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Abstract. For each positive integer n, let U(Z/nZ) denote the group of units modulo n,
which has order ϕ(n) (Euler’s function) and exponent λ(n) (Carmichael’s function). The

ratio ϕ(n)/λ(n) is always an integer, and a prime p divides this ratio precisely when the

(unique) Sylow p-subgroup of U(Z/nZ) is noncyclic. Write W (n) for the number of such
primes p. Banks, Luca, and Shparlinski showed that for certain constants C1, C2 > 0,

C1
log logn

(log log logn)2
≤ W (n) ≤ C2 log logn

for all n from a sequence of asymptotic density 1. We sharpen their result by showing

that W (n) has normal order log logn/ log log logn.

1 Introduction

For a finite abelian group G, we write λ(G) for the exponent of G, meaning
the order of the largest cyclic subgroup of G. Then λ(G) divides #G, and

the primes p dividing the ratio #G
λ(G) are precisely those for which the (unique)

Sylow p-subgroup of G fails to be cyclic. In this note, we are concerned with
the function W (n) counting the number of these primes p when G is the
group of units modulo a positive integer n. That is, W (n) is the number of

distinct prime factors of ϕ(n)
λ(n) , where ϕ(n) and λ(n) are the usual Euler and

Carmichael functions.
The study of W (n) was initiated by Banks, Luca, and Shparlinski in

[1]. Clearly, W (n) = 0 for infinitely many n — namely, those n for which
the unit group U(Z/nZ) is cyclic. At the opposite extreme, Banks, Luca,
and Shparlinski prove (see their Theorem 6) that W (n) ≫ log n/ log log n

for infinitely many n. Since we always have ϕ(n)
λ(n) ≤ n, and ω(m) ≤ (1 +

o(1)) logm/ log logm (as m → ∞), this latter result is is best possible up to
the value of the implied constant.

Concerning the typical size of W (n), Banks, Luca, and Shparlinski show
that on a set of n of asymptotic density 1,

log log n

(log log log n)2
≪ W (n) ≪ log log n.

We leverage ideas from recent joint work with Pomerance [13] to establish the
following improvement.

2010 Mathematics Subject Classification: Primary 11N37; Secondary 11N36.



2 Paul Pollack

Theorem 1 W (n) has normal order log log n/ log log log n. That is, for
each fixed ϵ > 0, the set of n with

|W (n)− log log n/ log log log n| < ϵ log log n/ log log log n

has asymptotic density 1.

One consequence of Theorem 1 is that ϕ(n)
λ(n) typically has many more dis-

tinct prime factors than a number of comparable size, although not quite as
many as allowed by the maximal order of ω(m). Indeed, from work of Erdős,
Pomerance, and Schmutz (see [6, Theorem 2]), there is a constant A ≈ 0.227
such that

ϕ(n)

λ(n)
= exp(log log log n · log log n+ (A+ o(1)) log log n),

as n → ∞ along a set of density 1. So the typical size of ω(m), for a number m
near ϕ(n)/λ(n), is ∼ log logm ∼ log log log n, while the maximal size of ω(m)

is ∼ logm
log logm ∼ log log n. In comparison, Theorem 1 implies that m = ϕ(n)

λ(n)

itself has ω(m) ∼ logm
(log logm)2 , as n → ∞ through a set of density 1.

Theorem 1 might be compared with existing counting results for subgroups
of U(Z/nZ). Erdős and Pomerance [5] (see §6 of [4] for minor corrections) and
Murty and Murty [11], independently, considered the total number of Sylow
subgroups of U(Z/nZ) (equivalently, the number of distinct prime factors of
ϕ(n)). They showed that this quantity has normal order 1

2 (log log n)
2. Very

recently, Martin and Troupe [9] considered the total number of subgroups of
U(Z/nZ), both up to isomorphism and otherwise (i.e., as sets). They proved

that the log of the first count has normal order log 2
2 (log log n)2, and that the

log of the second quantity has normal order A(log log n)2 for an explicitly
described constant A ≈ 0.721. Other statistical questions concerning the
structure of the multiplicative groups are taken up in [2, 3, 8].

Notation

The letters ℓ, p, and q (possibly with subscripts or other decorations) are
always reserved for primes. We write logk for the kth iterate of the natu-
ral logarithm. We use 1C for the characteristic function of the condition C;
for example, 1d|n takes the value 1 when d divides n and the value 0 other-
wise. Implied constants are usually absolute, but in proofs involving a fixed
parameter A we allow such constants to depend on A.

