The parity of the multiplicative partition function

Paul Pollack

University of Illinois at
Urbana-Champaign
May 27, 2011

A conjecture of Parkin and Shanks

Let $p(n)$ be the number of partitions of n, where a partition of n is a way of writing n as a sum of natural numbers, where the order of the summands does not matter. For example, $p(5)=7$, corresponding to
$5, \quad 4+1, \quad 3+2, \quad 3+1+1, \quad 2+1+1+1, \quad 2+2+1, \quad 1+1+1+1+1$.

A conjecture of Parkin and Shanks

Let $p(n)$ be the number of partitions of n, where a partition of n is a way of writing n as a sum of natural numbers, where the order of the summands does not matter. For example, $p(5)=7$, corresponding to
$5, \quad 4+1, \quad 3+2, \quad 3+1+1, \quad 2+1+1+1, \quad 2+2+1, \quad 1+1+1+1+1$.
We know quite a bit about the asymptotic properties of $p(n)$. For example, Hardy and Ramanujan proved that

$$
p(n) \sim \frac{1}{4 n \sqrt{3}} e^{\pi \sqrt{2 n / 3}} \quad(n \rightarrow \infty)
$$

A conjecture of Parkin and Shanks

Let $p(n)$ be the number of partitions of n, where a partition of n is a way of writing n as a sum of natural numbers, where the order of the summands does not matter. For example, $p(5)=7$, corresponding to
$5, \quad 4+1, \quad 3+2, \quad 3+1+1, \quad 2+1+1+1, \quad 2+2+1, \quad 1+1+1+1+1$.
We know quite a bit about the asymptotic properties of $p(n)$. For example, Hardy and Ramanujan proved that

$$
p(n) \sim \frac{1}{4 n \sqrt{3}} e^{\pi \sqrt{2 n / 3}} \quad(n \rightarrow \infty)
$$

Arithmetic properties of $p(n)$ remain more mysterious, although we know much more than we used to.

Conjecture (Parkin-Shanks)

As $x \rightarrow \infty$, the values $p(n)$ become uniformly distributed modulo 2. In other words,

$$
\#\{n \leq x: p(n) \text { even }\} \sim \frac{1}{2} x \quad(x \rightarrow \infty)
$$

Conjecture (Parkin-Shanks)

As $x \rightarrow \infty$, the values $p(n)$ become uniformly distributed modulo 2. In other words,

$$
\#\{n \leq x: p(n) \text { even }\} \sim \frac{1}{2} x \quad(x \rightarrow \infty)
$$

This conjecture has been attacked by several authors (Kolberg, Subbarao, Nicolas-Rusza-Sarkőzy, Ahlgren, Ono).

Theorem
For large x, we have

$$
\#\{n \leq x: p(n) \text { even }\} \gg x^{1 / 2}(\log \log x)^{1 / 2}
$$

and for every fixed K,

$$
\#\{n \leq x: p(n) \text { odd }\} \gg x^{1 / 2}(\log \log x)^{K} / \log x
$$

Multiplicative partitions

Let $f(n)$ be the number of factorizations of n, where a factorization of n is a way of writing n as a product of integers all larger than 1 . We consider two factorizations the same if they differ only in the order of the factors. For example, $f(12)=4$, corresponding to

$$
2 \cdot 2 \cdot 3, \quad 2 \cdot 6, \quad 3 \cdot 4, \quad 12
$$

Multiplicative partitions

Let $f(n)$ be the number of factorizations of n, where a factorization of n is a way of writing n as a product of integers all larger than 1 . We consider two factorizations the same if they differ only in the order of the factors. For example, $f(12)=4$, corresponding to

$$
2 \cdot 2 \cdot 3, \quad 2 \cdot 6, \quad 3 \cdot 4, \quad 12
$$

Again we have good asymptotic results.
Theorem (Oppenheim, Szekeres-Turán)
As $x \rightarrow \infty$,

$$
\frac{1}{x} \sum_{n \leq x} f(n) \sim \frac{e^{2 \sqrt{\log x}}}{2 \sqrt{\pi}(\log x)^{3 / 4}}
$$

Theorem (Canfield-Erdős-Pomerance)
Let

$$
L(x):=x^{\log \log \log x / \log \log x} .
$$

For each fixed $\epsilon>0$, there are infinitely many n with

$$
f(n)>n / L(n)^{1+\epsilon} .
$$

However, there are only finitely many n with

$$
f(n)>n / L(n)
$$

Conjecture

As $x \rightarrow \infty, \#\{n \leq x: f(n)$ even $\} \sim \frac{1}{2} x$.

Conjecture

As $x \rightarrow \infty, \#\{n \leq x: f(n)$ even $\} \sim \frac{1}{2} x$.
Up to 10^{4} : 5401 odd values
Up to 10^{5} : 55407 odd values, Up to 10^{6} : 563483 odd values.

Conjecture

As $x \rightarrow \infty, \#\{n \leq x: f(n)$ even $\} \sim \frac{1}{2} x$.
Up to 10^{4} : 5401 odd values
Up to 10 0^{5} : 55407 odd values, Up to 10^{6} : 563483 odd values.

