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Abstract

Let g ≥ 2. A natural number N is called a repdigit in base g if all of the digits
in its base g expansion are equal, i.e., if N = D · g

m−1
g−1 for some m ≥ 1 and some

D ∈ {1, 2, . . . , g − 1}. We call N perfect if σ(N) = 2N , where σ denotes the
usual sum-of-divisors function. More generally, we call N multiperfect if σ(N)
is a proper multiple of N . The second author recently showed that for each
fixed g ≥ 2, there are finitely many repdigit perfect numbers in base g, and that
when g = 10, the only example is N = 6. We prove the same results for repdigit
multiperfect numbers.
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1. Introduction

Let g ≥ 2. A natural number N is called a repdigit in base g if all of the
digits in its base g expansion are equal; equivalently, N is a repdigit in base g if

N = D
gm − 1

g − 1
for some m ≥ 1, D ∈ {1, 2, . . . , g − 1}. (1)

Several authors have investigated the arithmetic properties of repdigits. For
example, Bugeaud and Mignotte [1] have shown that the only repdigit perfect
powers in base 10 are 1, 4, 8, and 9. This settled an old problem of Obláth [2].

In this paper, we are concerned not with perfect powers but with perfect
numbers. Let σ denote the familiar sum-of-divisors function. Recall that a
natural number N is called perfect if σ(N) = 2N and multiperfect (or multiply
perfect) whenever σ(N) is a proper multiple of N . In the latter case, the ratio
` = σ(N)/N is referred to as the abundancy of N , and N is called `-perfect.
The first example of a perfect number is N = 6, while the first example of
an `-perfect number with ` > 2 is N = 120 (with ` = 3). There are numerous
unsolved problems concerning perfect and multiperfect numbers; see [3, Chapter
1] for an up-to-date survey, and the website [4] for a database of all known
examples.

The second author [5] recently investigated repdigit perfect numbers. He
showed that in each base g, there are only finitely many examples, and that
when g = 10, the only example is N = 6. The method was that of the first
author [6], who had earlier shown that there are no perfect Fibonacci numbers
(see also [7]). Quite recently it was shown [8] that there are no multiply perfect
Fibonacci numbers. Inspired by this achievement, we establish the following
results:

Theorem 1. Fix g ≥ 2. There are only finitely many repdigit multiperfect
numbers N in base g. Moreover, there is a computable upper bound on the
number of such N .

The conclusion of Theorem 1 is slightly weaker than that of the correspond-
ing result for perfect repdigits in [5], where all examples were shown to bounded
by an effective constant depending on g. Our argument here just barely fails
to establish this; we obtain an effective bound whenever the number of digits is
not a power of 2 (cf. the remarks on p. 122 of [7]).

In the case of most interest, when g = 10, we are able to reduce the compu-
tation to something manageable and so determine all multiperfect repdigits.

Theorem 2. When g = 10, the only multiperfect repdigit is N = 6.
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Notation and conventions

We assume that g is an integer with g ≥ 2. We write Um and Vm for the
Lucas sequences of the first and second kind, respectively, with roots g and 1.
Thus, for each m ≥ 0,

Um :=
gm − 1

g − 1
and Vm := gm + 1.

For each positive integer d coprime to g, we let z(d) denote the rank of appear-
ance of d for the Um. In other words, z(d) is the minimal natural number for
which d | Uz(d). (Thus, if p is a prime not dividing g, then z(p) is the order of
p modulo g, except when p divides g − 1, when z(p) = p.) We take for granted
basic properties of Lucas sequences, as described, e.g., in [9, Chapter 4].

Throughout, the letters p, P, q, Q, and r, with or without subscripts, denote
primes. We write ω(m) :=

∑
p|m 1 for the number of distinct prime factors of

the positive integer m, and we write Ω(m) :=
∑
p`|m 1 for the number of prime

factors of m counted with multiplicity. For a prime p and a positive integer m,
we use νp(m) for the exponent of p in the factorization of m.

We use the Bachmann-Landau notation “f = O(g)” and the Vinogradov
notation “f � g” interchangeably; both mean that there is an effective constant
C with |f | ≤ Cg. Subscripts indicate parameters on which the implied constants
may depend.

We write e for the base of the natural logarithm.

2. General g: Proof of Theorem 1

Throughout this section, we assume that g ≥ 2 is fixed. We are to show that
there are only finitely many multiperfect numbers of the form N = D gm−1

g−1 ,

where D ∈ {1, 2, . . . , g − 1}.

2.1. The case m = 2s.

We first treat the case when m = 2s for some s. Fix D ∈ {1, 2, . . . , g − 1}.
Observe that U1 | U2 | U4 | U8 | . . . . It follows that the sequence

σ(D · U2s)

D · U2s
, with s = 1, 2, 3, . . . (2)

is strictly increasing. Indeed, whenever a is a proper divisor of b, we have
σ(a)/a < σ(b)/b; this is clear upon recalling that σ(n)/n =

∑
d|n d

−1 for each
natural number n. Consequently, for each `, there is at most one s for which
D ·U2s is multiperfect with abundancy `. So it suffices to show that there is an
effective bound on the possible values of `. Since

σ(D · U2s)

D · U2s
≤ σ(D)

D

σ(U2s)

U2s
�g

σ(U2s)

U2s
,
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we will have succeeded if we show that the ratios σ(U2s)/U2s are bounded.
Actually we prove more: In general, σ(Um)/Um is bounded in terms of g and
the number of distinct prime factors of m. The proof requires a simple identity.

If P is a finite set of primes, we write P∗ for the set of natural numbers all
of whose prime factors belong to P.

Lemma 1. Let P be a finite set of primes. We have

∑
n∈P∗

log n

n
=

∑
p∈P

log p

p− 1

∏
p∈P

(
1− 1

p

)−1
.

Proof. We start by inserting the identity log n =
∑
d|n Λ(d), where Λ is the von

Mangoldt function. Upon reversing the order of summation, we find that∑
n∈P∗

log n

n
=
∑
d∈P∗

Λ(d)
∑
n∈P∗
d|n

1

n

=
∑
d∈P∗

Λ(d)

d

∑
n′∈P∗

1

n′
.

Now ∑
n′∈P∗

1

n′
=
∏
p∈P

(
1 +

1

p
+

1

p2
+ . . .

)
=
∏
p∈P

(
1− 1

p

)−1
,

and ∑
d∈P∗

Λ(d)

d
=
∑
p∈P
k≥1

log p

pk
=
∑
p∈P

log p

p− 1
.

We can now prove the bound alluded to above.

Lemma 2. Let m be an integer with m > 1. Then

log
σ(Um)

Um
�g (log (eω(m)))2.

Proof. Observe that

σ(Um)

Um
=

∏
pe‖Um

(
1 +

1

p
+ · · ·+ 1

pe

)

≤
∏
p|Um

(
1 +

1

p− 1

)
≤ exp

∑
p|Um

1

p− 1

 . (3)

For each prime p dividing Um, the number z(p) is a divisor of m with z(p) > 1.
Moreover, if p - g − 1, then z(p) divides p− 1. Hence,∑

p|Um

1

p− 1
≤
∑
p|g−1

1

p− 1
+
∑
d|m
d>1

∑
p|Ud

p≡1 (mod d)

1

p− 1
. (4)
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Let d be a divisor of m with d > 1. Since Ud < gd, the number of prime divisors
of Um from the progression 1 mod d is bounded by log (gd)/log d, and so∑

p|Ud

p≡1 (mod d)

1

p− 1
≤

∑
1≤k≤d log g/ log d

1

dk
≤ 1

d

(
1 + log

(
d log g

log d

))
�g

log(ed)

d
.