2 Lemmata

It will be helpful to have in mind the classical structure theory of the unit
group mod n, which goes back essentially to Gauss.
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Lemma 2 Let n be a positive integer, and write n =
∏

p p
vp . Then

U(Z/nZ) ∼=
∏

p|n U(Z/pvpZ). If p is odd, or if vp ≤ 2, then U(Z/pvpZ) ∼=
Z/ϕ(pvp)Z. When p = 2 and v2 ≥ 3, we have U(Z/2v2Z) ∼= Z/2v2−2Z⊕Z/2Z.

Our chief technical tool in the proof of Theorem 1 will be the fundamental
lemma of the sieve. Specifically, we will make repeated use of the following
special case of Theorem 7.2 in [7].

Proposition 3 Let x ≥ z ≥ 2. If P is any set of primes not exceeding z,
then

#{n ≤ x : p | n ⇒ p /∈ P} =

x
∏
p∈P

(
1− 1

p

)(1 +O(e−u/2)
)
,

where u =
log x

log z
.

As input for the sieve, we will need the following estimate, due indepen-
dently to Pomerance (see Remark 1 of [14]) and Norton (see the Lemma on
p. 699 of [12]).

Lemma 4 Let m be a positive integer, and let x ≥ 3. Put

S(x;m) =
∑
ℓ≤x

ℓ≡ 1 (mod m)

1

ℓ
.

Then

S(x;m) =
log2 x

ϕ(m)
+O

(
log (2m)

ϕ(m)

)
.

3 Proof of Theorem 1

3.1 A preliminary reduction

Observe that if p is prime, and n is divisible by distinct primes q, q′ ≡ 1
(mod p), then p is counted by W (n). Indeed, in this case

Z/pZ⊕ Z/pZ ≤ Z/(q − 1)Z⊕ Z/(q′ − 1)Z ≤ U(Z/nZ).

Thus, the p-Sylow subgroup of U(Z/nZ) is not cyclic. Conversely, if the prime
p is counted by W (n), then either

(i) n is divisible by distinct primes q, q′ ≡ 1 (mod p), or
(ii) p2 | n.
All of this follows from the decomposition of U(Z/nZ) recalled in Lemma 2.

We now let I = (log2 x/ log3 x, log2 x · log3 x] and set

W̃ (n) = #{p ∈ I : there are distinct primes q, q′ | n with q, q′ ≤ x1/2 log3 x,

and q, q′ ≡ 1 (mod p)}.
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From the last paragraph, W̃ (n) ≤ W (n) for all n. In fact, the two sides are
usually close. The next lemma makes this precise, and will allow us to work
with W̃ (n) rather than W (n) in our proof of Theorem 1.

Lemma 5 For all large x,∑
n≤x

(W (n)− W̃ (n)) = O(x log2 x/(log3 x)
2).

Thus, if ξ(x) is any function tending to infinity, then

W (n)− W̃ (n) < ξ(x)
log2 x

(log3 x)
2

for all but o(x) values of n ≤ x, as x → ∞.

Proof The difference R(n) := W (n)−W̃ (n) counts those primes p captured

by the definition of W (n) but not by that of W̃ (n). We decompose

R(n) = R0(n) +R1(n),

where the right-hand terms correspond to the conditions p ≤ log2 x/ log3 x
and p > log2 x/ log3 x, respectively. For all large x, we have by the prime
number theorem that

R0(n) < 2 log2 x/(log3 x)
2 for every n ≤ x.

If p is counted by R1(n), then either

• p2 | n,
• p ≤ log2 x log3 x and q | n for some prime q ≡ 1 (mod p), q > x1/2 log3 x,
or

• p > log2 x log3 x and qq′ | n for distinct primes q, q′ ≡ 1 (mod p).

Thus,∑
n≤x

R1(n) ≤
∑
n≤x

∑
p>

log2 x
log3 x

(
1p2|n + 1p≤log2 x log3 x

∑
q≤x

q≡1 (mod p)

1q|n

+ 1p>log2 x log3 x

∑
q,q′≤x

q,q′≡1 (mod p)

1qq′|n

)
,

which is

≤
∑

p>log2 x/ log3 x

x

p2
+
∑
p∈I

x
∑

x1/2 log3 x<q≤x
q≡1 (mod p)

1

q
+

∑
p>log2 x log3 x

x

( ∑
q≤x

q≡1 (mod p)

1

q

)2

≪ x

log2 x
+ x log3 x

∑
p∈I

1

p
+ x(log2 x)

2
∑

p>log2 x log3 x

1

p2

≪ x
log2 x

(log3 x)
2
.
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(We used Lemma 4 to estimate the various sums on q appearing above, and
Mertens’ theorem to estimate the sum of the reciprocals of those primes p ∈
I.) Collecting our estimates gives the first claim of the lemma. The second
is an immediate consequence.

