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Abstract. Let g(n) denote the number of ordered factorizations of n into integers
larger than 1. In the 1930s, Kalmár and Hille investigated the average and maximal
orders of g(n). In this note we examine these questions for the function G(n) counting
ordered factorizations into distinct parts. Concerning the average of G(n), we show
that ∑

n≤x

G(n) = x · L(x)1+o(1),

where

L(x) = exp

(
log x · log log log x

log log x

)
.

It follows that immediately that G(n) ≤ n · L(n)1+o(1), as n → ∞. We show that
equality holds here on a sequence of n tending to infinity, so that n · L(n)1+o(1)

represents the maximal order of G(n).

1. Introduction

Let g(n) denote the number of factorizations of n into integers larger than 1, where
factorizations with the same terms appearing in a different order are considered distinct.
For example, g(20) = 8, corresponding to

20, 4 · 5, 5 · 4, 2 · 10, 10 · 2, 2 · 2 · 5, 2 · 5 · 2, and 5 · 2 · 2.
The study of statistical properties of g(n) seems to have been initiated by Kalmár in
the early 1930s. He proved [Kal32] that as x→∞,∑

n≤x

g(n) =
1

−ζ ′(ρ)

xρ

ρ
+ o(xρ).

Here ζ(s) is the Riemann zeta function, and ρ = 1.7286 . . . is the unique solu-
tion in (1,∞) to ζ(ρ) = 2. For the size of the o(xρ) error term, Kalmár ob-
tained an upper bound of O(xρ exp(−c log log x · log log log x)). This was improved
by Ikehara [Ike41] to O(xρ exp(−c′(log log x)4/3−ε)), and later by Hwang [Hwa00] to
O(xρ exp(−c′′(log log x)3/2−ε)). In these estimates, ε > 0 is arbitrary, and c, c′, and c′′

are positive constants (which may depend on ε).

In 1936, Hille [Hil36] took up the question of the maximal order of g(n). He proved
that g(n)� nρ, and that for every ε > 0, there are infinitely many n with g(n) > nρ−ε.
Hille’s results were refined by Erdős [Erd41] (who gave no proofs), Klazar–Luca [KL07]
and Deléglise–Hernane–Nicolas [DHN08]. These last three authors prove that there
are positive constants c and C such that

g(n) < nρ/ exp(c(log n)1/ρ/ log log n)

for all large n, while

g(n) > nρ/ exp(C(log n)1/ρ/ log log n)
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for infinitely many n. See also [CLM00], [CL05], and [BHT16].

In this note, we study the average and maximal order of the related function G(n),
which counts ordered factorizations of n into distinct parts larger than 1. (Thus, for
instance, G(20) = 5.) Warlimont [War93] says that the study of G(n) was suggested
to him by A. Knopfmacher in private communication.

Warlimont writes (with notation changed to match ours): “At the time [when the
problem was posed by Knopfmacher] it was not clear at all that

∑
n≤xG(n)� x1+ε.”

Warlimont (ibid.) subsequently proved that

(1)
∑
n≤x

G(n) ≤ x · L(x)O(1),

where here and below

L(x) = exp

(
log x

log log log x

log log x

)
.

This indeed shows that
∑

n≤xG(n)� x1+ε, so that G(n) is considerably smaller on
average than g(n). Concerning (1), Warlimont comments: “I am still unable to prove
a corresponding lower estimate for

∑
n≤xG(n) . . . .”

Our first theorem determines the “correct” exponent of L(x) in Warlimont’s upper
bound, while at the same time supplying a matching lower bound.

Theorem 1. As x→∞, ∑
n≤x

G(n) = x · L(x)1+o(1).

An immediate consequence of Theorem 1 is that G(n) ≤ n ·L(n)1+o(1), as n→∞. We
show that n · L(n)1+o(1) is the true maximal order of G(n).

Theorem 2. There is a sequence of n tending to infinity along which

G(n) ≥ n · L(n)1+o(1).

We conclude this introduction by mentioning that the analogous problems for unordered
factorizations are already solved. Let f(n) and F (n) count unordered factorizations,
with F (n) carrying the restriction that the factors be distinct. An asymptotic formula
for the average of f(n) was obtained by Oppenheim [Opp27] and independently by
Szekeres–Turán [ST33]. It is straightforward to modify their proofs to work for F (n);
doing so, one finds that

∑
n≤x F (n) ∼ 1

2

∑
n≤x f(n), as x → ∞. Thus, “on average”

F (n) ≈ 1
2
f(n). (Cf. the discussion near the top of p. 180 of [Hen87].) Regarding

maximal orders, it was proved in [CEP83] that both f(n) and F (n) have maximal
order n/L(n)1+o(1).

