ON DICKSON'S THEOREM CONCERNING ODD PERFECT NUMBERS

PAUL POLLACK

ABSTRACT. A 1913 theorem of Dickson asserts that for each fixed natural number k, there are only finitely many odd perfect numbers N with at most k distinct prime factors. We show that the number of such N is bounded by 4^{k^2} .

1. INTRODUCTION

If N is a natural number, we write $\sigma(N) := \sum_{d|N} d$ for the sum of the divisors of N. We call N perfect if $\sigma(N) = 2N$, i.e., if N is equal to the sum of its proper divisors. The even perfect numbers were completely classified by Euclid and Euler, but the odd perfect numbers remain utterly mysterious: despite millennia of effort, we don't know of a single example, but we possess no argument ruling out their existence.

In 1913, Dickson [2] proved that for each fixed natural number k, there are only finitely many odd perfect numbers N with $\omega(N) \leq k$. (Here and below, we write $\omega(N)$ for the number of distinct prime factors of the natural number N.) The first explicit bounds were given by Pomerance [7], who showed that any such N satisfies

$$N < (4k)^{(4k)^{2^{k^2}}}$$

After the work of Heath-Brown [4], and its subsequent refinements by Cook [1] and Nielsen [5], we know that any such N satisfies

$$(1) N < 2^{4^{\kappa}}.$$

In addition to an upper bound on the *size* of such N, it is sensible to ask for a bound on the *number* of such N. The purpose of this note is to prove the following estimate:

Theorem 1. For each positive integer k, the number of odd perfect numbers N with $\omega(N) \leq k$ is bounded by 4^{k^2} .

It is amusing to note the typographical similarities between the bound 2^{4^k} of (1) and our (much smaller!) bound of 4^{k^2} . Theorem 1 is a corollary of the following result that is perhaps of independent interest:

Theorem 2. Let $x \ge 1$ and let $k \ge 1$. The number of odd perfect $N \le x$ with $\omega(N) \le k$ is bounded by $(\log x)^k$.

The proofs are self-contained except for the use of the bound (1) and an appeal to the following classical result of Sylvester [8]: if N is odd and perfect, then $\omega(N) \ge 5$. (For a detailed account of Sylvester's investigations into odd perfect numbers, see [3].) Recently Nielsen [6] has shown that actually $\omega(N) \ge 9$.

PAUL POLLACK

Most of our notation will be familiar to students of elementary number theory. A possible exception is the definition of " \parallel " (or *exactly divides*): if p is a prime, we write $p^e \parallel n$ to mean that $p^e \mid n$ while $p^{e+1} \nmid n$.

2. Proofs

Proof of Theorem 2. We employ a modification of Wirsing's method from [9]. Suppose that $N \leq x$ is odd and perfect and $\omega(N) \leq k$. (If there are no such N, then the theorem holds trivially, since the quantity $(\log x)^k$ is nonnegative.) Let p_0 be the least prime divisor of N, and let $e_0 \geq 1$ be such that $p_0^{e_0} \parallel N$. Put $B := p_0^{e_0}$ and write N = AB. Then A and B are relatively prime, and so (since σ is a multiplicative function)

(2)
$$2AB = \sigma(A)\sigma(B).$$

Thus

(3)
$$B < \sigma(B) = \frac{2A}{\sigma(A)}B \le 2B,$$

with equality on the right exactly when A = 1. Suppose $A \neq 1$. Then the preceding inequalities show that $\sigma(B) \nmid 2B$, and so there is a prime p_1 dividing $\sigma(B)$ to a higher power than that to which it divides 2B; for definiteness, fix p_1 as the least such prime. It now follows from (2) that $p_1 \mid A$. Let $e_1 \geq 1$ be such that $p_1^{e_1} \parallel A$. Then if we put

$$A' := A/p_1^{e_1}$$
 and $B' := Bp_1^{e_1}$,

we have (2) with A' in place of A and B' in place of B. Reasoning as above, we find that unless A' = 1, there is a prime p_2 dividing $\sigma(B')$ to a higher power than that to which it divides 2B'. Again, for definiteness, let p_2 be the least such prime. Then $p_2^{e_2} \parallel A'$ for some $e_2 \geq 1$. We put

$$A'' := A'/p_2^{e_2}$$
 and $B'' := B'p_2^{e_2}$

and observe that we now have (2) with A'' and B'' replacing A and B. We continue choosing primes p_i and exponents e_i in the above manner, stopping at the *l*th step (say) when $A^{(l)} = 1$. At that point