(5)
Consequently, ∑

d|m
d>1

∑
p|Ud

p≡1 (mod d)

1

p− 1
�g

∑
d|m

log (ed)

d
. (6)

Write the prime factorization of m in the form qe11 · · · q
ek
k , where q1 < q2 <

· · · < qk. (Thus, k = ω(m).) If d | m, then we can write d = qf11 · · · q
fk
k , with

0 ≤ fi ≤ ei for all 1 ≤ i ≤ k. Let pi denote the ith prime. Since x 7→ log (ex)/x

is decreasing for x ≥ 1, we have log (ed)/d ≤ log (ed′)/d′, where d′ := pf11 · · · p
fk
k .

It follows that with P := {p1, . . . , pk}, the right-hand side of (6) is majorized
by

∑
d′∈P∗

log (ed′)

d′
=

1 +
∑
p∈P

log p

p− 1

∏
p∈P

(
1− 1

p

)−1
� (log (eω(m)))2, (7)

using the prime number theorem and Mertens’s theorems (explicit versions of
which are available in, e.g., [10]). The lemma follows upon collecting estimates
(3)–(7).

2.2. The general case

Suppose now that m is not a power of 2. In this case, we are able to show that
all examples are effectively bounded (and not merely the number of examples).
Our argument rests on the following estimate for the 2-part of σ(Um):

Lemma 3. Let m be a natural number, and write m = 2sn, where n is odd.
Suppose that n > 1. Then νp(Um) is odd for at least Ω(n) + 2s + Og(1) odd
primes p.

We defer the proof of Lemma 3 to the next section. Let us see how we may
use it to deduce Theorem 1.

Suppose that N = D gm−1
g−1 is multiperfect, and let ` be the abundancy of N .

By Lemma 2,

log ` ≤ log
σ(D)

D
+ log

σ(Um)

Um
�g (log(eω(m)))2. (8)

We wish to compare this with the trivial bound

log ` ≥ ν2(`) log 2. (9)
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Note that ν2(`) = ν2(σ(N))− ν2(N). Since D is divisible by only Og(1) primes,
Lemma 3 implies that νp(D · Um) is odd for at least Ω(n) + 2s + Og(1) odd
primes p. Hence,

ν2(σ(N)) = ν2(σ(D · Um)) ≥ Ω(n) + 2s+Og(1).

On the other hand, ν2(N) = ν2(D) + ν2(Um) = Og(1) + ν2(Um). Write

Um =
g2

sn − 1

g2s − 1
(g2

s−1

+ 1) · · · (g + 1). (10)

Since n is odd,

g2
sn − 1

g2s − 1
= (g2

s

)n−1 + (g2
s

)n−2 + · · ·+ 1 ≡ (n− 1)g2
s

+ 1 ≡ 1 (mod 2),

and so the first right-hand factor in (10) makes no contribution to ν2(Um). If
g is even, then the remaining s factors in (10) are also odd; otherwise, for all
1 ≤ i ≤ s− 1,

g2
i

+ 1 ≡ 2 (mod 4), so that ν2(g2
i

+ 1) = 1.

So regardless of the parity of g,

ν2(Um) ≤ s+Og(1).

Thus,

ν2(`) = ν2(σ(N))− ν2(N)

≥ Ω(n) + s+Og(1) = Ω(m) +Og(1).

Combining this with (8) and (9) shows that

ω(m) ≤ Ω(m)�g (log (eω(m)))2. (11)

This estimate is key: It implies that ω(m) and Ω(m) are both bounded, and (8)
now implies that ` is also bounded. The next lemma will allow us to bound the
prime factors of m.

Lemma 4. Let G ≥ 2. Let ε > 0, and let Z be a positive integer. Suppose that
k is a natural number with ω(k) ≤ Z for which

σ((Gk − 1)/(G− 1))

(Gk − 1)/(G− 1)
> 1 + ε. (12)

Then the smallest prime dividing k is bounded by a computable number depend-
ing on G, ε, and Z.
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Proof. Assume that every prime factor of k exceeds W , where W is a large
natural number to be specified in due course. We will show that we obtain a
contradiction for large enough W . For each prime p, let z′(p) denote the rank
of appearance of p for U ′m := Gm−1

G−1 . Then (cf. the proof of Lemma 2)

log

(
σ((Gk − 1)/(G− 1))

(Gk − 1)/(G− 1)

)
≤
∑
d|k
d>1

∑
p : z′(p)=d

1

p− 1
.

Suppose that W > G. Then z′(p) divides p − 1 for each prime p dividing k.
(Otherwise, z′(p) = p is a prime divisor of both k and G− 1, contradicting that
p > W > G.) Following the proof of Lemma 2, we deduce that∑

d|k
d>1

∑
p : z′(p)=d

1

p− 1
�G

∑
d|k
d>1

log (ed)

d
.

Let P be the set of the first Z consecutive primes exceeding W . By Lemma 1,∑
d|k
d>1

log (ed)

d
≤
∑
d∈P∗
d>1

log (ed)

d

=

∏
p∈P

(
1− 1

p

)−1
− 1

+

∑
p∈P

log p

p− 1

∏
p∈P

(
1− 1

p

)−1
.

If we add to our conditions on W that W ≥ 2Z, we find that

1 ≤
∏
p∈P

(
1− 1

p

)−1
≤ exp

∑
p∈P

1

p− 1

 ≤ exp

(
Z

W

)
≤ 1 +O

(
Z

W

)
.

Also, since log x/(x− 1) is decreasing for x > 1,∑
p∈P

log p

p− 1
≤ Z log (W + 1)

W
.

Putting everything together, we find that

log

(
σ((Gk − 1)/(G− 1))

(Gk − 1)/(G− 1)

)
�G Z

log(W + 1)

W
.

Now choosing W sufficiently large, we obtain a contradiction with (12).

We have seen already that Ω(m) is effectively bounded in terms of g, see
(11). Fix such a bound Z, so that

Ω(m) ≤ Z.
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We can now complete the proof of Theorem 1 (still assuming Lemma 3).
Since ` is bounded, we may fix ` and restrict attention to `-perfect numbers.
Since there are only Og(1) choices for the digit D, we also assume that D is
fixed. We proceed inductively: We show that for each j = 0, 1, 2, 3, . . . , the
following assertion holds:

Let N = D · g
m−1
g−1 be an `-perfect number, where m is not a

power of 2. Suppose that Ω(N) ≥ j. Then the j smallest (not
necessarily distinct) prime factors of m are bounded. The bound
here depends at most on D, g, j, and `.