2. Proof of Theorem 1

2.1. Upper bound. Our proof of the upper bound implicit in Theorem 1 is an
elaboration on Warlimont’s proof of (1). As in [War93], the idea is to apply “Rankin’s
trick.” That is, we observe that

(2)
∑
n≤x

G(n) ≤ xs
∞∑
n=1

G(n)

ns
,
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for any choice of s > 1, and we choose s to optimize the result.

Warlimont shows on pp. 189–191 of [War93] that for all s > 1,
∞∑
n=1

G(n)

ns
=

∫ ∞
0

e−t
∏
m>1

(
1 +

t

ms

)
dt.

From this, he derives on p. 191 that (again, for s > 1)
∞∑
n=1

G(n)

ns
≤ 2 · 3M(s) · (1 + Γ(M(s) + 1)),

where

M(s) =

⌊
exp

(
1

s− 1
log

2

s− 1

)⌋
+ 1.

From these last results and Stirling’s formula, we find that as s ↓ 1,
∞∑
n=1

G(n)

ns
≤ exp

(
exp

(
(1 + o(1))

1

s− 1
log

1

s− 1

))
.

With ε > 0 arbitrary, choose s such that

s− 1 = (1 + ε)
log log log x

log log x
.

We then deduce from (2) that for all large x,∑
n≤x

G(n) ≤ x exp

(
(s− 1) log x+ exp

(
(1 + o(1))

1

s− 1
log

1

s− 1

))
≤ x exp

(
(1 + 2ε) log x

log log log x

log log x

)
= x · L(x)1+2ε.

Since ε > 0 was arbitrary, this establishes the upper bound implicit in Theorem 1.

Remark. The upper bound implicit in Theorem 1 can also be derived from a theorem of
Mardjanichvili. Let dk(n) denote the number of expressions of n as an ordered product
of k positive integers. Mardjanichvili proved [Mar39] that for all positive integers k,
and all x ≥ 1, ∑

n≤x

dk(n) ≤ x
(log x+ k − 1)k−1

(k − 1)!
.

Now let K be the largest integer with (K+1)! ≤ x, so that K = (1+o(1)) log x/ log log x
as x→∞. Observe that if n ≤ x, then every ordered factorization of n into distinct
integers larger than 1 involves at most K parts. Padding each factorization with 1s,
we obtain an injection from the set counted by G(n) into the set counted by dK(n). It
follows that

∑
n≤xG(n) ≤ x(log x+K − 1)K−1/(K − 1)!, once x ≥ 2 (so that K ≥ 1).

A straightforward calculation with Stirling’s formula shows that the upper bound here
has size x · L(x)1+o(1), as x→∞.

In some ways, this argument seems more flexible than Warlimont’s. For instance, we
can easily obtain the same upper bound if we relax the definition of G(n) to allow
factorizations with each part repeated at most L times, for any fixed L. This time we
define K as the largest positive integer with (bK/Lc+ 1)!L ≤ x. This K still satisfies
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K = (1 + o(1)) log x/ log log x as x → ∞, and the remainder of the argument goes
through without change.

2.2. Lower bound. Fix 0 < ε < 1. For large x, let

y = (1− ε) log x

log log x
, so that x1/y = (log x)1/(1−ε).

Put

k = byc − 1.

We consider (only) factorizations of the form n1n2 · · ·nk+1, where n1, n2, . . . , nk are
distinct integers in (1, x1/y], and nk+1 is an integer in (1, x

n1···nk
] distinct from n1, . . . , nk.

Clearly, n1 · · ·nk+1 is a factorization into distinct parts of a number in [1, x], and so is
counted in

∑
n≤xG(n). Given n1, . . . , nk as above,

x

n1 · · ·nk
≥ x1−

k
y ≥ x1/y > 2(k + 2).

Hence, the number of possible choices for nk+1 is⌊
x

n1 · · ·nk

⌋
− (k + 1) ≥ x

n1 · · ·nk
− (k + 2) ≥ 1

2

x

n1 · · ·nk
.

It follows that ∑
n≤x

G(n) ≥ 1

2
x

∑
n1,...,nk∈(1,x1/y ]

distinct

1

n1 · · ·nk
.