3.2 The second-moment strategy

Inspired by Turán’s simple proof of the Hardy–Ramanujan normal order the-
orem, we prove Theorem 1 by estimating a second moment. Specifically, we
show that

(1)
∑
n≤x

(
W̃ (n)− log2 x

log3 x

)2

= o(x(log2 x/ log3 x)
2).

Once (1) is proved, it follows immediately that for any fixed ϵ > 0, all but
o(x) values of n ≤ x are such that∣∣∣∣W̃ (n)− log2 x

log3 x

∣∣∣∣ < ϵ
log2 x

log3 x
.

Lemma 5 then allows us to replace W̃ (n) here with W (n). The resulting

statement is equivalent to Theorem 1, upon observing that log2 n
log3 n = log2 x

log3 x +

o(1) for
√
x < n ≤ x (as x → ∞).

Thus it remains only to establish (1). The following two lemmas suffice.

Lemma 6 As x → ∞,

1

x

∑
n≤x

W̃ (n) = (1 + o(1))
log2 x

log3 x
.

Lemma 7 As x → ∞,

1

x

∑
n≤x

W̃ (n)2 = (1 + o(1))

(
log2 x

log3 x

)2

.

We give a detailed proof of Lemma 6, and we sketch the (similar, but
somewhat more tedious) proof of Lemma 7.

Proof of Lemma 6 We start by writing∑
n≤x

W̃ (n)

=
∑
p∈I

#{n ≤ x : qq′ | n for distinct q, q′ ≤ x1/2 log3 x with q, q′ ≡ 1 (mod p)}

=
∑
p∈I

(N∗(p)−N0(p)−N1(p)),
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where N∗(p) is the total count of positive integers n ≤ x, and for i = 0, 1,

Ni(p) = #{n ≤ x : there are exactly i primes q ≤ x1/2 log3 x,

q ≡ 1 (mod p) dividing n}.

We proceed to estimate each of the quantities 1
x

∑
p∈I N∗(p),

1
x

∑
p∈I N0(p),

and 1
x

∑
p∈I N1(p).

Since N∗(p) = ⌊x⌋, estimating 1
x

∑
p∈I N∗(p) is straightforward. Write

π(t) =
∫ t

2
dt

log t +E(t), so that E(t) ≪ t/(log t)A for any fixed A and all t ≥ 2.

Then for each fixed A,

1

x

∑
p∈I

N∗(p) =

∫ log2 x log3 x

log2 x/ log3 x

dt

log t
+

∫ log2 x log3 x

log2 x/ log3 x

dE(t) +O

(
log2 x

x

)

=

∫ log2 x log3 x

log2 x/ log3 x

dt

log t
+O(log2 x/(log3 x)

A).

Next we turn attention to 1
xN0(p). For each p ∈ I, Proposition 3 yields

1

x
N0(p) =

( ∏
q≤x1/2 log3 x

q≡1 (mod p)

(
1− 1

q

))
(1 +O(1/ log2 x))

= exp

(
−

∑
q≤x1/2 log3 x

q≡1 (mod p)

1

q

)
(1 +O(1/ log2 x)) .

We used here that log(1 − 1
q ) = − 1

q + O( 1
q2 ), and that

∑
q≡1 (mod p)

1
q2 <∑

q>p
1
q2 ≪ 1/p log p ≪ 1/ log2 x. Continuing, we have by Lemma 4 that∑
q≤x1/2 log3 x

q≡1 (mod p)

1

q
=

log2 x− log(2 log3 x)

p− 1
+O

(
log3 x

p

)

=
log2 x

p
+O

(
log3 x

p

)
=

log2 x

p
+O

(
(log3 x)

2

log2 x

)
.

Inserting this above,

(2)
1

x
N0(p) = exp

(
− log2 x

p

)(
1 +O((log3 x)

2/ log2 x)
)
.

