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Dramatis Personae

Let s(n) :=
∑

d |n,d<n d denote the sum of the proper divisors of n.
So if σ(n) =

∑
d |n d is the usual sum-of-divisors function, then

s(n) = σ(n)− n.

For example,

s(4) = 1 + 2 = 3, σ(4) = 1 + 2 + 4 = 7.

The ancient Greeks said that n was . . .
deficient if s(n) < n, for instance n = 5;
abundant if s(n) > n, for instance n = 12;
perfect if s(n) = n, for example n = 6.
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Nicomachus (60-120 AD) and the Goldilox theory

The superabundant number is . . . as if an adult animal was
formed from too many parts or members, having “ten tongues”,
as the poet says, and ten mouths, or nine lips, and provided
with three lines of teeth; or with a hundred arms, or having too
many fingers on one of its hands. . . . The deficient number is
. . . as if an animal lacked members or natural parts . . . if he does
not have a tongue or something like that.

. . . In the case of those that are found between the too much
and the too little, that is in equality, is produced virtue, just
measure, propriety, beauty and things of that sort — of which
the most exemplary form is that type of number which is called
perfect.
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Iamblichus (245-325) and St. Augustine (354-430) on
perfect numbers

The number Six .... which is said to be perfect ...
was called Marriage by the Pythagoreans,
because it is produced from the intermixing of
the first meeting of male and female; and for the
same reason this number is called Holy and
represents Beauty, because of the richness of its
proportions.

Six is a number perfect in itself, and not because
God created all things in six days; rather, the
converse is true. God created all things in six
days because the number is perfect.
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A deep thought

We tend to scoff at the beliefs of
the ancients.

But we can’t scoff at them
personally, to their faces, and this is
what annoys me.

– Jack Handey
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From numerology to number theory

Perfect numbers are solutions to the equation σ(N) = 2N. What do
these solutions look like?

Theorem (Euclid)

If 2n − 1 is a prime number, then N := 2n−1(2n − 1) is a perfect
number.

For example, 22 − 1 is prime, so N = 2 · (22 − 1) = 6 is perfect.
A slightly larger example (≈ 35 million digits) corresponds to
n = 57885161.

Theorem (Euler)

If N is an even perfect number, then N comes from Euclid’s rule.

Problem
Are there any odd perfect numbers?
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Anatomy of an odd perfect integer

. . . a prolonged meditation has satisfied me that the existence of
[an odd perfect number] - its escape, so to say, from the
complex web of conditions which hem it in on all sides - would
be little short of a miracle.

– J. J. Sylvester

If N is an odd perfect number, then:

1. N has the form peM2, where p ≡ e ≡ 1 (mod 4) (Euler),

2. N has at least 10 distinct prime factors (Nielsen, 2014) and at
least 101 prime factors counted with multiplicity (Ochem and Rao,
2012),

3. N > 101500 (Ochem and Rao, 2012).

Conjecture

There are no odd perfect numbers.
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Counting perfects

Let V ′(x) denote the number of odd perfect numbers n ≤ x .

Theorem (Hornfeck)

We have V ′(x) ≤ x1/2.

Proof.
Each odd perfect N has the form peM2. If N ≤ x , then M ≤

√
x .

We will show that each M corresponds to at most one N.
In fact, since σ(pe)σ(M2) = σ(N) = 2N = 2peM2, we get

σ(pe)

pe
=

2M2

σ(M2)
.

The right-hand fraction depends only on M.
The left-hand side is already a reduced fraction, since
p - 1 + p + · · ·+ pe = σ(pe). Thus, pe depends only on M.
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Counting perfects

Let V (x) denote the number of odd perfect numbers n ≤ x .

Theorem
We have the following estimates for V (x):

Volkmann, 1955 V (x) = O(x5/6)

Hornfeck, 1955 V (x) = O(x1/2)

Kanold, 1956 V (x) = o(x1/2)

Erdős, 1956 V (x) = O(x1/2−δ)

Kanold, 1957 V (x) = O(x1/4 log x

log log x
)

Hornfeck & Wirsing, 1957 V (x) = O(xε)

Best result: V (x) ≤ xc/ log log x (Wirsing, 1959).
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Erdős, 1956 V (x) = O(x1/2−δ)

Kanold, 1957 V (x) = O(x1/4 log x

log log x
)

Hornfeck & Wirsing, 1957 V (x) = O(xε)

Best result: V (x) ≤ xc/ log log x (Wirsing, 1959).
9 of 43



Did Pythagoras invent arithmetic dynamics?