(Aj)

Since Ω(m) is bounded by Z, this proves Theorem 1.
Statement A0 is vacuously true. Assume that Aj is known to be true, and

take an `-perfect number N of the prescribed form with Ω(N) ≥ j + 1. Write
m = p1p2 · · · pjm′, where p1 ≤ p2 ≤ · · · ≤ pj is the list of the j smallest prime
factors of m. Then

` =
σ(N)

N
=
σ(D · Um/m′ Um

Um/m′
)

D · Um/m′ Um

Um/m′

≤
σ(D · Um/m′)
D · Um/m′

σ(Um/Um/m′)

Um/Um/m′
. (13)

Since m′ > 1, the number D · Um/m′ is a proper divisor of N , and so

σ(D · Um/m′)
D · Um/m′

<
σ(N)

N
= `. (14)

In fact, we can say something a bit stronger. By the induction hypothesis, there
are only finitely many possibilities for m/m′. Consequently, the left hand-side
of (14) is bounded away from `; in other words, for some small ε > 0 (depending
only on D, g, j, and `), we have

σ(D · Um/m′)
D · Um/m′

< `(1− ε),

uniformly in the original choice of N . By (13),

σ(Um/Um/m′)

Um/Um/m′
≥ `

D · Um/m′
σ(D · Um/m′)

>
1

1− ε
> 1 + ε. (15)

Set G := gm/m
′
. Then

Um/Um/m′ =
gm − 1

gm/m′ − 1
=
Gm

′ − 1

G− 1
. (16)

Clearly ω(m′) ≤ Z. By (15), (16), and Lemma 12, the least prime factor of m′

is bounded by a constant, depending on gm/m
′
, ε, and Z. Here Z depends only

on g. Also, ε depends only on D, g, j, and `, and there are only finitely many
possibilities for m/m′. Thus, the least prime factor of m′, which is the (j+ 1)th
smallest prime factor of m, is bounded by a quantity depending only on D, g,
j + 1, and `. This completes the induction.
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2.3. Proof of Lemma 3

We need some preliminary lemmas. Let us write � to denote a rational
perfect square, i.e., a generic element of (Q×)2.

Lemma 5 (Ljunggren [11]). The only integer solutions (G, k) with |G| > 1 and
k > 2 to the exponential Diophantine equation

Gk − 1

G− 1
= �

are (G, k) = (7, 4) and (G, k) = (3, 5).

Recall that for P a finite set of primes, P∗ denotes the set of natural numbers
all of whose prime factors belong to P.

Lemma 6. Let G ≥ 2. Let P be a finite set of prime numbers. The set of k
for which Gk + 1 = A� for some A ∈ P∗ is a finite set. Moreover, all such k
are bounded by an effective constant depending only on G and P.

The next lemma is implicit in the proof of [5, Lemma 8].

Lemma 7. Let G ≥ 2. Let P be a finite set of prime numbers, and let r > 1.
The set of k for which

Gkr − 1

Gk − 1
= A� (17)

for some A ∈ P∗ is a finite set. Moreover, all such k are bounded by an effective
constant depending only on G,P, and r.

Proof. Putting x = Gk, we can rewrite (17) in the form

xr−1 + xr−2 + · · ·+ 1 = A�.

The left-hand expression is a polynomial in x with r−1 simple roots. If r−1 ≥ 3,
then the desired result follows immediately from an effective version of Siegel’s
theorem (see, e.g., [12, Theorem 6.2]). So we need only consider the cases r = 2
and r = 3. If r = 2, then (17) takes the form Gk+1 = A�, and the result follows
from Lemma 6. So suppose that r = 3. Write Gk = Gδy2, where δ ∈ {0, 1} and
y is an integer. Then (17) implies that y is a solution to

G2δy4 +Gδy2 + 1 = A�.

It is simple to check that for both δ = 0 and δ = 1, the left-hand polynomial in
y has four simple roots, so that another appeal to Siegel’s theorem finishes the
proof.

Proof of Lemma 3. Let ω′(·) stand for the additive function which counts the
number of odd primes which appear to an odd exponent. We are to show that,
if m = 2sn with n > 1 and odd, then

ω′(Um) ≥ Ω(n) + 2s+Og(1).
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By repeated application of the identity U2i = UiVi, we obtain a fatorization
Um = UV , where

U := Un and V := VnV2n · · ·V2s−1n.

Here U and V are relatively prime: Indeed, if p divides U , then gn ≡ 1 (mod p);
this implies that for each 0 ≤ i < s,

V2in = g2
in + 1 ≡ 2 (mod p),

and so p - V except possibly if p = 2. But U is odd since n is odd, so that
gcd(U, V ) = 1, as claimed. It follows that to bound ω′(Um), is it enough to
bound ω′(U) and ω′(V ).

We start with U . Write the prime factorization of n in the form n =
p1p2 · · · pk, where p1 ≤ p2 ≤ · · · ≤ pk. Put n1 := n, and for 1 ≤ i ≤ k,
successively define ni+1 := ni/pi. (Thus ni = pi · · · pk, with nk+1 = 1.) We
have the k-fold decomposition

U =
Un1

Un2

Un2

Un3

· · · Unk

Unk+1

. (18)

Suppose that p is a prime which divides two of the right-hand factors, say the
ith and jth, where i < j. Then nj | ni+1, so that

p |
Unj

Unj+1

| gnj − 1 | gni+1 − 1.

Thus gni+1 ≡ 1 (mod p). But also

p | Uni

Uni+1

=
gni − 1

gni+1 − 1
,

so that modulo p,

0 ≡ gni − 1

gni+1 − 1
=
gni+1pi − 1

gni+1 − 1
= 1 + gni+1 + · · ·+ g(pi−1)ni+1

≡ 1 + 1 + · · ·+ 1 ≡ pi.

Hence, p = pi. Since p | Unj
/Unj+1

| Unj
, we have that z(p) divides nj =

pj · · · pk. But z(p) = z(pi) is divisible only by primes ≤ pi, while nj is divisible
only by primes ≥ pj . Since i < j, this is only possible if z(pi) = pi, so that
p = pi divides g − 1. Moreover, pi = pi+1 = · · · = pj .

This suggests a division of the indices 1 ≤ i ≤ k into classes. For each prime
p dividing gcd(n, g − 1), let Cp denote the set of indices i for which pi = p, and
let C0 consist of the indices not belonging to any Cp. Then if i and j belong to
distinct classes, gcd(Uni/Uni+1 , Unj/Unj+1) = 1, and the same holds for distinct
indices i and j both belonging to C0. We claim that for each class C,

ω′

(∏
i∈C

Uni
/Uni+1

)
≥ #C +Og(1). (19)
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Since there are only Og(1) classes, and the union of the classes has size k, this
shows that

ω′(U) ≥ k +Og(1) = Ω(n) +Og(1). (20)

Suppose that C = C0. Lemma 5 shows that there is at most one i ∈ C for
which

Uni/Uni+1 =
gni+1pi − 1

gni+1 − 1

is a square. (Note that such an i gives rise to a solution of Ljunggren’s equation
with G = gni+1 and k = pi.) Since Uni

/Uni+1
is odd, we find that

ω′(Uni
/Uni+1

) ≥ 1

for all i ∈ C, with at most one exception. Since Uni/Uni+1 and Unj/Unj+1 are
coprime for distinct i, j ∈ C0, this proves the claim (19) when C = C0.