Theorem (Zaharescu-Zaki)

For each $\epsilon>0$ and all large x, we have

$$
\#\{n \leq x: f(n) \text { even }\}>\left(\frac{1}{2 \pi^{2}}-\epsilon\right) x
$$

and

$$
\#\{n \leq x: f(n) \text { odd }\}>\left(\frac{2}{\pi^{2}}-\epsilon\right) x
$$

Theorem (P.)

Fix an arithmetic progression a mod m. Then the set of n for which

$$
f(n) \equiv a \quad(\bmod m)
$$

possesses an asymptotic density; that is,

$$
\frac{1}{x} \#\{n \leq x: f(n) \equiv a \quad(\bmod m)\}
$$

tends to a limit as $x \rightarrow \infty$. Moreover, there is an algorithm for computing the density to arbitrary precision.

Theorem (P.)

Fix an arithmetic progression a mod m. Then the set of n for which

$$
f(n) \equiv a \quad(\bmod m)
$$

possesses an asymptotic density; that is,

$$
\frac{1}{x} \#\{n \leq x: f(n) \equiv a \quad(\bmod m)\}
$$

tends to a limit as $x \rightarrow \infty$. Moreover, there is an algorithm for computing the density to arbitrary precision.

Theorem (P.)
In the case when $m=2$ and $a=1$, this density is about 57.1%. So the values $f(n)$ are not uniformly distributed modulo 2 .

Revisiting the theorem of Zaharescu and Zaki

Define the k th Bell number B_{k} as the number of set partitions of a k-element set. Alternatively, the B_{k} are described by the exponential generating function

$$
e^{e^{x}-1}=\sum_{n=0}^{\infty} B_{n} \frac{x^{n}}{n!}
$$

Theorem (Touchard, Radoux, Lunnon-Pleasants-Stephens)
The Bell numbers B_{k} are purely periodic to every modulus. The length of the period modulo p always divides $\frac{p^{p}-1}{p-1}$.

Now suppose that n is squarefree. The set of such n has a density, which is given by the product

$$
\prod_{p}\left(1-\frac{1}{p^{2}}\right)=\frac{1}{\zeta(2)}=\frac{6}{\pi^{2}}
$$

For squarefree n with $k=\omega(n)$ prime factors,

$$
f(n)=B_{k} \quad(k \text { th Bell number })
$$

Now suppose that n is squarefree. The set of such n has a density, which is given by the product

$$
\prod_{p}\left(1-\frac{1}{p^{2}}\right)=\frac{1}{\zeta(2)}=\frac{6}{\pi^{2}}
$$

For squarefree n with $k=\omega(n)$ prime factors,

$$
f(n)=B_{k} \quad(k \text { th Bell number })
$$

The Bell numbers start off

$$
B_{0}=1, \quad B_{1}=1, \quad B_{2}=2, \quad \ldots
$$

and are purely periodic modulo 2 with period $\frac{2^{2}-1}{2-1}=3$. Hence, we see that the parity of f is a function of $k \bmod 3$:

$$
f(n) \equiv\left\{\begin{array}{lll}
1 & (\bmod 2) & \text { if } k \equiv 0,1 \quad(\bmod 3) \\
0 & (\bmod 2) & \text { if } k \equiv 2 \quad(\bmod 3)
\end{array}\right.
$$

Lemma

The values $\omega(n)$ are uniformly distributed to every modulus M, as n ranges over the squarefree numbers. (In particular, for $M=3$.)

Proof.

It's enough to show that for each Mth root of unity $\zeta \neq 1$, the sum $\sum_{\substack{n \leq x \\ n \text { squarefree }}} \zeta^{\omega(n)}$ possesses cancelation (is $o(x)$, as $x \rightarrow \infty$). This follows from known results on mean values of multiplicative functions.

Corollary

The density of squarefree numbers with $f(n)$ odd is $\frac{2}{3} \frac{6}{\pi^{2}}=\frac{4}{\pi^{2}}$ and the density of squarefree numbers with $f(n)$ even is $\frac{1}{3} \frac{6}{\pi^{2}}=\frac{2}{\pi^{2}}$.

The existence of the density

We want that $\mathcal{S}:=\{n: f(n) \equiv 1(\bmod 2)\}$ has a density. Say that a number N is squarefull if p^{2} divides N whenever p divides N.

For each n, write $n=A B$, with A squarefull, B squarefree, and $\operatorname{gcd}(A, B)=1$. Here A is called the squarefull part of n. For each squarefull number A, put

$$
\mathcal{S}_{A}:=\{n: f(n) \equiv 1 \quad(\bmod 2), \quad n \text { has squarefull part } A\} .
$$

Then $\mathcal{S}=\cup_{A} \mathcal{S}_{A}$.

The existence of the density

We want that $\mathcal{S}:=\{n: f(n) \equiv 1(\bmod 2)\}$ has a density. Say that a number N is squarefull if p^{2} divides N whenever p divides N.