Consider the map s : N ∪ {0} → N ∪ {0}, extended to have s(0) = 0.
A perfect number is nothing other than a positive integer fixed point.

We say n is amicable if n generates a two-cycle: in other words,
s(n) 6= n and s(s(n)) = n. For example,

s(220) = 284, and s(284) = 220.

Pythagoras, when asked what a friend was, replied:

One who is the other I, such are 220 and 284.
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The distribution of amicable numbers

There are over ten million amicable pairs known, but we have no
proof that there are infinitely many.
But we can still guess!

Let A(x) be the number of pairs with smaller member ≤ x .

Conjecture (Bratley–Lunnon–McKay, 1970)

A(x) = o(
√

x).

They based this on a complete list of amicable pairs to 107.
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A voice of dissent

Here is data up to 1013 from a more recent survey of Garcia,
Pedersen, and te Riele (2004):

In contrast with B-L-McK, Erdős suggests that for each ε > 0 and
each positive integer K , one has

x1−ε < A(x) < x/(log x)K .
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Upper bounds

Let V2(x) denote the number of n ≤ x belonging to some amicable
pair. (Thus, A(x) ≤ V (x) ≤ 2A(x).)

Theorem
We have the following estimates for V2(x):

Erdős, 1955 V2(x) = o(x)

Rieger, 1973 V2(x) = O(x/(log4 x)1/2−ε)

Erdős & Rieger, 1975 V3(x) = O(x/ log3 x)

Pomerance, 1977 V (x) = O(x/ exp(c
√

log3 x log4 x))

Pomerance, 1981 V2(x) = O(x/ exp((log x)1/3))

Pomerance, 2014 V2(x) = O(x/ exp((log x)1/2))
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Erdős, 1955 V2(x) = o(x)

Rieger, 1973 V2(x) = O(x/(log4 x)1/2−ε)
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Erdős & Rieger, 1975 V3(x) = O(x/ log3 x)

Pomerance, 1977 V (x) = O(x/ exp(c
√

log3 x log4 x))

Pomerance, 1981 V2(x) = O(x/ exp((log x)1/3))

Pomerance, 2014 V2(x) = O(x/ exp((log x)1/2))

13 of 43



Upper bounds

Let V2(x) denote the number of n ≤ x belonging to some amicable
pair. (Thus, A(x) ≤ V (x) ≤ 2A(x).)

Theorem
We have the following estimates for V2(x):
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Sociable numbers

More generally, we call n a k-sociable number if n starts a cycle of
length k. (So perfect corresponds to k = 1, amicable to k = 2.) For
example,

2115324 7→ 3317740 7→ 3649556 7→ 2797612 7→ 2115324 7→ . . .

is a sociable 4-cycle. We know 221 cycles of order > 2.

Let Vk(x) denote the number of k-sociable numbers n ≤ x .

Theorem (Erdős, 1976)

Fix k. The set of k-sociable numbers has asymptotic
density zero. In other words, Vk(x)/x → 0 as x →∞.
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Counting sociables

How fast does Vk(x)/x → 0? Erdős’s proof gives . . .

Vk(x)/x ≤ 1/

3k times︷ ︸︸ ︷
log log · · · log x .

In joint work with Mits Kobayashi and Carl Pomerance, we obtain
more reasonable bounds. A further improvement is possible for odd k.

Theorem (P., 2010)

Suppose k is odd, and let ε > 0. Then

Vk(x) ≤ x/(log x)1−ε

for all large x.
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Counting sociables

What if we count all sociable numbers at once? Put

V (x) := V1(x) + V2(x) + V3(x) + . . .

Is it still true that most numbers are not sociable numbers?

Theorem (K.–P.–P., 2009)

lim sup V (x)/x ≤ 0.0021.