Now suppose that C = Cp, where p | gcd(n, g − 1). For every two indices
i, j ∈ C, the greatest common divisor of Uni

/Uni+1
and Unj

/Unj+1
is supported

on the primes dividing g − 1. So to prove (19), it is enough to show that for
all but Og(1) indices i ∈ C, there is a prime p not dividing g − 1 for which
νp(Uni/Uni+1) is odd. Since

Uni/Uni+1 =
gni+1p − 1

gni+1 − 1
,

this follows from Lemma 7, taking G = g, r = p, and P the set of primes
dividing g − 1. This proves the claim for these C and completes the proofs of
(19) and (20).

We now turn to estimating ω′(V ). We will show that

ω′(V ) ≥ 2s+Og(1),

which with (20) completes the proof of the lemma. (Recall that U and V are
relatively prime.)

In the decomposition V = VnV2n · · ·V2s−1n, no pair of the s factors has a
common odd prime divisor. Indeed, if p is an odd prime dividing V2in for some
0 ≤ i < s, then g2

in ≡ −1 (mod p), which implies that gn has order 2i+1

modulo p. Consequently, the index i is uniquely determined. So it suffices to
show that for all but Og(1) indices i, with 0 ≤ i < s, we have ω′(V2in) ≥ 2.

Fix q as the smallest prime divisor of n, and write

V2in =
V2in
V2in/q

V2in/q.

(Here we use our hypothesis that n > 1.) If we rewrite the first term on the
right-hand side in the form

V2in
V2in/q

=
(−g2in/q)q − 1

−g2in/q − 1
, (21)
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then we see from Lemma 5 that V2in/V2in/q is never a square. Since q is odd,
V2in/V2in/q is odd, and so

ω′(V2in/V2in/q) ≥ 1. (22)

Also, by Lemma 6 (with P = {2} and G = g),

ω′(V2in/q) ≥ 1 (23)

for all but Og(1) indices i. Finally, we claim that there is at most one index i
for which V2in and V2in/q are not relatively prime. To see this, suppose that r

is a common prime factor. Since r | V2in/q, we have g2
in/q ≡ −1 (mod r); thus

0 ≡ V2in
V2in/q

≡ 1 + 1 + · · ·+ 1 ≡ q (mod r),

so that r = q. But we have seen already that q divides V2in for at most one
value of i, and so the claim is proved. Now (22) and (23) yield that ω′(V2in) ≥ 2
for all but Og(1) indices i with 0 ≤ i < s, as desired.

3. A fundamental inequality

For the remainder of the paper, we fix g = 10. For each integer m > 0, let
ω′′(m) denote the number of primes p ≡ 3 (mod 4) for which νp(m) is odd. The
following lemma is fundamental for the proof of Theorem 2.

Lemma 8. Let m > 1 be an integer, and put k = ω(m). Then

ω′′(Um) ≥ 2k − 2k. (24)

If m is coprime to 3, then the above inequality is strict.

3.1. Proof of Lemma 8

We first claim that if d > 1 is squarefree, then

Φd(X) ≡ 1±X (mod X2), (25)

where Φd(X) denotes the dth cyclotomic polynomial. By definition, Φd(X) =∏
ζ (X − ζ), where ζ ranges over the primitive dth roots of unity. That Φd(X)

has constant term 1 is immediate for d = 2, while for d > 2, this follows upon
pairing ζ with ζ−1. Moreover, the X-coefficient of Φd(X) is given by

−
∑

1≤j≤d
gcd(j,d)=1

e2πij/d = −µ(d).

(See, e.g., [13, §16.6].) This proves (25).
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Now write
Um =

∏
d∈A

Φd(10)
∏
d∈B

Φd(10), (26)

where A consists of the squarefree divisors > 1 of m, and B consists of the
remaining divisors > 1 of m. We infer from (25) that Φd(10) ≡ 3 (mod 4) for
all d ∈ A. Defining

Pd := {P ≡ 3 (mod 4), νP (Φd(10)) ≡ 1 (mod 2)},

it follows that #Pd ≥ 1 for each d ∈ A.
Recall that if a and b are positive integers with a < b, then

gcd(Φa,Φb) = 1 or P, (27)

where P is prime; moreover, the second case occurs precisely when a = Pαz(P )
and b = P βz(P ) for some exponents β > α ≥ 0 (see the remarks preceding [14,
Lemma 6]). So if a and b are both squarefree and Φa(10) and Φb(10) are not
coprime, then a = z(P ) and b = Pz(P ) for some prime P > 5 for which z(P ) is
squarefree.

Let P denote the union of the sets Pd, for d ∈ A. Clearly,

#P ≥
∑
d∈A

#Pd −
∑
d<e

d, e∈A

#(Pd ∩ Pe)

≥ (2k − 1)−
∑
d<e

d, e∈A

#(Pd ∩ Pe).

By the above, if Pd∩Pe 6= ∅, then Pd∩Pe consists of only a single prime P ≥ 7
and (d, e) = (z(P ), P z(P )). Thus, the prime P (which necessarily divides m)
uniquely determines the pair (d, e). Observe also that P cannot be the smallest
prime in m. Consequently, ∑

d<e
d, e∈A

#(Pd ∩ Pe) ≤ k − 1,

so that #P ≥ 2k − k.
Let P be a prime in P. If P - m, then (by the above) P belongs to pre-

cisely one of the sets Pd, with d ∈ A, and so P shows up to an odd power in∏
d∈AΦd(10). Also, in this case, P does not divide

∏
d∈B Φd(10). Hence, P

appears to an odd power in Um. The number of prime factors of m belonging
to P is ≤ k always, and is ≤ k− 1 when m is coprime to 3, because when 3 - m,
the smallest prime factor in m cannot belong to P. Thus

ω′′(Um) ≥ #P − k
≥ 2k − 2k, (28)

and the final inequality is strict if m is coprime to 3.
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3.2. Perfect repdigits revisited

As a warm-up for the proof of Theorem 2, we offer another proof of the
second principal result of [5].

Theorem A. In base 10, the only perfect repdigit is N = 6.

Proof. If N is perfect and even, then N has the form 2p−1(2p− 1), where p and
2p − 1 are primes. Writing N in the form (1), we see that

p− 1 = ν2(N) = ν2(D) ≤ 3,

so that p ≤ 4. Thus, p ∈ {2, 3} and N ∈ {6, 28}; but 28 is not a repdigit.
To show that there are no odd perfect numbers which are repdigits, we

appeal to a classical result of Euler: Every odd perfect number N has the shape

N = p�, where p ≡ 1 (mod 4);

here p is referred to as the special prime. Suppose now that N is an odd perfect
repdigit and write N = D · Um with D ∈ {1, 2, . . . , 9}. Clearly m > 1. Put
k = ω(m). We take two cases.

Case I: 3 - m. Then D and Um are coprime. Lemma 8 now shows that

ω′′(N) = ω′′(D · Um) ≥ ω′′(Um) ≥ 2k − 2k + 1 ≥ 1.

But this contradicts the quoted result of Euler, according to which ω′′(N) = 0.