For each n, write $n=A B$, with A squarefull, B squarefree, and $\operatorname{gcd}(A, B)=1$. Here A is called the squarefull part of n. For each squarefull number A, put

$$
\mathcal{S}_{A}:=\{n: f(n) \equiv 1 \quad(\bmod 2), \quad n \text { has squarefull part } A\} .
$$

Then $\mathcal{S}=\cup_{A} \mathcal{S}_{A}$.
Suffices to show each $d\left(\mathcal{S}_{A}\right)$ exists, and that $d(\mathcal{S})=\sum_{A} d\left(\mathcal{S}_{A}\right)$.

The existence of the density

We want that $\mathcal{S}:=\{n: f(n) \equiv 1(\bmod 2)\}$ has a density. Say that a number N is squarefull if p^{2} divides N whenever p divides N.

For each n, write $n=A B$, with A squarefull, B squarefree, and $\operatorname{gcd}(A, B)=1$. Here A is called the squarefull part of n. For each squarefull number A, put

$$
\mathcal{S}_{A}:=\{n: f(n) \equiv 1 \quad(\bmod 2), \quad n \text { has squarefull part } A\} .
$$

Then $\mathcal{S}=\cup_{A} \mathcal{S}_{A}$.
Suffices to show each $d\left(\mathcal{S}_{A}\right)$ exists, and that $d(\mathcal{S})=\sum_{A} d\left(\mathcal{S}_{A}\right)$. We will focus on showing each $d\left(\mathcal{S}_{A}\right)$ exists.

For n with squarefull part A, write

$$
n=A p_{1} \cdots p_{k}
$$

for some distinct primes p_{1}, \ldots, p_{k} not dividing A.

For n with squarefull part A, write

$$
n=A p_{1} \cdots p_{k}
$$

for some distinct primes p_{1}, \ldots, p_{k} not dividing A.
We will show that with A fixed, $f(n)$ modulo 2 is a periodic function of k. By the $\omega(n)$ equidistribution lemma from before, the density of \mathcal{S}_{A} exists.

For n with squarefull part A, write

$$
n=A p_{1} \cdots p_{k}
$$

for some distinct primes p_{1}, \ldots, p_{k} not dividing A.
We will show that with A fixed, $f(n)$ modulo 2 is a periodic function of k. By the $\omega(n)$ equidistribution lemma from before, the density of \mathcal{S}_{A} exists.
Lemma (P.)

$$
f\left(A p_{1} \cdots p_{k}\right)=\sum_{j=0}^{k} S(k, j) \sum_{d \mid A} f(d) \tau_{j}(A / d)
$$

Here $S(k, j)$ is the number of set partitions of a k-element set into j parts (Stirling number of the second kind), and

$$
\tau_{j}(n)=\sum_{d_{1} \cdots d_{j}=n} 1
$$

Example (Disproof of the 50-50 conjecture)

With $A=1$, we have $1 / 3$ of the time $f(n)$ is even, and $2 / 3$ of the time, $f(n)$ is odd.

Example (Disproof of the 50-50 conjecture)

With $A=1$, we have $1 / 3$ of the time $f(n)$ is even, and $2 / 3$ of the time, $f(n)$ is odd. With $A=p^{2}$, one can check that $f\left(A p_{1} \cdots p_{k}\right)$ $\bmod 2$ cycles as

$$
0,0,1,0,1,0,
$$

and so $f(n)$ is even $2 / 3$ of the time and odd $1 / 3$ of the time.

Example (Disproof of the 50-50 conjecture)

With $A=1$, we have $1 / 3$ of the time $f(n)$ is even, and $2 / 3$ of the time, $f(n)$ is odd. With $A=p^{2}$, one can check that $f\left(A p_{1} \cdots p_{k}\right)$ $\bmod 2$ cycles as

$$
0,0,1,0,1,0,
$$

and so $f(n)$ is even $2 / 3$ of the time and odd $1 / 3$ of the time. With $A=p^{3}$, the cycle is

$$
1,1,1,0,0,1
$$

So $f(n)$ is even $1 / 3$ of the time and odd $2 / 3$ of the time.

Example (Disproof of the 50-50 conjecture)

With $A=1$, we have $1 / 3$ of the time $f(n)$ is even, and $2 / 3$ of the time, $f(n)$ is odd. With $A=p^{2}$, one can check that $f\left(A p_{1} \cdots p_{k}\right)$ $\bmod 2$ cycles as

$$
0,0,1,0,1,0
$$

and so $f(n)$ is even $2 / 3$ of the time and odd $1 / 3$ of the time. With $A=p^{3}$, the cycle is

$$
1,1,1,0,0,1
$$

So $f(n)$ is even $1 / 3$ of the time and odd $2 / 3$ of the time.
Collecting, we find the proportion of the time $f(n)$ is odd is at least
$\frac{2}{3} \frac{6}{\pi^{2}}+\frac{1}{3}\left(\frac{6}{\pi^{2}} \sum_{p} \frac{1}{p(p+1)}\right)+\frac{2}{3}\left(\frac{6}{\pi^{2}} \sum_{p} \frac{1}{p^{2}(p+1)}\right)=0.52165 \ldots$.

Thank you!