Summing by parts,∑
p∈I

exp

(
− log2 x

p

)

=

∫ log2 x log3 x

log2 x/ log3 x

exp

(
− log2 x

t

)
dt

log t
+

∫ log2 x log3 x

log2 x/ log3 x

exp

(
− log2 x

t

)
dE(t).
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We treat the second integral as an error term, noting that for any fixed A,∫ log2 x log3 x

log2 x/ log3 x

exp

(
− log2 x

t

)
dE(t)

= E(t) exp

(
− log2 x

t

) ∣∣∣∣t=log2 x log3 x

t=log2 x/ log3 x

−
∫ log2 x log3 x

log2 x/ log3 x

E(t)

(
d

dt
exp

(
− log2 x

t

))
dt,

which is

≪ (sup
t∈I

|E(t)|)

(
1 +

∫ log2 x log3 x

log2 x/ log3 x

∣∣∣∣ ddt exp
(
− log2 x

t

)∣∣∣∣ dt
)

≪ (log2 x)

(log3 x)
A
.

Thus,∑
p∈I

exp

(
− log2 x

p

)
=

∫ log2 x log3 x

log2 x/ log3 x

exp

(
− log2 x

t

)
dt

log t
+O

(
log2 x

(log3 x)
A

)
.

We now deduce an estimate for 1
x

∑
p∈I N0(p) by means of (2). The integrand

in the last display is ≪ 1/ log3 x for every t in the range of integration, and
≫ 1/ log3 x for those t > log2 x. Hence, the integral has size ≍ log2 x, as does∑

p∈I exp(− log2 x/p). Using this along with (2), we conclude that for any
fixed value of A,∑

p∈I

1

x
N0(p) =

∫ log2 x log3 x

log2 x/ log3 x

exp

(
− log2 x

t

)
dt

log t
+O((log2 x)/(log3 x)

A).

Finally we consider 1
xN1(p). For each p ∈ I, the n counted by N1(p) are

precisely those integers expressible as Qm, where Q is a power of a prime
q ≡ 1 (mod p) with q ≤ x1/2 log3 x, and m ≤ x/Q is free of prime factors
q′ ≡ 1 (mod p) with q′ ≤ x1/2 log3 x. Thus,

(3)
1

x
N1(p) =

1

x

∑
q≤x1/2 log3 x

q≡1 (mod p)

#

{
m ≤ x

q
:
m not divisible by any
q′ ≤ x1/2 log3 x, q′ ≡ 1 (mod p)

}

+O

(
1

x
#{n ≤ x : n is divisible by q2 for some q > log2 x/ log3 x}

)
.

The O-term here has size ≪ 1/ log2 x, and so summing on p ∈ I will introduce
an error of size

(4) ≪ 1

log2 x

∑
p∈I

1 ≪ 1,

which is negligible for us. So we focus our attention on the main term of

(3). For any q ≤ x1/2 log3 x, we have log(x/q)

log(x1/2 log3 x)
≥ 2 log3 x − 1, and so by
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Proposition 3,

#{m ≤ x

q
: m not divisible by any q′ ≤ x1/2 log3 x, q′ ≡ 1 (mod p)}

=
x

q

( ∏
q′≤x1/2 log3 x

q′≡1 (mod p)

(
1− 1

q′

))
(1 +O(1/ log2 x)) .

By an argument already given above,∏
q′≤x1/2 log3 x

q′≡1 (mod p)

(
1− 1

q′

)
= exp

(
− log2 x

p

)(
1 +O((log3 x)

2/ log2 x)
)
.

Thus,

1

x

∑
q≤x1/2 log3 x

q≡1 (mod p)

#

{
m ≤ x

q
:
m not divisible by any
q′ ≤ x1/2 log3 x, q′ ≡ 1 (mod p)

}

=
∑

q≤x1/2 log3 x

q≡1 (mod p)

1

q
exp

(
− log2 x

p

)(
1 +O((log3 x)

2/ log2 x)
)
.

Since ∑
q≤x1/2 log3 x

q≡1 (mod p)

1

q
=

log2 x

p
+O

(
log3 x

p

)
=

log2 x

p

(
1 +O

(
log3 x

log2 x

))
,

we deduce that

(5)
1

x

∑
q≤x1/2 log3 x

q≡1 (mod p)

#

{
m ≤ x

q
:
m not divisible by any
q′ ≤ x1/2 log3 x, q′ ≡ 1 (mod p)

}

=
log2 x

p
exp

(
− log2 x

p

)
(1 +O((log3 x)

2/ log2 x)).