Case II: 3 | m. In this case, Um is a multiple of U3 = 3 · 37. Since D has at
most one prime factor which is 3 modulo 4, we get that ω′′(N) ≥ 2k − 2k − 1.
This expression is positive if k ≥ 3, which forces k = 1 or k = 2.

Suppose that 37 is the special prime dividing N . Then ν37(N) is odd, whence

19 | (37 + 1) | σ(N) = 2N.

Thus, 19 | Um, so that 18 = z(19) | m. Since k ≤ 2, we get that m = 2a3b for
some positive integers a and b. Moreover, U18 | N . Since 11 | U18 and N = 37�,
it follows that 112 | N . Hence, 112 | Um and 2 · 11 = z(112) | m, which is a
contradiction.

So assume that 37 is not the special prime. Then 372 | N , so that 3 · 37 =
z(372) | m. Since k ≤ 2, this shows that m = 3a37b for some positive integers a
and b. Since

2028119 ‖ U37 | N,

and 2028119 is a prime congruent to 3 modulo 4, we get that 20281192 | N .
Therefore 2028119 | z(20281192) | m, which is again a contradiction.
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4. g = 10: Proof of Theorem 2

Suppose that N is a multiply perfect repdigit in base g = 10. Write

N = D
10m − 1

9
, where D ∈ {1, 2, . . . , 9}.

We let ` denote the abundancy of N and we let k denote the number of distinct
prime factors of m.

The case ` = 2 is handled in Theorem A, so we assume that ` ≥ 3. A quick
calculation with Mathematica shows that m ≥ 70. Our plan is to iteratively
bound k and ` until we get a contradiction.

We start by showing that

ν2(`) ≥ 2k+1 − 4k − 3. (29)

By Lemma 8, we have ω′′(Um) ≥ 2k−2k. So ω′′(N) ≥ 2k−2k−ω(gcd(D,Um)).
Hence,

ν2(σ(N)) ≥ 2ω′′(N)

≥ 2k+1 − 4k − 2ω(gcd(D,Um)).

Since ν2(σ(N)) = ν2(`) + ν2(D), we get that

ν2(`) ≥ 2k+1 − 4k − 2ω(gcd(D,Um))− ν2(D).

Thus, (29) follows once it is shown that

2ω(gcd(D,Um)) + ν2(D) ≤ 3. (30)

If D ∈ {1, 2, 4, 5, 8}, then gcd(D,Um) = 1 and ν2(D) ≤ ν2(8) = 3, yielding (30).
If D ∈ {3, 7, 9}, then ω(D) = 1 and ν2(D) = 0, and so again (30) holds. Finally,
if D = 6, then ω(gcd(D,Um)) ≤ ω(3) = 1 and ν2(D) = 1, and again we have
(30).

4.1. Initial upper bounds on k and `

From inequality (29),

log ` ≥ (2k+1 − 4k − 3) log 2. (31)

On the other hand, proceeding as in the proof of Lemma 2, we see that

log ` = log
σ(N)

N
≤ log

σ(D)

D
+ log

σ(Um)

Um

≤ log
15

8
+
∑
Q|Um

log

(
1 +

1

Q− 1

)
. (32)

To bound the remaining sum, we group the prime factors Q of Um according to
the value of z(Q). Put Qd = {Q : z(Q) = d}. Since z(Q) | Q− 1 for all Q 6= 3,
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we have that Qd consists of primes p ≡ 1 (mod d) for all d 6= 3. Moreover,
by a direct computation, Q3 = {3, 37}. In particular, putting h := #Qd, the
inequalities

h!dh ≤
∏
Q∈Qd

Q ≤ Φd(10) ≤ 11ϕ(d)

hold for all d ≥ 2. Putting ρ0 = 1 and ρh = h!1/h for h ≥ 1, it follows that

h ≤ ϕ(d) log 11

log(ρhd)
.

Now it is straightforward to check that ρh is a nondecreasing function of h for
nonnegative integers h. Thus, considering separately the cases when h ≤ 30 and
h > 30, we see that for d 6= 3,

Sd :=
∑
Q∈Qd

1

Q− 1
≤ 1

d

h∑
i=1

1

i

≤ 1

d
max

{
30∑
i=1

1

i
, log

(
e
ϕ(d) log 11

log(ρ31d)

)}
. (33)

If d ≥ 55, we have
∑30
i=1

1
i < log d. For such d we also have

e
ϕ(d) log 11

log(ρ31d)
< ϕ(d)

e log 11

log(55ρ31)
< ϕ(d) < d.

Thus, for d ≥ 55, we have Sd <
log d
d . Treating those d < 55 by direct calcula-

tion, we find that

Sd <
log d

d
for all d 6= 3. (34)

From (32), (34), and an appeal to the inequality log(1 + x) < x, we obtain
that

log ` ≤ log

(
15

8

)
+

{
log

(
1 +

1

2

)
+ log

(
1 +

1

36

)
− log 3

3

}
+
∑
d|m

log d

d
.

We thus arrive at the numerically explicit bound

log ` < 0.7 +
∑
d|m

log d

d
.

Let P be the set of primes dividing m. By Lemma 1,

∑
d|m

log d

d
≤
∑
d∈P∗

log d

d
=
∏
p|m

(
1 +

1

p− 1

)∑
p|m

log p

p− 1

 .
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Since x 7→ 1
x−1 and x 7→ log x

x−1 are both decreasing for x > 1, we get that (with
pk denoting the kth prime)

log ` < 0.7 +
∏
p≤pk

(
1 +

1

p− 1

)∑
p≤pk

log p

p− 1

 . (35)

Comparing this with (31) shows that

(2k+1 − 4k − 3) log 2 < 0.7 +
∏
p≤pk

(
1 +

1

p− 1

)∑
p≤pk

log p

p− 1

 . (36)

This inequality fails for all k ≥ 5. To see why, we use some explicit estimates
from prime number theory: By inequalities (3.24) and (3.30) of [10, p. 70], we
have for k ≥ 5,∏

p≤pk

(
1 +

1

p− 1

)
< 1.782(log pk)

(
1 +

1

(log pk)2

)
< 1.782 log pk + 0.8,

and ∑
p≤pk

log p

p− 1
<
∑
p≤pk

log p

p
+
∑
p

log p

p(p− 1)
< log pk + 0.8.

Thus,

(2k+1 − 4k − 3) log 2 < 0.7 + (1.782 log pk + 0.8)(log pk + 0.8). (37)

Inserting the inequality pk < 2k log k (see [10, inequality (3.13)]) into (37), we
get an inequality which fails for all k ≥ 5.

Thus k ≤ 4. Inequality (35) now shows that that log ` < 9.32, so that
` ≤ 11158.

4.2. Reducing the bounds on k and `

Let K and L denote known upper bounds on k and `. At this point, we may
take

K = 4, L = 11158.

Our goal in this section is to reduce these bounds. Given L, we let V = V (L) :=
b logLlog 2 c, so that presently

V = 13.

Note that ν2(`) ≤ V and ν2(N) ≤ V + 3.
Put R = {3, 487, 56598313}. A calculation with Mathematica reveals that

the primes in R are the only primes r < 1010 for which r2 | 10r−1 − 1. In
particular, if r < 1010 and r2 | Um for some positive integer m, then either
r ∈ R or r | m. Let Z ≥ 20 be an integer parameter to be chosen later.