Theorem (K.–P.–P., 2009)

The number of n ≤ x which belong to a cycle
entirely contained in [1, x ] is o(x), as x →∞.

Here 0.0021 is standing in for the density of odd abundant
numbers, odd numbers n for which s(n) > n (e.g., n = 945).
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Why do the abundant numbers have density 0?

For notational convenience, put h(n) = σ(n)
n . Notice that n is

abundant precisely when h(n) > 2.

Lemma
The function h is “multiplicatively strictly increasing”. In other words,
if n | m, then h(n) ≤ h(m), and equality holds exactly when n = m.

Since h(6) = 2, if n is any multiple of 6, then h(n) ≥ 2, and if n is a
proper multiple of 6, then h(n) > 2.

In this way, we might say that the number 6 explains why
12, 18, 24, . . . are all abundant.
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Mommy, where do abundant numbers come from?

In general, whenever h(n) ≥ 2 (that is, n is abundant or perfect),
there is a smallest divisor d of n with h(d) ≥ 2. We can view d as
explaining the abundance of n.

The integers d that arise this way satisfy h(d) ≥ 2 (by definition) but
have no proper divisor d ′ with h(d ′) ≥ 2. Such d are called primitive
nondeficient.

The first several primitive nondeficient numbers are

6, 20, 28, 70, 88, 104, 272, 304, 368, 464, 496, 550, . . . .
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Theorem (Erdős, 1934)

The sum of the reciprocals of the primitive nondeficient numbers
converges.

Erdős used this result to give his own proof of Davenport’s theorem
that the abundant numbers have an asymptotic density.

Why is this so useful? It comes down to the following lemma.

Lemma
Let ε > 0. There is a constant Bε for which the following holds: All
abundant numbers n outside of a set of upper density at most ε have
a primitive nondeficient divisor not exceeding Bε.

Thus, 99.9% of abundant numbers are “explained” by a certain finite
list of primitive abundants, namely those up to Bε.
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Lemma
Let ε > 0. There is a constant Bε for which the following holds: All
abundant numbers n outside of a set of upper density at most ε have
a primitive nondeficient divisor not exceeding Bε.

Given Erdős convergence result, the proof of the lemma is easy. The
number of n ≤ x divisible by a given primitive nondeficient number d
is bx/dc, and so the number divisible by such a d > Bε is at most

x
∑
d>Bε

1

d
.

Since the sum on d converges without the restriction to d > Bε, we
can make it smaller than ε by adding the condition d > Bε.
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More puzzle pieces

Underlying many of Erdős’s results is the observation that, for most
n, the quantity σ(n) is divisible by almost all small integers.

Lemma
Fix a positive integer d. For asymptotically 100% of integers n, the
integer σ(n) is divisible by d.

This is proved by analyzing the product formula for σ(n):
If there is a prime p dividing n for which d | p + 1, and p2 - n, then
d | p + 1 | σ(n). And most of the time, there is such a prime p (the
upper bound sieve).
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We can now explain why amicable numbers have to be rare.

It’s enough to explain why asymptotically 0% of the positive integers
are the smaller member of such a pair.

Take any such number n, and say n is amicably paired with m. Then
s(n) = m > n. Thus, n is abundant. On the other hand,
s(m) = n < m, and so m = s(n) is deficient.

Theorem (Erdős)

The set of n with n abundant but s(n) deficient has asymptotic
density 0.
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Theorem (Erdős)

The set of n with n abundant but s(n) deficient has asymptotic
density 0.

Proof (Pomerance).

In this sketch, let’s settle for upper density at most 0.1%. Then we
can assume n is divisible by some primitive nondeficient number
d ≤ Bε, where ε = 0.001.

Since s(n) is deficient, it cannot be divisible by d .

But s(n) = σ(n)− n. So d does not divide σ(n)− n. Since d | n, it
must be that d - σ(n). This last condition puts d in a set of density
0.
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Aliquot reversals

Definition
We say that n is an example of an up-down reversal if n is abundant
but s(n) is deficient. We say n is an example of a down-up reversal
if n is deficient but s(n) is abundant.

