ON DICKSON'S THEOREM CONCERNING ODD PERFECT NUMBERS

PAUL POLLACK

Abstract

A 1913 theorem of Dickson asserts that for each fixed natural number k, there are only finitely many odd perfect numbers N with at most k distinct prime factors. We show that the number of such N is bounded by $4^{k^{2}}$.

1. Introduction

If N is a natural number, we write $\sigma(N):=\sum_{d \mid N} d$ for the sum of the divisors of N. We call N perfect if $\sigma(N)=2 N$, i.e., if N is equal to the sum of its proper divisors. The even perfect numbers were completely classified by Euclid and Euler, but the odd perfect numbers remain utterly mysterious: despite millennia of effort, we don't know of a single example, but we possess no argument ruling out their existence.

In 1913, Dickson [2] proved that for each fixed natural number k, there are only finitely many odd perfect numbers N with $\omega(N) \leq k$. (Here and below, we write $\omega(N)$ for the number of distinct prime factors of the natural number N.) The first explicit bounds were given by Pomerance [7], who showed that any such N satisfies

$$
N \leq(4 k)^{(4 k)^{2^{k^{2}}}}
$$

After the work of Heath-Brown [4], and its subsequent refinements by Cook [1] and Nielsen [5], we know that any such N satisfies

$$
\begin{equation*}
N<2^{4^{k}} \tag{1}
\end{equation*}
$$

In addition to an upper bound on the size of such N, it is sensible to ask for a bound on the number of such N. The purpose of this note is to prove the following estimate:

Theorem 1. For each positive integer k, the number of odd perfect numbers N with $\omega(N) \leq k$ is bounded by $4^{k^{2}}$.

It is amusing to note the typographical similarities between the bound $2^{4^{k}}$ of (1) and our (much smaller!) bound of $4^{k^{2}}$. Theorem 1 is a corollary of the following result that is perhaps of independent interest:

Theorem 2. Let $x \geq 1$ and let $k \geq 1$. The number of odd perfect $N \leq x$ with $\omega(N) \leq k$ is bounded by $(\log x)^{k}$.

The proofs are self-contained except for the use of the bound (1) and an appeal to the following classical result of Sylvester [8]: if N is odd and perfect, then $\omega(N) \geq 5$. (For a detailed account of Sylvester's investigations into odd perfect numbers, see [3].) Recently Nielsen [6] has shown that actually $\omega(N) \geq 9$.

Most of our notation will be familiar to students of elementary number theory. A possible exception is the definition of " $|\mid$ " (or exactly divides): if p is a prime, we write $p^{e} \| n$ to mean that $p^{e} \mid n$ while $p^{e+1} \nmid n$.

2. Proofs

Proof of Theorem 2. We employ a modification of Wirsing's method from [9]. Suppose that $N \leq x$ is odd and perfect and $\omega(N) \leq k$. (If there are no such N, then the theorem holds trivially, since the quantity $(\log x)^{k}$ is nonnegative.) Let p_{0} be the least prime divisor of N, and let $e_{0} \geq 1$ be such that $p_{0}^{e_{0}} \| N$. Put $B:=p_{0}^{e_{0}}$ and write $N=A B$. Then A and B are relatively prime, and so (since σ is a multiplicative function)

$$
\begin{equation*}
2 A B=\sigma(A) \sigma(B) \tag{2}
\end{equation*}
$$

Thus

$$
\begin{equation*}
B<\sigma(B)=\frac{2 A}{\sigma(A)} B \leq 2 B \tag{3}
\end{equation*}
$$

with equality on the right exactly when $A=1$. Suppose $A \neq 1$. Then the preceding inequalities show that $\sigma(B) \nmid 2 B$, and so there is a prime p_{1} dividing $\sigma(B)$ to a higher power than that to which it divides $2 B$; for definiteness, fix p_{1} as the least such prime. It now follows from (2) that $p_{1} \mid A$. Let $e_{1} \geq 1$ be such that $p_{1}^{e_{1}} \| A$. Then if we put

$$
A^{\prime}:=A / p_{1}^{e_{1}} \quad \text { and } \quad B^{\prime}:=B p_{1}^{e_{1}}
$$

we have (2) with A^{\prime} in place of A and B^{\prime} in place of B. Reasoning as above, we find that unless $A^{\prime}=1$, there is a prime p_{2} dividing $\sigma\left(B^{\prime}\right)$ to a higher power than that to which it divides $2 B^{\prime}$. Again, for definiteness, let p_{2} be the least such prime. Then $p_{2}^{e_{2}} \| A^{\prime}$ for some $e_{2} \geq 1$. We put

$$
A^{\prime \prime}:=A^{\prime} / p_{2}^{e_{2}} \quad \text { and } \quad B^{\prime \prime}:=B^{\prime} p_{2}^{e_{2}}
$$

and observe that we now have (2) with $A^{\prime \prime}$ and $B^{\prime \prime}$ replacing A and B. We continue choosing primes p_{i} and exponents e_{i} in the above manner, stopping at the l th step (say) when $A^{(l)}=1$. At that point

