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The quest for perfection

Let σ(n) :=
∑

d |n d be the usual sum-of-divisors function, and let
s(n) :=

∑
d |n,d<n d be the sum-of-proper-divisors function, so that

s(n) = σ(n)− n.

Definition
A natural number n is called perfect if σ(n) = 2n, or equivalently, if
s(n) = n.

For example, n = 28 is perfect, since

28 = 1 + 2 + 4 + 7 + 14.

But who decided adding divisors was a reasonable thing to do in the
first place?
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All Greek to us

Among simple even numbers, some are superabundant, others
are deficient: these two classes are as two extremes opposed one
to the other; as for those that occupy the middle point between
the two, they are said to be perfect.

– Nicomachus (ca. 100 AD), Introductio Arithmetica

Abundant: s(n) > n, e.g., n = 12.
Deficient: s(n) < n, e.g., n = 5.
Perfect: s(n) = n, e.g., n = 6.

Carl Pomerance has called this the “Goldilox classification”.
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Goldilox explained

The superabundant number is . . . as if an adult animal was
formed from too many parts or members, having “ten tongues”,
as the poet says, and ten mouths, or nine lips, and provided
with three lines of teeth; or with a hundred arms, or having too
many fingers on one of its hands. . . . The deficient number is
. . . as if an animal lacked members or natural parts . . . if he does
not have a tongue or something like that.

. . . In the case of those that are found between the too much
and the too little, that is in equality, is produced virtue, just
measure, propriety, beauty and things of that sort — of which
the most exemplary form is that type of number which is called
perfect.
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You can see a lot just by looking

Let’s list the first several terms of each of these sequences.
Abundants: 12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72,
78, 80, 84, 88, 90, 96, 100, 102, . . . .

Deficients: 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21,
22, 23, 25, 26, 27, . . . .

Perfects: 6, 28, 496, 8128, 33550336, 8589869056, 137438691328,
2305843008139952128, . . . .

Just as . . . ugly and vile things abound, so superabundant and
deficient numbers are plentiful and can be found without a
rule. . . – Nicomachus

5 of 17



You can see a lot just by looking

Let’s list the first several terms of each of these sequences.
Abundants: 12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72,
78, 80, 84, 88, 90, 96, 100, 102, . . . .

Deficients: 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21,
22, 23, 25, 26, 27, . . . .

Perfects: 6, 28, 496, 8128, 33550336, 8589869056, 137438691328,
2305843008139952128, . . . .

Just as . . . ugly and vile things abound, so superabundant and
deficient numbers are plentiful and can be found without a
rule. . . – Nicomachus

5 of 17



It’s OK to be dense

Rather than try to study the individual members of a set, one can
take a statistical perspective, examining how many elements of the
set there are below a given bound.

If A is a subset of N = {1, 2, 3, . . . }, define the density of A as

lim
x→∞

#A ∩ [1, x ]

x
.

For example, the even numbers have density 1/2, and the prime
numbers have density 0. But the set of natural numbers with first
digit 1 does not have a density.

Question
Does the set of abundant numbers have a density? What about the
deficient numbers? The perfect numbers?
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It’s OK to be dense, ctd.

Theorem (Davenport, 1933)

For each real u ≥ 0, consider the set

Ds(u) = {n : s(n)/n ≤ u}.

This set always possesses an asymptotic
density Ds(u). Considered as a function of u,
the function Ds is continuous and strictly
increasing, with Ds(0) = 0 and Ds(∞) = 1.

Corollary

The perfect numbers have density 0, the deficient numbers have
density Ds(1), and the abundant numbers have density 1− Ds(1).
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Numerics

The following theorem improves on earlier work of Behrend, Salié,
Wall, and Deléglise:

Theorem (Kobayashi, 2010)

For the density of abundant numbers, we have

0.24761 < 1− Ds(1) < 0.24765.