The argument we just sketched shows that the up-down reversals
form a set of density 0.

It turns out to be true, but harder to prove, that the down-up reversals
form a set of density 0 (Erdős–Granville–Pomerance–Spiro, 1981).
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Even though one can prove that these sets have density 0, the
resulting upper bounds on their counting functions are fairly large. So
reversals are uncommon, but we can’t show they’re that uncommon.

In a recent paper with Carl, we explain why: reversals are actually
fairly common.

Theorem (Pomerance and P., 2015)

The number of up-down reversals in [1, x ] is

� x

(log2 x)2(log3 x)3

while the number of down-up reversals in [1, x ] is

� x

(log2 x)2(log3 x)2
.
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ssssssssssssssssssss. . .

Saying that up-down reversals are rare is the same as saying that an
abundant number, under one application of s, usually stays abundant.
And similarly for deficient numbers, from the result on down-up
reversals.

What about if one iterates s? If n is abundant, is s(s(n)) almost
always abundant? If n is deficient, is s(s(n)) almost always deficient.

Theorem (Erdős, Granville, Pomerance, Spiro)

Fix k. For all abundant n outside of a set of density 0, all of n, s(n),
. . . , sk(n) are abundant.
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Paul Erdős, Andrew Granville, Carl Pomerance, Claudia Spiro
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Conjecture

The analogous result holds with “abundant” replaced by “deficient”.

This is open even for s(s(n)). In other words, we don’t know how to
show that if n is deficient, then almost always s(s(n)) is deficient.

The full conjecture can be shown to follow from another conjecture of
EGPS, of independent interest:

Conjecture

If A is a set of integers of asymptotic density 0, then the preimage set
s−1(A) also has asymptotic density zero.
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Is 1 the loneliest number?

The question of the distribution of sociable numbers is a question
about the fixed points of the function s.

There are other natural questions about s from this function-theoretic
viewpoint. Perhaps most obvious is to ask what one can say about
the range of s, i.e., the set s(N).

Investigations here date back to at least the 10th century, specifically
the work of Ibn Tahir al-Baghdadi. He referred to the input n as the
“begetter” and the output s(n) as the “begotten”.
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As to the begetter and the begotten among

the numbers, so the sum of the aliquot

parts of any number is the begotten of this

number, which itself is the begetter of its

aliquot parts. Now, 5 among the odd

numbers and 2 among the even numbers

have no begetter, since there is no number

such that the sum of its aliquot parts be 5

or 2. Hence, they stand among the

numbers like a bastard among the people.
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Definition
A number not in the range of s is called nonaliquot.

al-Baghdadi observed that 2 and 5 are nonaliquot.

If n is composite with smallest prime divisor p, then

s(n) ≥ 1 + n/p ≥ 1 +
√

n.

This gives a simple algorithm to decide whether or not a number
belongs to the range of s.

Here are the first several nonaliquots:

2, 5, 52, 88, 96, 120, 124, 146, 162, 188, 206, 210, 216, 238.
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To explain why odds don’t seem to be appearing, note that if p and q
are distinct primes, then

s(pq) = 1 + p + q.

Probably every even number n ≥ 8 is a sum of two distinct primes.
Hence, every odd n ≥ 9 is in the range of s.

Since s(2) = 1, s(4) = 3, and s(8) = 7, the only odd nonaliquot
number is 5, provided we are happy assuming a plausible
strengthening of the Goldbach conjecture.
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Where does Erdős enter the picture?

Theorem (Erdős, 1973)

A positive proportion of even numbers are untouchable.

The proof is clever but not so long (about a page); it makes essential
use of the lemma we mentioned before, that for each fixed d , we have
d | σ(n) for almost all n.

Lower bounds on the proportion of numbers that are even and
untouchable have been investigated by te Riele (1976), Banks and
Luca (2005), and Chen and Zhao (2005). In this last paper, it is show
that the proportion of positive integers n that are both even and
untouchable is > 0.06.
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Erdős’s method is powerless to answer the question of whether or not
a positive proportion of even numbers are in the range.

Theorem (Luca and Pomerance, 2015)

In every arithmetic progression, a positive proportion of the members
belong to the range of s.

