Q} without CM. We claimed that on GRH,

$$
\sum_{p \leq x} \tau\left(\# E\left(\mathbb{F}_{p}\right)\right) \asymp x
$$

To prove this, one would like to write $\tau(\cdot)=\sum_{d \mid}$. 1 , and to reverse the order:

$$
\sum_{d \leq 2 x} \#\left\{p \leq x: d \mid \# E\left(\mathbb{F}_{p}\right)\right\}
$$

The summand can be understood for $d<x^{1 / 10}$. This is enough to get a lower bound.

To get an upper bound, one has to replace the sum over all divisors with a quantity sensitive only to small divisors.

Theorem

Uniformly for $n \leq x$,

$$
\tau(n) \ll \theta \sum_{\substack{d \mid n \\ d \leq x^{\theta}}} 1+\sum_{r \geq 1} M_{r} \sum_{\substack{d\left|n \\ x^{\theta / 4}<d \leq x^{\theta} \\ p\right| d \Rightarrow p \leq x^{1 / r}}} 1,
$$

where

$$
M_{r}=\min \left\{2^{r+1}, \exp (\log x / \log \log x)\right\}
$$

A majorant of this kind first appears in 1952 work of Erdős (see also Wolke, Shiu, Tao, ...).

Substituting in this majorant, reversing the order of summation, using the David-Wu bound, and using standard results on the distribution of smooths, we eventually find that

$$
\sum_{p \leq x} \tau\left(\# E\left(\mathbb{F}_{p}\right)\right) \ll x,
$$

as claimed.

The average of the first invariant factor $\bmod p$

Recall our claim that for CM curves,

$$
\sum_{p \leq x} d_{p} \asymp x
$$

For simplicity, the CM curve is

$$
E: y^{2}=x^{3}-x
$$

which has CM by the ring of Gaussian integers $\mathbb{Z}[i]$.
For the primes $p \equiv 3(\bmod 4)$,

$$
\# E\left(\mathbb{F}_{p}\right)=p+1
$$

These are the supersingular primes. For these $d_{p} \leq 2$, and so these can be ignored.

Suppose instead that $p \equiv 1(\bmod 4)$. These are our ordinary primes. Then p factors in $\mathbb{Z}[i]$ as

$$
p=\pi \bar{\pi},
$$

where $\pi \equiv 1\left(\bmod (1+i)^{3}\right)$. (In other words, π is primary.)
Then

$$
\# E\left(\mathbb{F}_{p}\right)=p+1-(\pi+\bar{\pi})=N(\pi-1)
$$

and if we write $\pi=a_{p}+b_{p} i$, then

$$
d_{p}=\operatorname{gcd}\left(a_{p}-1, b_{p}\right)
$$

Using the identity $d_{p}=\sum_{d \mid d_{p}} \phi(d)$, and remembering that $d_{p}^{2} \mid d_{p} e_{p}=\# E\left(\mathbb{F}_{p}\right) \leq(\sqrt{x}+1)^{2}$, we have

$$
\begin{aligned}
\sum_{\substack{p \leq x \\
p \equiv 1 \\
(\bmod 4)}} d_{p} & =\sum_{\substack{p \leq x \\
p \equiv 1 \\
(\bmod 4)}} \sum_{d \mid d_{p}} \phi(d) \\
& =\sum_{d \leq \sqrt{x}+1} \phi(d) \sum_{\substack{p \leq x \\
p \equiv 1 \\
(\bmod 4) \\
d \mid d_{p}}} 1 \\
& =\frac{1}{2} \sum_{d \leq \sqrt{x}+1} \phi(d) \sum_{\substack{N(\pi) \leq x}} \sum_{\substack{N(\pi) \operatorname{prime,\equiv 1}(\bmod 4) \\
\pi \equiv 1\left(\bmod \left[d,(1+i)^{3}\right]\right)}}
\end{aligned}
$$

OK, so

$$
\sum_{\substack{p \leq x \\ p=1 \\(\bmod 4)}} d_{p}=\frac{1}{2} \sum_{d \leq \sqrt{x}+1} \phi(d) \sum_{\substack{N(\pi) \leq x \\ N(\pi) \operatorname{prime},=1(\bmod 4) \\ \pi \equiv 1\left(\bmod \left[d,(1+i)^{3}\right]\right)}} 1 .
$$

Let's look at the upper bound.
If we use Brun-Titchmarsh for $\mathbb{Z}[i]$, the inner sum is

$$
\ll \frac{x}{\Phi(d) \log \frac{4 x}{d^{2}}},
$$

where Φ is the Euler function for $\mathbb{Z}[i]$.