Write
N = N1N2N3N4N5N6,
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with
Ni =

∏
pap‖m
p∈Ai

pap for all i = 1, . . . , 6,

where

(i) A1 = R,

(ii) A2 = {p | D} \ A1,

(iii) A3 = {p < 1010} \ (A1 ∪ A2),

(iv) A4 = {1010 < p < 10Z},

(v) A5 = {p > 10Z : p > z(p)5/2},

(vi) A6 = {p > 10Z : p ≤ z(p)5/2}.

Then

log ` = log
σ(N)

N
=

6∑
i=1

log
σ(Ni)

Ni
.

We estimate the contribution from each of the six right-hand terms separately.
To start off,

log
σ(N1)

N1
<
∑
r∈R

log

(
1 +

1

r − 1

)
< 0.408. (38)

The set of primes in A2 dividing Um is either empty or consists of a single
prime p. In the latter case, p = 2 or p ≥ 5. If p ≥ 5, then σ(N2)/N2 < 5/4. If
p = 2, then σ(N2)/N2 ≤ σ(8)/8 = 15/8, since ν2(N) = ν2(D) ≤ 3. Thus

log
σ(N2)

N2
≤ log

15

8
< 0.63. (39)

We now turn to the case i = 3. We claim that at most V +K + 2 primes in
A3 divide Um. Indeed, suppose that Um is divisible by at least V +K + 3 such
primes. Note that each such prime is at least 7. Since ν2(N) ≤ V + 3, at most
V + 3 of these primes can appear with an odd exponent, so that at least K of
them, say R1 < R2 < · · · < RK , must appear with an even exponent. Since
R2
i | Um, it follows that each Ri | m. Thus m is a multiple of the number

z(R1)R1R2 · · ·RK .

But this number has at least K + 1 distinct prime divisors, whereas m has at
most K distinct prime divisors. This contradiction proves the claim. Moreover,
this argument shows that at most K−1 of the primes in A3 dividing Um appear
to an exponent > 1 in the factorization of N . Consequently,

log
σ(N3)

N3
≤
K+2∑
i=4

log

(
1 +

1

pi − 1

)
+

V+K+5∑
i=K+3

log

(
1 +

1

pi

)
. (40)
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When i = 4, we have

log
σ(N4)

N4
<

∑
1010<p<10Z

1

p− 1

<
∑

1010<p<10Z

1

p
+

∑
n>1010

1

n(n− 1)
=

∑
1010<p<10Z

1

p
+ 10−10.

Estimates (3.17) and (3.18) in [10] yield that∑
1010<p<10Z

1

p
< log (0.1Z log(10)) +

1

(10 log 10)2
.

Collecting, we get

log
σ(N4)

N4
< logZ − 1.46. (41)

We now take the case i = 5. We start off in a now-familiar way, noting that

log
σ(N5)

N5
<
∑
Q|Um

Q∈A5

1

Q− 1
. (42)

The right-hand side of (42) is estimated by Abel summation. Let A5(t) =
# (A5 ∩ [1, t]) be the counting function of A5. Observe that

10ZA5(t) ≤
∏
p∈A5
p≤t

p ≤
∏

2≤n<t2/5
Φn(10) ≤ 11

∑
2≤n≤t2/5

ϕ(n)
,

so that

A5(t) ≤
(

log 11

Z log 10

) ∑
2≤n≤t2/5

ϕ(n).

For each x ≥ 2, ∑
2≤n≤x

ϕ(n) ≤
∑

1≤l≤ x−1
2

ϕ(2l + 1) +
∑

1≤l≤ x
2

ϕ(2l)

≤ 2
∑

1≤l≤ x−1
2

l +
∑

1≤l≤ x
2

l ≤ 3x2

8
.

Thus,

A5(t) ≤
(

3 log 11

8Z log 10

)
t4/5 < 0.02t4/5 for all Z ≥ 20. (43)

By Abel summation,∑
p∈A5
p≤t

1

p− 1
<
∑
p∈A5
p≤t

1

p
+

∑
n>1010

1

n(n− 1)

≤ A5(t)

t
+

∫ t

10Z

A5(s)

s2
ds+ 10−10.
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Now inserting (43), we find that

∑
p∈A5
p≤t

1

p− 1
< 0.02

(
1

t1/5
+

∫ t

10Z

ds

s6/5

)
+ 10−10 <

5× 0.02

10Z/5
+ 10−10.

Letting t go to infinity and recalling (42), we find that

log
σ(N5)

N5
<

1

101+Z/5
+ 10−10 whenever Z ≥ 20. (44)

Finally, we deal with the case i = 6. Suppose Q | N6, and let d = z(Q).
Since d5/2 ≥ Q > 10Z , we have d > 102Z/5. Furthermore, Q = dj + 1 for some
j < d3/2. This last fact shows that∑

Q∈A6

z(Q)=d

1

Q− 1
≤ 1

d

∑
j<d3/2

1

j
<

1

d

(
1 + log(d3/2)

)
=

3 log d

2d

(
1 +

2

3 log d

)
.

Since d > 102Z/5, we have

3

2

(
1 +

2

3 log d

)
<

3

2

(
1 +

2

3 log(108)

)
< 1.56 for Z ≥ 20.

Thus, for each d, ∑
Q∈A6

z(Q)=d

1

Q− 1
<

1.56 log d

d
. (45)

It remains to sum over those d which appear as z(Q) for some Q dividing N6.
Since we are trying to lower the value of K, we may as well assume that K

is a sharp upper bound and that N was chosen so that k = K. For each d as
above, let ad = qαd

d be the largest prime power divisor of d. Then

ad ≥ d1/K > 102Z/5K .

Write d = ade and group terms according to the value of ad. Since log d ≤
K log ad, we find that∑

d

log d

d
≤

∑
ad>102Z/5K

K log ad
ad

∑
e|m

gcd(e,qd)=1

1

e
.

Extending the inner sum to all positive integers e formed with prime factors
q 6= qd of m, we get a sum whose value is∏

q|m
q 6=qd

(
1 +

1

q − 1

)
=

(
m

ϕ(m)

)
qd − 1

qd
.
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Thus,

∑
d

log d

d
≤ K m

ϕ(m)


∑
q|m

qb>102Z/5K

(q − 1) log(qb)

qb+1

 . (46)

For each q dividing m, let βq be the smallest positive integer satisfying qβq >
102Z/5K . Then

∑
β≥βq

(q − 1) log (qβ)

qβ+1
=

(q − 1) log(qβq )

qβq+1

(
1 +

1 + 1/βq
q

+
1 + 2/βq

q2
+ · · ·

)

≤ (q − 1) log(qβq )

qβq+1

(
1 +

2

q
+

3

q2
+ . . .

)
=

(q − 1) log(qβq )

qβq+1(1− 1/q)2
=

q

q − 1

log(qβq )

qβq
.

But qβq > 102Z/5K , and so∑
β≥βq

(q − 1) log(qβ)

qβ+1
<

(
2Z log 10

5K · 102Z/5K

)
q

q − 1
.