We now sum on p ∈ I. Applying summation by parts in the same manner as
before, we find after some calculation that for each fixed A,

(6)
∑
p∈I

log2 x

p
exp

(
− log2 x

p

)

=

∫ log2 x log3 x

log2 x/ log3 x

log2 x

t
exp

(
− log2 x

t

)
dt

log t
+O

(
log2 x

(log3 x)
A

)
;

moreover, the integral appearing here is of size ≍ log2 x log4 x/ log3 x.
1 (The

last estimate may be seen by noting that the expression preceding dt
log t is

1The published version incorrectly asserted the integral was of size ≍ log2 x log4 x.
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≪ log2 x/t on the entire interval, and ≫ log2 x/t for t > log2 x.) We now
deduce from (3),(4),(5), and (6) that∑

p∈I

1

x
N1(p) =

∫ log2 x log3 x

log2 x/ log3 x

log2 x

t
exp

(
− log2 x

t

)
dt

log t
+O

(
log2 x

(log3 x)
A

)
.

Piecing everything together, we find that for any fixed A,

(7)
1

x

∑
n≤x

W̃ (n) = I∗ − I0 − I1 +O(log2 x/(log3 x)
A),

where

I∗ :=

∫ log2 x log3 x

log2 x/ log3 x

dt

log t
,

I0 :=

∫ log2 x log3 x

log2 x/ log3 x

exp

(
− log2 x

t

)
dt

log t
,(8)

I1 :=

∫ log2 x log3 x

log2 x/ log3 x

log2 x

t
exp

(
− log2 x

t

)
dt

log t
.

Now as x → ∞,

I∗ − I0 − I1

=

∫ log2 x log3 x

log2 x/ log3 x

(
1− exp

(
− log2 x

t

)
− log2 x

t
exp

(
− log2 x

t

))
dt

log t
,

which in turn is equal to

1 + o(1)

log3 x

∫ log2 x log3 x

log2 x/ log3 x

(
1− exp

(
− log2 x

t

)
− log2 x

t
exp

(
− log2 x

t

))
dt.

We recognize the final integrand as the derivative of t − t exp(− log2 x/t).
Plugging our upper endpoint into this last expression yields

log2 x log3 x · (1− exp(−1/ log3 x))

= log2 x log3 x · (1/ log3 x+O(1/(log3 x)
2))

= (1 + o(1)) log2 x.

The lower endpoint gives a contribution of smaller order, O(log2 x/ log3 x).
Thus, the integral is asymptotic to log2 x, and I∗ − I0 − I1 is asymptotic to
log2 x/ log3 x. Referring back to (7), the lemma is proved.

Proof of Lemma 7 (sketch) We start by writing∑
n≤x

W̃ (n)2 =
∑

p1,p2∈I

∑
n≤x

(
(1∗p1 ,∗p2 (n)− 10p1 ,∗p2 (n)− 11p1 ,∗p2 (n))

· (1∗p1 ,∗p2 (n)− 1∗p1 ,0p2 (n)− 1∗p1 ,1p2 (n))

)
,

where 1i1p1 ,i2p2 is the indicator function of n having exactly i1 prime fac-

tors congruent to 1 modulo p1 not exceeding x1/2 log3 x, and exactly i2 prime
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factors congruent to 1 modulo p2 not exceeding x1/2 log3 x, and a ∗ indicates
no restriction. Expanding the product and performing the sum on n gives∑

n≤x W̃ (n)2 as a signed sum of terms of the form Ni1,i2(p1, p2), where

Ni1,i2(p1, p2) =
∑
n≤x

1i1p1 ,i2p2 (n)

= #

{
n ≤ x

∣∣∣∣ ∃ exactly i1 primes q1 ≤ x1/2 log3 x, q1 ≡ 1 (mod p1) dividing n,

∃ exactly i2 primes q2 ≤ x1/2 log3 x, q2 ≡ 1 (mod p2) dividing n

}
.

We claim that for each pair of indices i1, i2 ∈ {0, 1, ∗},

(9)
1

x

∑
p1,p2∈I

Ni1,i2(p1, p2) = Ii1Ii2 +O((log2 x)
2/(log3 x)

A),

where the Is are as in (8), and where as before A is arbitrary but fixed.
Retracing our steps shows that

1

x

∑
n≤x

W̃ (n)2 = (I∗ − I0 − I1)
2 +O((log2 x)

2/(log3 x)
A).

From the proof of Lemma 6, we know that (I∗ − I0 − I1) ∼ log2 x/ log3 x (as
x → ∞), and so Lemma 7 follows.

The estimate (9) can be proved by the same method used in the proof of
Lemma 6. We say a few words here about N1,1; the other cases are similar.