Using this above and summing, we are led to Kim's bound
$\ll x \log \log x$.

To avoid losing a log log factor, we need to treat the d close to \sqrt{x} more efficiently.

The part of the sum corresponding to $d \leq x^{1 / 3}$ is OK, by the above argument, since then $\log \frac{4 x}{d^{2}} \asymp \log x$. So suppose $d>x^{1 / 3}$.

We now have to estimate

In the inner sum, write $\pi=\omega d+1$. If $N(\pi) \leq x$, then $N(\omega) \leq 4 \sqrt{x} / d$. If $N(\omega d+1)$ is prime, clearly $\operatorname{Im}(\omega) \neq 0$.

We invert the order of summation and after some simplifications, we are left with the problem of bounding

$$
\sum_{\substack{N(\omega) \leq 4 \sqrt{x} \\ \operatorname{Im}(\omega) \neq 0}} \sum_{\substack{1 / 3<d \leq 4 \sqrt{x} / N(\omega) \\ N(\omega d+1) \text { prime }}} \phi(d)
$$

Replace $\phi(d)$ with $4 \sqrt{x} / N(\omega)$.
The problem comes down to counting $d \in\left(x^{1 / 3}, 4 \sqrt{x} / N(\omega)\right]$ for which the quadratic polynomial

$$
N(\omega d+1)=N(\omega) d^{2}+\operatorname{Tr}(\omega) d+1
$$

is prime.

The upper bound sieve gives that this is

$$
\ll \mathfrak{S} \frac{\sqrt{x} / N(\omega)}{\log x},
$$

where \mathfrak{S} is a certain singular series depending on the particular quadratic polynomial.
(We can assume $4 \sqrt{x} / N(\omega)>x^{1 / 3}$. This is why we get a denominator proportional to $\log x$.)

If \mathfrak{S} were 1, we could sum with no problems. To complete the proof, one shows \mathfrak{S} averages to $\ll 1$ in a suitable sense. Here mean value theorems for nonnegative multiplicative functions are used.

What about the lower bound?
Remember, we need to bound from below

$$
\frac{1}{2} \sum_{d \leq \sqrt{x}+1} \phi \sum_{\substack{N(\pi) \leq x \\ N(\pi) \operatorname{prime},=1(\bmod 4) \\ \pi \equiv 1\left(\bmod \left[d,(1+i)^{3}\right]\right)}} 1
$$

One's first inclination is to truncate the sum on d use Bombieri-Vinogradov; but the weights $\phi(d)$ complicate matters.

One can carry this out with a severe truncation, going only up to $(\log x)^{A}$, and use $\mathrm{B}-\mathrm{V}$ to get $\gg x \log \log x / \log x$ (Felix and Murty), with an arbitrarily large implied constant.

Rather than try to bound

$$
\frac{1}{2} \sum_{d \leq \sqrt{x}+1} \phi(d) \sum_{\substack{N(\pi) \leq x \\ N(\pi)}} 1
$$

from below using an average result, we use a result about most individual progressions.

Specifically, using work of Weiss - who proved a generalization of Linnik's theorem for algebraic number fields - we show that if d is not divisible by a certain exceptional modulus, then we get a lower bound on the inner sum of the correct order for d up to some small power of x. This is enough.

Under construction

There is a third variant of the Titchmarsh divisor problem one could consider (suggested to us by Greg Martin): View $\tau(p-1)$ as counting the number of subgroups of \mathbb{F}_{p}^{\times}.

If $s(G)$ denotes the number of subgroups of G, one could ask for an estimate of

$$
\sum_{p \leq x} s\left(E\left(\mathbb{F}_{p}\right)\right)
$$

In work in progress with Freiberg, we hope to show that when E has CM , this sum is $\asymp x \log x$, for large x.

The starting point is the beautiful formula

$$
s(\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z})=\sum_{d|m, e| n} \operatorname{gcd}(d, e)
$$

(Calhoun, 1987.)

Estimating the average of $s\left(\# E\left(\mathbb{F}_{p}\right)\right)$ appears to require a hybrid of the techniques used to study the average of $\tau\left(d_{p} e_{p}\right)$ and the average of d_{p}.

Thank you!

