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A conjecture of Parkin and Shanks

Let p(n) be the number of partitions of n, where a partition of n is a
way of writing n as a sum of natural numbers, where the order of the
summands does not matter. For example, p(5) = 7, corresponding to

5, 4+1, 3+2, 3+1+1, 2+1+1+1, 2+2+1, 1+1+1+1+1.

We know quite a bit about the asymptotic properties of p(n). For
example, Hardy and Ramanujan proved that

p(n) ∼ 1

4n
√

3
eπ
√

2n/3 (n→∞).

Arithmetic properties of p(n) remain more mysterious, although we
know much more than we used to.
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Conjecture (Parkin–Shanks)

As x →∞, the values p(n) become uniformly
distributed modulo 2. In other words,

#{n ≤ x : p(n) even} ∼ 1

2
x (x →∞).

This conjecture has been attacked by several authors (Kolberg,
Subbarao, Nicolas–Rusza–Sarkőzy, Ahlgren, Ono).

Theorem
For large x, we have

#{n ≤ x : p(n) even} � x1/2(log log x)1/2

and for every fixed K,

#{n ≤ x : p(n) odd} � x1/2(log log x)K/ log x .
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Multiplicative partitions

Let f (n) be the number of factorizations of n, where a factorization
of n is a way of writing n as a product of integers all larger than 1.
We consider two factorizations the same if they differ only in the
order of the factors. For example, f (12) = 4, corresponding to

2 · 2 · 3, 2 · 6, 3 · 4, 12.

Again we have good asymptotic results.

Theorem (Oppenheim, Szekeres–Turán)

As x →∞,
1

x

∑
n≤x

f (n) ∼ e2
√
log x

2
√
π(log x)3/4

.
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Theorem (Canfield–Erdős–Pomerance)

Let
L(x) := x log log log x/ log log x .

For each fixed ε > 0, there are infinitely many
n with

f (n) > n/L(n)1+ε.

However, there are only finitely many n with

f (n) > n/L(n).
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Conjecture

As x →∞, #{n ≤ x : f (n) even} ∼ 1
2x.

Up to 104: 5401 odd values
Up to 105: 55407 odd values,
Up to 106: 563483 odd values.

Theorem (Zaharescu–Zaki)

For each ε > 0 and all large x, we have

#{n ≤ x : f (n) even} >
(

1

2π2
− ε
)

x

and

#{n ≤ x : f (n) odd} >
(

2

π2
− ε
)

x .
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Theorem (P.)

Fix an arithmetic progression a mod m. Then the set of n for which

f (n) ≡ a (mod m)

possesses an asymptotic density; that is,

1

x
#{n ≤ x : f (n) ≡ a (mod m)}

tends to a limit as x →∞. Moreover, there is an algorithm for
computing the density to arbitrary precision.

Theorem (P.)

In the case when m = 2 and a = 1, this density is about 57.1%. So
the values f (n) are not uniformly distributed modulo 2.
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Revisiting the theorem of Zaharescu and Zaki

Define the kth Bell number Bk as the number of set partitions of a
k-element set. Alternatively, the Bk are described by the exponential
generating function

ee
x−1 =

∞∑
n=0

Bn
xn

n!
.

Theorem (Touchard, Radoux, Lunnon–Pleasants–Stephens)

The Bell numbers Bk are purely periodic to every modulus. The
length of the period modulo p always divides pp−1

p−1 .
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Now suppose that n is squarefree. The set of such n has a density,
which is given by the product∏

p

(
1− 1

p2

)
=

1

ζ(2)
=

6

π2
.

For squarefree n with k = ω(n) prime factors,

f (n) = Bk (kth Bell number).

The Bell numbers start off

B0 = 1, B1 = 1, B2 = 2, . . .

and are purely periodic modulo 2 with period 22−1
2−1 = 3. Hence, we

see that the parity of f is a function of k mod 3:

f (n) ≡

{
1 (mod 2) if k ≡ 0, 1 (mod 3),

0 (mod 2) if k ≡ 2 (mod 3).
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Lemma
The values ω(n) are uniformly distributed to every modulus M, as n
ranges over the squarefree numbers. (In particular, for M = 3.)

Proof.
It’s enough to show that for each Mth root of unity ζ 6= 1, the sum∑

n≤x
n squarefree

ζω(n) possesses cancelation (is o(x), as x →∞). This

follows from known results on mean values of multiplicative
functions.

Corollary

The density of squarefree numbers with f (n) odd is 2
3

6
π2 = 4

π2 and the

density of squarefree numbers with f (n) even is 1
3

6
π2 = 2

π2 .
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The existence of the density

We want that S := {n : f (n) ≡ 1 (mod 2)} has a density. Say that a
number N is squarefull if p2 divides N whenever p divides N.

For each n, write n = AB, with A squarefull, B squarefree, and
gcd(A,B) = 1. Here A is called the squarefull part of n. For each
squarefull number A, put

SA := {n : f (n) ≡ 1 (mod 2), n has squarefull part A}.

Then S = ∪ASA.

Suffices to show each d(SA) exists, and that d(S) =
∑

A d(SA).
We will focus on showing each d(SA) exists.
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For n with squarefull part A, write

n = Ap1 · · · pk

for some distinct primes p1, . . . , pk not dividing A.

We will show that with A fixed, f (n) modulo 2 is a periodic function
of k . By the ω(n) equidistribution lemma from before, the density of
SA exists.

Lemma (P.)

f (Ap1 · · · pk) =
k∑

j=0

S(k , j)
∑
d |A

f (d)τj(A/d).

Here S(k , j) is the number of set partitions of a k-element set into j
parts (Stirling number of the second kind), and

τj(n) =
∑

d1···dj=n

1.

12 of 14



For n with squarefull part A, write

n = Ap1 · · · pk

for some distinct primes p1, . . . , pk not dividing A.
We will show that with A fixed, f (n) modulo 2 is a periodic function
of k . By the ω(n) equidistribution lemma from before, the density of
SA exists.

Lemma (P.)

f (Ap1 · · · pk) =
k∑

j=0

S(k , j)
∑
d |A

f (d)τj(A/d).

Here S(k , j) is the number of set partitions of a k-element set into j
parts (Stirling number of the second kind), and

τj(n) =
∑

d1···dj=n

1.

12 of 14



For n with squarefull part A, write

n = Ap1 · · · pk

for some distinct primes p1, . . . , pk not dividing A.
We will show that with A fixed, f (n) modulo 2 is a periodic function
of k . By the ω(n) equidistribution lemma from before, the density of
SA exists.

Lemma (P.)

f (Ap1 · · · pk) =
k∑

j=0

S(k , j)
∑
d |A

f (d)τj(A/d).

Here S(k , j) is the number of set partitions of a k-element set into j
parts (Stirling number of the second kind), and

τj(n) =
∑

d1···dj=n

1.

12 of 14



Example (Disproof of the 50-50 conjecture)

With A = 1, we have 1/3 of the time f (n) is even, and 2/3 of the
time, f (n) is odd.

With A = p2, one can check that f (Ap1 · · · pk)
mod 2 cycles as

0, 0, 1, 0, 1, 0,

and so f (n) is even 2/3 of the time and odd 1/3 of the time. With
A = p3, the cycle is

1, 1, 1, 0, 0, 1.

So f (n) is even 1/3 of the time and odd 2/3 of the time.

Collecting, we find the proportion of the time f (n) is odd is at least

2

3

6

π2
+

1

3

(
6

π2

∑
p

1

p(p + 1)

)
+

2

3

(
6

π2

∑
p

1

p2(p + 1)

)
= 0.52165 . . . .
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Thank you!
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