Given n1, . . . , nk−1 ∈ (1, x1/y],∑
nk∈(1,x1/y ]

nk /∈{n1,...,nk−1}

1

nk
≥
∑

n≤x1/y

1

n
−

k∑
n=1

1

n
≥ log(x1/y)− (1 + log k),

and so ∑
n1,...,nk∈(1,x1/y ]

distinct

1

n1 · · ·nk
=

∑
n1,...,nk−1∈(1,x1/y ]

distinct

1

n1 · · ·nk−1

∑
nk∈(1,x1/y ]

nk /∈{n1,...,nk−1}

1

nk

≥ (log(x1/y)− log k − 1)
∑

n1,...,nk−1∈(1,x1/y ]
distinct

1

n1 · · ·nk−1
.

Iterating, we are led to the lower bound∑
n1,...,nk∈(1,x1/y ]

distinct

1

n1 · · ·nk
≥ (log(x1/y)− log k − 1)k.

With k and y as above,

log(x1/y)− log k − 1 =

(
ε

1− ε
+ o(1)

)
log log x,

as x→∞. So for large x,

(log(x1/y)− log k − 1)k ≥ exp

(
(1− 2ε) log x

log log log x

log log x

)
,
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and ∑
n≤x

G(n) ≥ x exp

(
(1− 3ε) log x

log log log x

log log x

)
= x · L(x)1−3ε.

This completes the proof of the lower bound.

3. Proof of Theorem 2

Recall that a positive integer n is called z-smooth if every prime factor of n belongs to
the interval [2, z]. We follow convention in writing Ψ(x, z) for the count of z-smooth
integers in [1, x]. Below, a ′ on a sum always indicates that the sum is to be restricted
to integers that are (log x)-smooth.

Theorem 2 is an easy consequence of the following estimate.

Lemma 3. As x→∞, ∑′

n≤x

G(n)

n
≥ L(x)1+o(1).

Suppose Lemma 3 is proved. It is well-known (see, e.g., [Ten15, Theorem 5.2, p. 513])
that the count of (log x)-smooth integers in [1, x] is exp((2 log 2 + o(1)) log x/ log log x)
as x → ∞, and so in particular is L(x)o(1). So from Lemma 3, we may choose
n = nx ∈ [1, x] such that

G(n)

n
≥ L(x)1+o(1).

Clearly, n → ∞ as x → ∞. Since n ≤ x and L(x) is an increasing function,
L(x) ≥ L(n), and

G(n) ≥ n · L(n)1+o(1),

yielding Theorem 2.

It remains to prove Lemma 3.

Proof of Lemma 3. Fix a small ε > 0. For large x, let y = (1 − ε) log x/ log log x (as
before). We let k = byc. If n1, . . . , nk are distinct (log x)-smooth integers in (1, x1/y],
then n1n2 · · ·nk is a factorization into distinct parts of a (log x)-smooth integer in
[1, x]. Hence, ∑′

n≤x

G(n)

n
≥

∑′

n1,...,nk∈(1,x1/y ]
distinct

1

n1 · · ·nk
.

Reasoning as in the proof of Theorem 1, the right-hand side here has size at least ∑′

n≤x1/y

1

n
− (1 + log k)

k

.

As x→∞, ∑′

n∈(1,x1/y ]

1

n
=

∑
1<n≤log x

1

n
+

∑′

log x<n≤(log x)1/(1−ε)

1

n

= (1 + o(1)) log log x+

∫ (log x)1/(1−ε)

log x

dΨ(t, log x)

t
.
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We assume (as we may) that ε ≤ 1
2
, so that 1/(1 − ε) ≤ 2. As x → ∞, we have,

uniformly for t in our range of integration,

Ψ(t, log x) ≥ btc −
∑

log x<p≤t

bt/pc

≥ t

1−
∑

log x<p≤(log x)2

1

p

− 1

= t(1− log 2 + o(1)).

Integrating by parts, it follows that∫ (log x)1/(1−ε)

log x

dΨ(t, log x)

t
≥ (1− log 2 + o(1))

ε

(1− ε)
log log x.

Since log k = (1 + o(1)) log log x, the above estimates combine to show that∑′

n∈(1,x1/y ]

1

n
− (1 + log k) ≥ (1− log 2 + o(1))

ε

1− ε
log log x.

Hence,

∑′

n≤x

G(n)

n
≥

 ∑′

n≤x1/y

1

n
− (1 + log k)

k

≥ exp

(
(1− 2ε) log x

log log log x

log log x

)
.

Since ε can be arbitrarily small, the lemma follows. �
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