So just under 1 in every 4 natural numbers is
abundant, and just over 3 in 4 are deficient.
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Interlude: Large values of s(n)
n

According to Davenport’s theorem, Ds(u) < 1 for all u. In other
words, no matter how large u is, a positive proportion of numbers n
have

s(n)

n
> u.

Can we see why this should be the case?

It will be convenient in what follows to work not with s(n)
n but with

σ(n)
n . Since σ(n) = n + s(n), we have σ(n)

n = 1 + s(n)
n .
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Proposition

For each natural number n,

σ(n)

n
=

∑
d |n

1

d
.

For example, if n = 6, the right-hand sum is

1

1
+

1

2
+

1

3
+

1

6
=

1

6
(6 + 3 + 2 + 1) =

1

6
σ(6).

In general,
σ(n)

n
=

1

n

∑
d |n

d =
∑
d |n

d

n
=

∑
d |n

1

n/d
.

But as d runs over the divisors of n from smallest to largest, n/d also
runs over the divisors of n, but in the reverse order.
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Proposition

For each natural number n,

σ(n)

n
=

∑
d |n

1

d
.

Corollary

If n | m, then σ(n)
n ≤

σ(m)
m , with equality only when m = n.
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Now we produce a positive proportion of numbers n with σ(n)/n > u,
for any given starting number u.

Consider n = N!, where N is a large positive integer.

Then
σ(n)

n
=

∑
d |n

1

d
≥ 1

1
+

1

2
+ · · ·+ 1

N
.

Now the harmonic series diverges!
So if we choose N large enough, we are guaranteed the right-hand
side is larger than u.

This gives us one value of n with σ(n)
n > u. In fact, if n is any

multiple of N!, then σ(n)
n ≥

σ(N!)
N! ≥ u. And the multiples of N have

positive density.
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It’s a short jump from σ(N)
N can be arbitrarily large to a beautiful

theorem of Leonhard Euler:

Theorem ∑
p prime

1

p
diverges.

Note in particular that this implies there are infinitely many primes!
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Indeed, for any number n > 1, one can factor n = pe11 pe22 · · · p
ek
k , and

then

σ(n)

n
=

∑
d |n

1

d

= (1 +
1

p1
+

1

p21
+ · · ·+ 1

pe11
) · · · (1 +

1

pk
+

1

p2k
+ · · ·+ 1

pekk
)

< (1 +
2

p1
) · · · (1 +

2

pk
)

Using that ex > 1 + x for every real number x > 0 (from Taylor
series),

σ(n)

n
< e2/p1+2/p2+···+2/pk .

Thus, 1
p1

+ 1
p2

+ · · ·+ 1
pk
> 1

2 log σ(n)
n .

So
∑

p prime
1
p >

1
2 log σ(n)

n for every n.
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I get by with a little help . . .

Definition
Distinct natural numbers n,m are called friends if σ(n)

n = σ(m)
m .

Example

The friends of 6 are 28, 496, 8128, . . . — i.e., the other perfect
numbers.

Example

The number 5 has no friends. Notice that σ(5)
5 = 6/5. If σ(n)

n = 6
5 ,

then 5 | n. But σ(n)
n > σ(5)

5 unless n = 5. This argument clearly works
for every prime number n. In fact, it works whenever n and
gcd(n, σ(n)) = 1.

If n has no friends, we say n is solitary. Thus, n is solitary whenever
gcd(n, σ(n)) = 1.
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Example

We do not know if n = 10 is solitary or not. In other words, we do
not know if there is any solution to σ(n)

n = 9
5 except n = 10 itself.

There is no known algorithm to decide whether or not a given integer
n has a friend.

Perhaps not surprisingly, we do not have a good estimate on the
number of n ≤ x which are solitary.

Problem
Prove or disprove that a positive proportion of natural numbers are
solitary.

The numbers with gcd(n, σ(n)) = 1 don’t quite make up a set of
positive density. Erdős showed that the number of these n up to x is
roughly const× x

log log log x for large x .
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Thank you!

17 of 17


	History lessons