Summing over q and noting that 2 log 10
5 < 0.922, we obtain from (46) that

∑
d

log d

d
<

0.922Z

102Z/5K

∏
q|m

(
1 +

1

q − 1

)∑
q|m

q

q − 1

 . (47)

The right-hand side is largest when the K primes dividing m are p1, . . . , pK .
Using inequalities (45) and (47), we finally arrive at

log
σ(N6)

N6
≤
∑
Q∈A6

Q|Um

1

Q− 1

≤
(

1.44Z

102Z/5K

) K∏
i=1

(
pi

pi − 1

){ K∑
i=1

pi
pi − 1

}
. (48)

Combining estimates (38), (39), (40), (41), (44) and (48), we find that

log ` ≤ −0.42 +

K+2∑
i=4

log

(
1 +

1

pi − 1

)
+

V+K+5∑
i=K+3

log

(
1 +

1

pi

)
+ logZ

+
1

101+Z/5
+

(
1.44Z

102Z/5K

) K∏
i=1

(
pi

pi − 1

){ K∑
i=1

pi
pi − 1

}
. (49)

We compare this with (31), which asserts when k = K that

(2K+1 − 4K − 3) log 2 < log `. (50)
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Taking K = 4, V = 13, and Z = 30 in (49), we get log ` < 4.85, whereas the
lower bound (50) gives log ` > 6.23. This contradiction shows that the case
k = 4 is impossible, so that we may take K = 3.

Next, taking K = 3, V = 13 and Z = 30 in (49), we get log ` ≤ 3.79. Hence,
we may take L = 45 and V = blogL/ log 2c = 5. Taking K = 3, Z = 28 and
V = 5 in (49), we get log ` ≤ 3.636, therefore ` < 38.

Thus, we may take K = 3 and L = 37.

4.3. The case when 3 | m
Suppose that N is multiply perfect and 3 | m. Then 3 · 37 = U3 | Um | N .

Thus, either 372 ‖ N or 37 ‖ N = D · Um. In the latter case,

19 | 38 = σ(37) | σ(N) = `N = `D · Um,

so that either 19 | ` or 19 | Um. We will show that each of these possibilities
leads to a contradiction.

Subcase: 37 ‖ N and 19 | `. Since ` ≤ 37, we must have ` = 19. Also,
ν2(σ(N)) = ν2(19D) = ν2(D). If D = 8, then

5 | 15 = σ(8) | σ(8)σ(Um) = σ(8Um) = 19 · 8 · Um,

so that 5 | Um, an absurdity. Suppose next that D = 4. Then

7 = σ(4) | σ(4Um) = 19 · 4 · Um,

so that 7 | Um and hence 6 = z(7) | m. Thus U6 = 3 · 7 · 11 · 13 · 37 | Um | N . At
most one of the four primes from P := {7, 11, 13, 37} can appear to higher than
the first power in the prime factorization of N . Indeed, suppose p ∈ P is such
that p2 | N = 4Um. Then p2 | Um, and so p | z(p2) | m; but ω(m) = k ≤ 3, and
we know already that 2 and 3 divide m. It follows that

ν2(σ(N)) ≥ 3;

but ν2(σ(N)) = ν2(D`) = ν2(4 · 19) = 2. This contradiction establishes that
D 6= 4. In the remaining cases, ν2(σ(N)) = ν2(D) ≤ 1. Thus, 37 is the only
odd prime which appears to an odd power in the prime factorization of N . So
the only primes which may appear to an odd power in Um = N/D are 37 and
the odd prime divisors of D. So, either

Um = 37 ·�, or Um = 3 · 37 ·�, or Um = 7 · 37 ·�.

The first and third possibilities can be immediately ruled out, since Um =
10m−1

9 ≡ −1 (mod 8) for m ≥ 3, while an odd square is ≡ 1 (mod 8). If
Um = 3 · 37 ·�, then 3 | m, and

(103)m/3 − 1

103 − 1
=
Um
U3

= �.
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Lemma 5 shows that this is impossible if m/3 > 2, which certainly holds in our
case since m ≥ 70.

Subcase: 37 ‖ N and 19 | Um. In this case, 2 · 32 = 18 = z(19) | m, so that

32 · 7 · 11 · 13 · 19 · 37 · 52579 · 333667 = U18 | Um | N.

Let P be the set of primes > 3 which divide Um. Since k = ω(m) ≤ 3, we see
(arguing as in the earlier subcase) that at most one of the primes p ∈ P can
divide Um to a power higher than the first. Also, only the prime p = 7 in P
can possibly divide D. It follows that at least #P − 2 = 5 of the primes in P
exactly divide N = D · Um, and at least 3 of these belong to the residue class
3 mod 4. So

ν2(D`) = ν2(σ(N)) ≥ 2 + 2 · 3 = 8.

Since ` ≤ 37 and D ≤ 9, this forces D = 8 and ` = 32. But then 8 ‖ N , so that
5 | 15 = σ(8) | σ(N) = 32 · 8 · Um, which implies that 5 | Um, an absurdity.

Subcase: 372 | N . In this case, 3 · 37 = z(372) | m, so that U3·37 | Um | N . We
first claim that either 2 | m or 32 | m. Let P denote the set of primes 6= 3, 37
which divide U3·37. From the Cunningham project tables [15],

P = {2028119, 247629013, 30557051518647307, 2212394296770203368013,

8845981170865629119271997, 90077814396055017938257237117}

and each prime in P exactly divides U3·37. Since k = ω(m) ≤ 3, of the six primes
in P, at most one can divide Um to a power higher than the first. Moreover, two
of the primes in P belong to the progression 3 mod 4, and none of the primes
in P can divide D. It follows that

ν2(D`) = ν2(σ(N)) = ν2(σ(D · Um))

≥ 4 + 2 · 1 + ν2(σ(3ν3(N))) = 6 + δ, (51)

say. Since ν2(D) ≤ 3, we have ν2(`) ≥ 3 + δ ≥ 3, so that ` ∈ {8, 16, 24, 32}.
If D = 8, then 5 | σ(8) | σ(N) = 8`Um, which is impossible. If D = 4, then
7 = σ(4) | σ(N) = 8`Um, so that 6 = z(7) | m; in particular, 2 | m, and the
claim holds in this case. In the remaining cases, ν2(D) ≤ 1, so that (51) forces
ν2(`) ≥ 5 + δ. Since ` ≤ 37, we must have ` = 32, ν2(`) = 5, δ = 0, and
ν2(D) = 1. Since δ = 0,

2 | ν3(N) = ν3(D) + ν3(Um) = ν3(D) + ν3(m/3) + 1,

and so either ν3(D) > 0 or 32 | m. In the latter case, we have the claim.
If 32 - m, then ν3(D) > 0, which forces D = 6 (since ν2(D) = 1). Then
32 ‖ D · Um = N , and

13 = σ(32) | σ(N) = ` · 6Um.
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Thus, 13 | Um, and so 6 = z(13) | m. So the claim holds in this case too.
So either 2 · 3 · 37 | m or 32 · 37 | m. In the former case, U2·3·37 | Um |

N . Referring to the Cunningham tables, we see that there are 15 primes p 6∈
{3, 7, 37} exactly dividing U2·3·37. If p2 | Um for any of these primes p, then
p | z(p2) | m, contradicting that k = ω(m) ≤ 3. Moreover, none of these primes
p can divide D. So

ν2(D`) = ν2(σ(N)) = ν2(σ(D · Um)) ≥ 15.