One could obtain a numerical lower bound on the density of even
“touchable” numbers from the argument, but it would not be a
pleasant exercise.
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The truth?

Using an algorithm introduced by Yang–Pomerance, one can compute
counts of untouchables to reasonably large heights.

x U(x) D(x) x U(x) D(x)

100000000 16246940 0.1625 1000000000 165826606 0.1658
200000000 32721193 0.1636 2000000000 333261274 0.1666
300000000 49265355 0.1642 3000000000 501171681 0.1671
400000000 65855060 0.1646 4000000000 669372486 0.1673
500000000 82468000 0.1649 5000000000 837801755 0.1676
600000000 99107582 0.1652 6000000000 1006383348 0.1677
700000000 115764316 0.1654 7000000000 1175094232 0.1679
800000000 132438792 0.1655 8000000000 1343935989 0.1680
900000000 149128373 0.1657 9000000000 1512867678 0.1681

10000000000 1681871718 0.1682

Guess: ≈ 17% of natural numbers are even and untouchable.
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Conjecture (Pomerance and P., 2015)

The set of nonaliquot numbers has asymptotic density ∆, where

∆ = lim
y→∞

1

log y

∑
a≤y
2|a

1

a
e−a/s(a).

The constant ∆ is

• well-defined (i.e., we can prove the limit exists)

• effective computable

Plugging in y = 2 · 1010, we get an approximation to ∆ of 0.171822.
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I get by with a little help . . .

Definition
Distinct natural numbers n,m are called friends if σ(n)

n = σ(m)
m .

Example

The friends of 6 are 28, 496, 8128, . . . — i.e., the other perfect
numbers.

Example

The number 5 has no friends. Notice that σ(5)
5 = 6/5. If σ(n)

n = 6
5 ,

then 5 | n. But σ(n)
n > σ(5)

5 unless n = 5. This argument clearly works
for every prime number n. In fact, it works whenever n and
gcd(n, σ(n)) = 1.

If n has no friends, we say n is solitary. Thus, n is solitary whenever
gcd(n, σ(n)) = 1.
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Example

We do not know if n = 10 is solitary or not. In other words, we do
not know if there is any solution to σ(n)

n = 9
5 except n = 10 itself.

There is no known algorithm to decide whether or not a given integer
n has a friend.

Perhaps not surprisingly, we do not have a good estimate on the
number of n ≤ x which are solitary. The (n, σ(n)) = 1 criteria implies
(by work of Erdős) that there are at least

(e−γ + o(1))x/ log log log x

such numbers n ≤ x .

Problem
Prove or disprove that a positive proportion of natural numbers are
solitary.
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If you can’t answer a question... answer a different question.

To make life easier, let’s restrict attention entirely to an initial
interval [1, x ]. We say that a number n ∈ [1, x ] is x-solitary if it has
no friends in [1, x ].

Question
Is there a limiting proportion of x-solitary numbers, as x →∞? And
is this proportion positive?

Note that the answer to the last question can be positive without the
proportion of solitary numbers being positive.

We can answer these questions in the affirmative. In fact, we can
show more.
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For each integer k ≥ 0, let N(x ; k) be the number of positive integers
n ≤ x with at least k friends in [1, x ].

Theorem (Pomerance and P., 2015)

For each fixed k ≥ 0,

N(x ; k)

x
→ αk (as x →∞)

for some αk .

Clearly, 1 = α0 ≥ α1 ≥ α2 ≥ . . . .

Theorem
If there is a single example of an integer with at least k friends, then
αk > αk+1.

In particular, the limiting proportion of x-solitary numbers in [1, x ] is
α0 − α1, and this is positive.
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x 106 107 108 109 1010

N1(x) 34746 347471 3474564 34745605 347456117
N2(x) 2816 28089 280938 2809813 28097701
N3(x) 857 8517 85365 853513 8535154
N4(x) 85 853 8457 84605 845674

Perhaps α1 = 0.0347 . . . , α2 = 0.0028 . . . , α3 = 0.00085 . . . , and
α4 = 0.000084 . . . .
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