$$A = p_1^{e_1} p_2^{e_2} \cdots p_l^{e_l}$$

and

$$= \omega(A) = \omega(N/B) = \omega(N) - 1.$$

By the result of Sylvester alluded to above, we have $\omega(N) \ge 5$, and so

l

$$4 \le l \le k-1$$

We now count the number of possibilities for A and B. Observe that

$$\sigma(N) = \prod_{p^e \parallel N} (1 + p + p^2 + \dots + p^e) \le N \prod_{p \mid N} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \dots \right),$$

so that

$$\frac{1}{2} = \frac{N}{\sigma(N)} \ge \prod_{p|N} \left(1 - \frac{1}{p}\right) \ge 1 - \sum_{p|N} \frac{1}{p} \ge 1 - \frac{k}{p_0},$$

from which it follows that $p_0 \leq 2k$. Since p_0 is an odd prime, the number of possibilities for p_0 is bounded by k-1. Since $3^{e_0} \leq B = p_0^{e_0} \leq N \leq x$, we have $e_0 \leq \log x / \log 3$. So the number of possibilities for B is crudely bounded by

$$(k-1)\log x/\log 3$$

Next, we observe that the prime p_1 depends only on B, while for i > 1, the prime p_i depends only on B and the exponents e_1, \ldots, e_{i-1} . It follows that for a given B, the cofactor A is entirely determined by the sequence of exponents e_1, \ldots, e_l . Since $A \leq N \leq x$, each $e_i \leq \log x / \log p_i$. Moreover, since $4 \leq l \leq k - 1$ and $p_i > p_0 \geq 3$ for $i \geq 1^1$, the number of possibilities for the sequence e_1, \ldots, e_l is bounded by

(4)
$$(k-4)(\log x/\log 5)^{k-1}$$

Hence the number of possibilities for N = AB is bounded by

$$\frac{(k-1)(k-4)}{(\log 3)(\log 5)^{k-1}}(\log x)^k.$$

By elementary calculus, the coefficient of $(\log x)^k$ in this expression is a decreasing function of k for $k \ge 8$. Moreover, for $k \in \{5, 6, 7, 8\}$, the largest value of this coefficient is 0.942719... < 1. The theorem follows.

Proof of Theorem 1. Put $x := 2^{4^k}$. By (1) and Theorem 2, the number of odd perfect N with $\omega(N) \leq k$ is at most $(\log x)^k < (4^k)^k = 4^{k^2}$.

Acknowledgements

The author thanks the referees for numerous suggestions, including advice which led to a strengthening of the results. This research was conducted while the author enjoyed the support of the National Science Foundation (under agreement No. DMS-0635607) and the hospitality of the Institute for Advanced Study.

References

- R. J. Cook, Bounds for odd perfect numbers, in Number Theory, Proc. 5th Conf. Canadian Number Theory Association – Carleton University, Ottawa, ON, 1996, R. Gupta and K. S. Williams, eds., CRM Proceedings & Lecture Notes, vol. 19, American Mathematical Society, Providence, RI, 1999, 67–71.
- [2] L. E. Dickson, Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors, Amer. J. Math. 35 (1913) 413–422.
- [3] S. Gimbel and J. H. Jaroma, Sylvester: Ushering in the modern era of research on odd perfect numbers, *Integers* 3 (2003) A16, available at http://www.integers-ejcnt.org/vol3.html.
- [4] D. R. Heath-Brown, Odd perfect numbers, Math. Proc. Cambridge Philos. Soc. 115 (1994) 191–196.
- [5] P. P. Nielsen, An upper bound for odd perfect numbers, *Integers* 3 (2003) A14, available at http://www.integers-ejcnt.org/vol3.html.
- [6] _____, Odd perfect numbers have at least nine distinct prime factors, Math. Comp. 76 (2007) 2109–2126, also available at http://www.ams.org/journals/mcom/2007-76-260/home.html.
- [7] C. Pomerance, Multiply perfect numbers, Mersenne primes, and effective computability, Math. Ann. 226 (1977) 195–206.
- [8] J. J. Sylvester, Sur l'impossibilité de l'existence d'un nombre parfait impair qui ne contient pas au moins 5 diviseurs premiers distincts, Comptes Rendus CVI (1888) 522–526.
- [9] E. Wirsing, Bemerkung zu der Arbeit über vollkommene Zahlen, Math. Ann. 137 (1959) 316–318.

¹The published version of this paper contained the erroneous assertion that " $3 \le p_0 < p_1 < p_2 < \dots$ " Thanks to Pace Nielsen for pointing this out.

PAUL POLLACK

Department of Mathematics, University of Illinois, Urbana, IL 61802E-mail address: pppollac0illinois.edu