$$
A=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{l}^{e_{l}}
$$

and

$$
l=\omega(A)=\omega(N / B)=\omega(N)-1
$$

By the result of Sylvester alluded to above, we have $\omega(N) \geq 5$, and so

$$
4 \leq l \leq k-1
$$

We now count the number of possibilities for A and B. Observe that

$$
\sigma(N)=\prod_{p^{e} \| N}\left(1+p+p^{2}+\cdots+p^{e}\right) \leq N \prod_{p \mid N}\left(1+\frac{1}{p}+\frac{1}{p^{2}}+\cdots\right)
$$

so that

$$
\frac{1}{2}=\frac{N}{\sigma(N)} \geq \prod_{p \mid N}\left(1-\frac{1}{p}\right) \geq 1-\sum_{p \mid N} \frac{1}{p} \geq 1-\frac{k}{p_{0}}
$$

from which it follows that $p_{0} \leq 2 k$. Since p_{0} is an odd prime, the number of possibilities for p_{0} is bounded by $k-1$. Since $3^{e_{0}} \leq B=p_{0}^{e_{0}} \leq N \leq x$, we have $e_{0} \leq \log x / \log 3$. So the number of possibilities for B is crudely bounded by

$$
(k-1) \log x / \log 3 .
$$

Next, we observe that the prime p_{1} depends only on B, while for $i>1$, the prime p_{i} depends only on B and the exponents e_{1}, \ldots, e_{i-1}. It follows that for a given B, the cofactor A is entirely determined by the sequence of exponents e_{1}, \ldots, e_{l}. Since $A \leq N \leq x$, each $e_{i} \leq \log x / \log p_{i}$. Moreover, since $4 \leq l \leq k-1$ and $p_{i}>p_{0} \geq 3$ for $i \geq 1^{1}$, the number of possibilities for the sequence e_{1}, \ldots, e_{l} is bounded by

$$
\begin{equation*}
(k-4)(\log x / \log 5)^{k-1} . \tag{4}
\end{equation*}
$$

Hence the number of possibilities for $N=A B$ is bounded by

$$
\frac{(k-1)(k-4)}{(\log 3)(\log 5)^{k-1}}(\log x)^{k} .
$$

By elementary calculus, the coefficient of $(\log x)^{k}$ in this expression is a decreasing function of k for $k \geq 8$. Moreover, for $k \in\{5,6,7,8\}$, the largest value of this coefficient is $0.942719 \ldots<1$. The theorem follows.
Proof of Theorem 1. Put $x:=2^{4^{k}}$. By (1) and Theorem 2, the number of odd perfect N with $\omega(N) \leq k$ is at most $(\log x)^{k}<\left(4^{k}\right)^{k}=4^{k^{2}}$.

Acknowledgements

The author thanks the referees for numerous suggestions, including advice which led to a strengthening of the results. This research was conducted while the author enjoyed the support of the National Science Foundation (under agreement No. DMS-0635607) and the hospitality of the Institute for Advanced Study.

References

[1] R. J. Cook, Bounds for odd perfect numbers, in Number Theory, Proc. 5th Conf. Canadian Number Theory Association - Carleton University, Ottawa, ON, 1996, R. Gupta and K. S. Williams, eds., CRM Proceedings \& Lecture Notes, vol. 19, American Mathematical Society, Providence, RI, 1999, 67-71.
[2] L. E. Dickson, Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors, Amer. J. Math. 35 (1913) 413-422.
[3] S. Gimbel and J. H. Jaroma, Sylvester: Ushering in the modern era of research on odd perfect numbers, Integers 3 (2003) A16, available at http://www.integers-ejcnt.org/vol3.html.
[4] D. R. Heath-Brown, Odd perfect numbers, Math. Proc. Cambridge Philos. Soc. 115 (1994) 191-196.
[5] P. P. Nielsen, An upper bound for odd perfect numbers, Integers 3 (2003) A14, available at http://www.integers-ejcnt.org/vol3.html.
[6] 2109-2126, also available at http://www.ams.org/journals/mcom/2007-76-260/home.html.
[7] C. Pomerance, Multiply perfect numbers, Mersenne primes, and effective computability, Math. Ann. 226 (1977) 195-206.
[8] J. J. Sylvester, Sur l'impossibilité de l'existence d'un nombre parfait impair qui ne contient pas au moins 5 diviseurs premiers distincts, Comptes Rendus CVI (1888) 522-526.
[9] E. Wirsing, Bemerkung zu der Arbeit über vollkommene Zahlen, Math. Ann. 137 (1959) 316-318.

[^0]Department of Mathematics, University of Illinois, Urbana, IL 61802
E-mail address: pppollac@illinois.edu

[^0]: ${ }^{1}$ The published version of this paper contained the erroneous assertion that " $3 \leq p_{0}<p_{1}<$ $p_{2}<\ldots$." Thanks to Pace Nielsen for pointing this out.

