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Abstract. A 1913 theorem of Dickson asserts that for each fixed natural

number k, there are only finitely many odd perfect numbers N with at most
k distinct prime factors. We show that the number of such N is bounded by

4k
2
.

1. Introduction

If N is a natural number, we write σ(N) :=
∑

d|N d for the sum of the divisors

of N . We call N perfect if σ(N) = 2N , i.e., if N is equal to the sum of its proper
divisors. The even perfect numbers were completely classified by Euclid and Euler,
but the odd perfect numbers remain utterly mysterious: despite millennia of effort,
we don’t know of a single example, but we possess no argument ruling out their
existence.

In 1913, Dickson [2] proved that for each fixed natural number k, there are only
finitely many odd perfect numbers N with ω(N) ≤ k. (Here and below, we write
ω(N) for the number of distinct prime factors of the natural number N .) The first
explicit bounds were given by Pomerance [7], who showed that any such N satisfies

N ≤ (4k)(4k)
2k

2

.

After the work of Heath-Brown [4], and its subsequent refinements by Cook [1] and
Nielsen [5], we know that any such N satisfies

(1) N < 24
k

.

In addition to an upper bound on the size of such N , it is sensible to ask for a
bound on the number of such N . The purpose of this note is to prove the following
estimate:

Theorem 1. For each positive integer k, the number of odd perfect numbers N

with ω(N) ≤ k is bounded by 4k
2

.

It is amusing to note the typographical similarities between the bound 24
k

of (1)

and our (much smaller!) bound of 4k
2

. Theorem 1 is a corollary of the following
result that is perhaps of independent interest:

Theorem 2. Let x ≥ 1 and let k ≥ 1. The number of odd perfect N ≤ x with
ω(N) ≤ k is bounded by (log x)k.

The proofs are self-contained except for the use of the bound (1) and an appeal to
the following classical result of Sylvester [8]: if N is odd and perfect, then ω(N) ≥ 5.
(For a detailed account of Sylvester’s investigations into odd perfect numbers, see
[3].) Recently Nielsen [6] has shown that actually ω(N) ≥ 9.
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Most of our notation will be familiar to students of elementary number theory.
A possible exception is the definition of “‖” (or exactly divides): if p is a prime, we
write pe ‖ n to mean that pe | n while pe+1 - n.

2. Proofs

Proof of Theorem 2. We employ a modification of Wirsing’s method from [9]. Sup-
pose that N ≤ x is odd and perfect and ω(N) ≤ k. (If there are no such N , then
the theorem holds trivially, since the quantity (log x)k is nonnegative.) Let p0 be
the least prime divisor of N , and let e0 ≥ 1 be such that pe00 ‖ N . Put B := pe00
and write N = AB. Then A and B are relatively prime, and so (since σ is a
multiplicative function)

(2) 2AB = σ(A)σ(B).

Thus

(3) B < σ(B) =
2A

σ(A)
B ≤ 2B,

with equality on the right exactly when A = 1. Suppose A 6= 1. Then the preceding
inequalities show that σ(B) - 2B, and so there is a prime p1 dividing σ(B) to a
higher power than that to which it divides 2B; for definiteness, fix p1 as the least
such prime. It now follows from (2) that p1 | A. Let e1 ≥ 1 be such that pe11 ‖ A.
Then if we put

A′ := A/pe11 and B′ := Bpe11 ,

we have (2) with A′ in place of A and B′ in place of B. Reasoning as above, we
find that unless A′ = 1, there is a prime p2 dividing σ(B′) to a higher power than
that to which it divides 2B′. Again, for definiteness, let p2 be the least such prime.
Then pe22 ‖ A′ for some e2 ≥ 1. We put

A′′ := A′/pe22 and B′′ := B′pe22

and observe that we now have (2) with A′′ and B′′ replacing A and B. We continue
choosing primes pi and exponents ei in the above manner, stopping at the lth step
(say) when A(l) = 1. At that point

A = pe11 p
e2
2 · · · p

el
l

and

l = ω(A) = ω(N/B) = ω(N)− 1.

By the result of Sylvester alluded to above, we have ω(N) ≥ 5, and so

4 ≤ l ≤ k − 1.

We now count the number of possibilities for A and B. Observe that

σ(N) =
∏
pe‖N

(1 + p+ p2 + · · ·+ pe) ≤ N
∏
p|N

(
1 +

1

p
+

1

p2
+ · · ·

)
,

so that
1

2
=

N

σ(N)
≥
∏
p|N

(
1− 1

p

)
≥ 1−

∑
p|N

1

p
≥ 1− k

p0
,
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from which it follows that p0 ≤ 2k. Since p0 is an odd prime, the number of
possibilities for p0 is bounded by k − 1. Since 3e0 ≤ B = pe00 ≤ N ≤ x, we have
e0 ≤ log x/ log 3. So the number of possibilities for B is crudely bounded by

(k − 1) log x/ log 3.

Next, we observe that the prime p1 depends only on B, while for i > 1, the prime
pi depends only on B and the exponents e1, . . . , ei−1. It follows that for a given B,
the cofactor A is entirely determined by the sequence of exponents e1, . . . , el. Since
A ≤ N ≤ x, each ei ≤ log x/ log pi. Moreover, since 4 ≤ l ≤ k − 1 and pi > p0 ≥ 3
for i ≥ 11, the number of possibilities for the sequence e1, . . . , el is bounded by

(4) (k − 4)(log x/ log 5)k−1.

Hence the number of possibilities for N = AB is bounded by

(k − 1)(k − 4)

(log 3)(log 5)k−1
(log x)k.

By elementary calculus, the coefficient of (log x)k in this expression is a decreasing
function of k for k ≥ 8. Moreover, for k ∈ {5, 6, 7, 8}, the largest value of this
coefficient is 0.942719 . . . < 1. The theorem follows. �

Proof of Theorem 1. Put x := 24
k

. By (1) and Theorem 2, the number of odd

perfect N with ω(N) ≤ k is at most (log x)k < (4k)k = 4k
2

. �
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1The published version of this paper contained the erroneous assertion that “3 ≤ p0 < p1 <
p2 < . . . .” Thanks to Pace Nielsen for pointing this out.
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