But ν2(D`) ≤ ν2(D) + ν2(`) ≤ 3 + 5 = 8, so this is absurd. In the latter case,
another check in the Cunningham tables shows that there are 12 primes p > 37
exactly dividing U32·37. At most one of these primes p can have p2 | Um, and so

ν2(D`) = ν2(σ(N)) = ν2(σ(D · Um)) ≥ 11.

Again, this is impossible.

We conclude that 3 - m.

4.4. The case k = 3

Suppose now that k = 3. Since 3 - m, we have that D and Um are relatively
prime, so that σ(N) = σ(D)σ(Um). Since 3 - m, Lemma 8 shows that

ν2(D) + ν2(`) = ν2(D`) = ν2(σ(N)) = ν2(σ(D · Um))

= ν2(σ(D)) + ν2(σ(Um)) ≥ ν2(σ(D)) + 2ω′′(Um) ≥ ν2(σ(D)) + 6.
(52)

Since ν2(D) ≤ 3, we get that ` ∈ {8, 16, 24, 32}. As before, if D = 8, then
5 | σ(N) = 8`Um, which is impossible. Also, if D = 4, then 7 | 8`Um, so that
6 = z(7) | m, contradicting that 3 - m. In the remaining cases, ν2(D) ≤ 1 and

ν2(`) ≥ (6− ν2(D)) + ν2(σ(D)).

Since ` ≤ 37, this forces ` = 32, ν2(D) = 1, and ν2(σ(D)) = 0. The only
D ∈ {1, 2, . . . , 9} satisfying the last two conditions is D = 2. But if D = 2, then

3 = σ(2) | σ(N) = 32 · (2Um),

so that 3 | Um. But then 3 | m, which we have seen is impossible.
We conclude that we may take K = 2.

4.5. Reduction to the repunit case (D = 1)

Suppose that N = D ·Um is multiply perfect. We shall show that Um is also
multiply perfect. We use that D and Um are relatively prime to write

σ(D)σ(Um) = σ(D · Um) = `D · Um. (53)
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Thus
σ(Um)

Um
=

`D

σ(D)
.

We would like to show that σ(D) | `D. Since σ(D) | `D · Um by (53), this
follows if we show that σ(D) is relatively prime to Um. But this is easy: For
each D ∈ {1, . . . , 9}, the number σ(D) is supported on the set of primes P :=
{2, 3, 5, 7, 13}. Clearly Um is divisible by neither 2 nor 5. For the remaining
primes p ∈ P, we have 3 | z(p); since 3 - m, the number Um is not divisible by
these p either.

From now on we assume that D = 1, so that N = Um.

4.6. Reduction to the case of odd m

At this point, it is convenient to compute a new bound on L, utilizing the
reduced bound on K we obtained above. Taking K = 2, Z = 20, and V = 5 in
(49), we find that log ` < 3.17, so that ` < 24.

Now suppose that N = Um is multiply perfect and that 2 | m. Then
11 = U2 | Um. Write

Um = U2
Um
U2

.

If 11 - m, then the right-hand factors are relatively prime, and

`Um = σ(Um) = σ(U2)σ(Um/U2) = 12σ(Um/U2).

Since Um is coprime to 12, it follows that 12 | `, so that ` = 12. Thus
σ(Um/U2) = Um. In particular, σ(Um/U2) is odd. Hence, Um/U2 = �, and so
also UmU2 = �. But m > 2, so that UmU2 ≡ (−1)(3) ≡ 5 (mod 8), whereas an
odd square is ≡ 1 (mod 8). So it must be that 11 | m. Thus, U22 | Um. Now

U22 = 112 · 23 · 4093 · 8779 · 21649 · 513239.

None of the fives primes p > 11 which U22 can divide Um to a power higher
than the first. Hence,

ν2(`) = ν2(`Um) = ν2(σ(Um)) ≥ 5.

But this is impossible, since ` < 24.
So, we may assume that m is odd.

4.7. Conclusion of the proof of Theorem 2

Suppose that Um is multiply perfect. At this point, we know that m is
coprime to both 2 and 3. Let s := Ω(m), and write m = p1p2 · · · ps, where
p1 ≤ p2 ≤ · · · ≤ ps. Put m1 := m, and for 1 ≤ i ≤ s, successively define
mi+1 := mi/pi. Then

Um =
Um1

Um2

Um2

Um3

· · · Ums

Ums+1

.
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This decomposition of Um is precisely the decomposition of U exhibited in the
proof of Lemma 3. The argument given there shows that the greatest common
divisor of any two of the s right-hand factors is supported on the primes dividing
g − 1 = 9. Since 3 - m, it follows that these s terms are pairwise coprime. By
Lemma 5, none of the s terms is a square. It follows that the set of primes
dividing Um to an odd power has cardinality at least s. Moreover, since Um ≡ 3
(mod 4), at least one prime in this set belongs to the residue class 3 mod 4.
Hence,

ν2(`) = ν2(σ(Um)) ≥ s+ 1. (54)

Since ` < 24, we have ν2(`) ≤ 4, and so s ≤ 3.
We can now finish the demonstration of Theorem 2. With Sd defined as in

(33), estimate (34) yields that

log ` = log
σ(Um)

Um
≤
∑
Q|Um

1

Q− 1
≤
∑
d|m
d>1

Sd

≤
∑
d|m
d>1

log d

d
≤ log 5

5
#{d | m : d > 1}.

On the other hand,

log ` ≥ ν2(`) log 2 ≥ (s+ 1) log 2.

Hence,

(s+ 1) log 2 ≤ log 5

5
#{d | m : d > 1} ≤ log 5

5
(2s − 1).

But this inequality fails for each s ≤ 3.
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A. Togbé, There are no multiply perfect Fibonacci numbers, Integers. To
appear.

[9] H. C. Williams, Édouard Lucas and primality testing, no. 22 in Canadian
Mathematical Society Series of Monographs and Advanced Texts, John
Wiley & Sons, New York, 1998.

[10] J. B. Rosser, L. Schoenfeld, Approximate formulas for some functions of
prime numbers, Illinois J. Math. 6 (1962) 64–94.

[11] W. Ljunggren, Some theorems on indeterminate equations of the form
xn−1
x−1 = yq, Norsk Mat. Tidsskr. 25 (1943) 17–20.

[12] T. N. Shorey, R. Tijdeman, Exponential Diophantine equations, Vol. 87
of Cambridge Tracts in Mathematics, Cambridge University Press, Cam-
bridge, 1986.

[13] G. H. Hardy, E. M. Wright, Introduction to the theory of numbers, sixth
edition, Oxford University Press, Oxford, 2008.

[14] C. L. Stewart, On divisors of Fermat, Fibonacci, Lucas, and Lehmer num-
bers, Proc. London Math. Soc. (3) 35 (3) (1977) 425–447.

[15] S. Wagstaff, The Cunningham project, available electronically at
http://homes.cerias.purdue.edu/∼ssw/cun/ (2010).

27


