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A conjecture of Parkin and Shanks

Let p(n) be the number of partitions of n, where a partition of n is a
way of writing n as a sum of natural numbers, where the order of the
summands does not matter. For example, p(5) = 7, corresponding to

5, 441, 3+2, 3+1+1, 2+1+1+1, 24241, 14+1+1+1+1.
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summands does not matter. For example, p(5) = 7, corresponding to

5, 441, 3+2, 3+1+1, 2+1+1+1, 24241, 14+1+1+1+1.

We know quite a bit about the asymptotic properties of p(n). For
example, Hardy and Ramanujan proved that

nwie’rz"/3 n— oo
pln) ~ eV (0 o0).

Arithmetic properties of p(n) remain more mysterious, although we
know much more than we used to.
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Conjecture (Parkin—Shanks)

As x — 00, the values p(n) become uniformly
distributed modulo 2. In other words,

#{n < x: p(n) even} ~ %x (x — 00).




Conjecture (Parkin—Shanks)

As x — 00, the values p(n) become uniformly
distributed modulo 2. In other words,

#{n < x: p(n) even} ~ %x (x — 00).

This conjecture has been attacked by several authors (Kolberg,
Subbarao, Nicolas—Rusza-Sarkdzy, Ahlgren, Ono).

Theorem
For large x, we have

#{n < x : p(n) even} > x*/?(log log x)*/2
and for every fixed K,

#{n < x : p(n) odd} > x*/?(log log x)X / log x.
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Multiplicative partitions

Let f(n) be the number of factorizations of n, where a factorization
of nis a way of writing n as a product of integers all larger than 1.
We consider two factorizations the same if they differ only in the
order of the factors. For example, f(12) = 4, corresponding to

2.2.3, 2.6, 3-4, 12.
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Let f(n) be the number of factorizations of n, where a factorization
of nis a way of writing n as a product of integers all larger than 1.
We consider two factorizations the same if they differ only in the
order of the factors. For example, f(12) = 4, corresponding to

2.2.3, 2.6, 3-4, 12.

Again we have good asymptotic results.

Theorem (Oppenheim, Szekeres—Turan)

As x — o0,
2\/Iogx

x Z 2\f (log x)3/4°

n<x
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Theorem (Canfield-Erdés—Pomerance)

Let
L(X) — Xlog log log x/ log Iogx.

For each fixed € > 0, there are infinitely many
n with
f(n) > n/L(n)* e

However, there are only finitely many n with

f(n) > n/L(n).
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Theorem (Zaharescu—Zaki)

For each € > 0 and all large x, we have

#1{n < x: f(n) even} > (2; - e> X

and

2

#{n < x: f(n) odd} > (2 _ e> x.




Theorem (P.)

Fix an arithmetic progression a mod m. Then the set of n for which
f(n)=a (mod m)

possesses an asymptotic density; that is,

%#{n <x:f(n)=a (mod m)}

tends to a limit as x — oo. Moreover, there is an algorithm for
computing the density to arbitrary precision.




Theorem (P.)

Fix an arithmetic progression a mod m. Then the set of n for which
f(n)=a (mod m)

possesses an asymptotic density; that is,
1
—#{n<x:f(n)=a (mod m)}
X

tends to a limit as x — oo. Moreover, there is an algorithm for
computing the density to arbitrary precision.

Theorem (P.)

In the case when m = 2 and a = 1, this density is about 57.1%. So
the values f(n) are not uniformly distributed modulo 2.
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Revisiting the theorem of Zaharescu and Zaki

Define the kth Bell number By as the number of set partitions of a
k-element set. Alternatively, the By are described by the exponential
generating function

n=0

Theorem (Touchard, Radoux, Lunnon—Pleasants—Stephens)

The Bell numbers By are purely periodic to every modulus. The
length of the period modulo p always divides %.
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Now suppose that n is squarefree. The set of such n has a density,
which is given by the product

I-3)- -4

p

For squarefree n with k = w(n) prime factors,

f(n) = Bx (kth Bell number).




Now suppose that n is squarefree. The set of such n has a density,
which is given by the product

I-3)- -4

p

For squarefree n with k = w(n) prime factors,
f(n) = Bx (kth Bell number).
The Bell numbers start off
Bo=1 Bi=1 By=2,

and are purely periodic modulo 2 with period 222%11 = 3. Hence, we
see that the parity of f is a function of k mod 3:

fln) = 0 (mod?2) ifk=2 (mod3).

{1 (mod 2) ifk=0,1 (mod 3),




Lemma
The values w(n) are uniformly distributed to every modulus M, as n
ranges over the squarefree numbers. (In particular, for M = 3.)

Proof.
It's enough to show that for each Mth root of unity { # 1, the sum

ST p<x €9 possesses cancelation (is o(x), as x — oc). This
n squarefree
follows from known results on mean values of multiplicative

functions.

Corollary

The density of squarefree numbers with f(n) odd is %% = % and the
density of squarefree numbers with f(n) even is %% = %
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The existence of the density

We want that S := {n: f(n) =1 (mod 2)} has a density. Say that a
number N is squarefull if p?> divides N whenever p divides N.

For each n, write n = AB, with A squarefull, B squarefree, and
gcd(A, B) = 1. Here A is called the squarefull part of n. For each
squarefull number A, put

Sa:={n:f(n)=1 (mod 2), n has squarefull part A}.

Then S = UpSa.
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The existence of the density

We want that S := {n: f(n) =1 (mod 2)} has a density. Say that a
number N is squarefull if p?> divides N whenever p divides N.

For each n, write n = AB, with A squarefull, B squarefree, and
gcd(A, B) = 1. Here A is called the squarefull part of n. For each
squarefull number A, put

Sa:={n:f(n)=1 (mod 2), n has squarefull part A}.
Then S = UpSa.

Suffices to show each d(Sa) exists, and that d(S) =", d(Sa).
We will focus on showing each d(Sa) exists.
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For n with squarefull part A, write

n=Api--pk

for some distinct primes ps, ..., px not dividing A.
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For n with squarefull part A, write
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We will show that with A fixed, f(n) modulo 2 is a periodic function
of k. By the w(n) equidistribution lemma from before, the density of
S, exists.
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For n with squarefull part A, write
n=Ap1--pk

for some distinct primes ps, ..., px not dividing A.

We will show that with A fixed, f(n) modulo 2 is a periodic function
of k. By the w(n) equidistribution lemma from before, the density of
S, exists.

Lemma (P.)

f(Apr-- pk)—ZS k)Y F(d)ri(A/d).

d|A

Here S(k,j) is the number of set partitions of a k-element set into j
parts (Stirling number of the second kind), and
Z L
dy-e-
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Example (Disproof of the 50-50 conjecture)

With A =1, we have 1/3 of the time f(n) is even, and 2/3 of the
time, f(n) is odd.
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Example (Disproof of the 50-50 conjecture)

With A =1, we have 1/3 of the time f(n) is even, and 2/3 of the

time, f(n) is odd. With A = p?, one can check that f(Aps - - - px)
mod 2 cycles as

0,0,1,0,1,0,

and so f(n) is even 2/3 of the time and odd 1/3 of the time. With
A = p3, the cycle is
1,1,1,0,0,1.

So f(n) is even 1/3 of the time and odd 2/3 of the time.

Collecting, we find the proportion of the time f(n) is odd is at least
26

1
327 (szp(pH) (Wgz p_|_1>:0.52165....
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Thank you!