The pairs p1 = p2 make a contribution to 1
x

∑
p1,p2∈I N1,1(p1, p2) of size

1
x

∑
p∈I N1(p), which is O(log2 x log4 x), and so is negligible for us. Assume

now that p1 ̸= p2. In that case the n counted in N1,1(p1, p2) include all those
that have the form n = q1q2m, where

• q1, q2 ≤ x1/2 log3 x,
• q1 ≡ 1 (mod p1) and q1 ̸≡ 1 (mod p2),
• q2 ≡ 1 (mod p2) and q2 ̸≡ 1 (mod p1),
• m is free of prime factors ≡ 1 (mod p1) or ≡ 1 (mod p2).

2

Say that these n are of the first kind (with respect to p1, p2), and that all
other n counted by N1,1(p1, p2) are of the second kind. If n is of the second
kind, then either n is divisible by q2 for some prime q > log2 x/ log3 x or n is
divisible by some prime q ≡ 1 (mod p1p2); the number of these n is

≪ x
∑

q>log2 x/ log3 x

1

q2
+ x

∑
q≤x

q≡1 (mod p1p2)

1

q
≪ x

log2 x
+

x log2 x

p1p2
.

Summing on p1, p2 ∈ I, we see that n of the second kind will make a total
contribution to 1

x

∑
p1,p2∈I Np1,p2

of size O(log2 x). This is of smaller order

than (log2 x/ log3 x)
2, and so is negligible for us. So we move our attention

2The published version mistakenly had q1, q2 in place of p1, p2 here.
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over to the n of the first kind. For a given p1, p2 and a given q1, q2, the count
of these n, after dividing by x, is

1

q1q2

( ∏
q≤x1/2 log3 x

q≡1 (mod p1) or
q≡1 (mod p2)

(
1− 1

q

))
(1 +O(1/ log2 x))

=
1

q1q2
exp

(
−

∑
q≤x1/2 log3 x

q≡1 (mod p1) or
q≡1 (mod p2)

1

q

)
(1 +O(1/ log2 x)) .

By Lemma 4,∑
q≤x1/2 log3 x

q≡1 (mod p1) or
q≡1 (mod p2)

1

q

=
log2 x

p1 − 1
+

log2 x

p2 − 1
− log2 x

(p1 − 1)(p2 − 1)
+O

(
log3 x

p1
+

log3 x

p2

)

=
log2 x

p1
+

log2 x

p2
+O

(
(log3 x)

2

log2 x

)
,

which shows that our normalized count above is

1

q1q2
exp

(
− log2 x

p1

)
exp

(
− log2 x

p2

)
(1 +O((log3 x)

2/ log2 x)).

Now we sum on q1, q2. We have that∑
q1

1

q1
=

∑
ℓ≤x1/2 log3 x

ℓ≡1 (mod p1)

1

ℓ
−

∑
ℓ≤x1/2 log3 x

ℓ≡1 (mod p1p2)

1

ℓ

=
log2 x

p1
+O

(
(log3 x)

2

log2 x

)
=

log2 x

p1

(
1 +O

(
(log3 x)

3

log2 x

))
,

and similarly for the analogous sum on q2. Thus, the first kind n make a
contribution to 1

xN1,1(p1, p2) of

log2 x

p1
exp

(
− log2 x

p1

)
log2 x

p2
exp

(
− log2 x

p2

)(
1 +O((log3 x)

3/ log2 x)
)
.

It remains to sum on p1, p2 ∈ I with p1 ̸= p2. If we include the terms with
p1 = p2, this increases the sum by only O(log2 x), which is negligible for us. So
we sum on all pairs p1, p2 ∈ I, which lets us factor the sum into pieces already
estimated in the proof of Lemma 6. Using those results, we see that summing
the last displayed expression over p1, p2 ∈ I gives I21 +O((log2 x)

2/(log3 x)
A),

which is our claimed estimate for 1
x

∑
p1,p2∈I N1,1(p1, p2).
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4 Concluding remarks: Beyond normal order

We alluded in the introduction to the result of Erdős–Pomerance and Murty–
Murty that the number of primes dividing ϕ(n) has normal order 1

2 (log2 n)
2.

In fact, the main result of [5] (obtained independently in [10]) is quite a bit
more precise: The number of primes dividing ϕ(n) is normally distributed with
mean 1

2 (log2 n)
2 and variance 1

3 (log2 n)
3. The alluded-to results of Martin and

Troupe in [9] are also Gaussian laws and not merely normal order theorems.
It would seem interesting to investigate whether W (n) (after an appropriate
normalization) also possesses a limiting distribution.
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