ON ORDERED FACTORIZATIONS INTO DISTINCT PARTS

NOAH LEBOWITZ-LOCKARD AND PAUL POLLACK

Abstract. Let $g(n)$ denote the number of ordered factorizations of n into integers larger than 1. In the 1930s, Kalmár and Hille investigated the average and maximal orders of $g(n)$. In this note we examine these questions for the function $G(n)$ counting ordered factorizations into distinct parts. Concerning the average of $G(n)$, we show that

$$
\sum_{n \leq x} G(n)=x \cdot L(x)^{1+o(1)}
$$

where

$$
L(x)=\exp \left(\log x \cdot \frac{\log \log \log x}{\log \log x}\right)
$$

It follows that immediately that $G(n) \leq n \cdot L(n)^{1+o(1)}$, as $n \rightarrow \infty$. We show that equality holds here on a sequence of n tending to infinity, so that $n \cdot L(n)^{1+o(1)}$ represents the maximal order of $G(n)$.

1. Introduction

Let $g(n)$ denote the number of factorizations of n into integers larger than 1 , where factorizations with the same terms appearing in a different order are considered distinct. For example, $g(20)=8$, corresponding to

$$
20, \quad 4 \cdot 5, \quad 5 \cdot 4, \quad 2 \cdot 10, \quad 10 \cdot 2, \quad 2 \cdot 2 \cdot 5, \quad 2 \cdot 5 \cdot 2, \quad \text { and } \quad 5 \cdot 2 \cdot 2
$$

The study of statistical properties of $g(n)$ seems to have been initiated by Kalmár in the early 1930s. He proved [Kal32] that as $x \rightarrow \infty$,

$$
\sum_{n \leq x} g(n)=\frac{1}{-\zeta^{\prime}(\rho)} \frac{x^{\rho}}{\rho}+o\left(x^{\rho}\right)
$$

Here $\zeta(s)$ is the Riemann zeta function, and $\rho=1.7286 \ldots$ is the unique solution in $(1, \infty)$ to $\zeta(\rho)=2$. For the size of the $o\left(x^{\rho}\right)$ error term, Kalmár obtained an upper bound of $O\left(x^{\rho} \exp (-c \log \log x \cdot \log \log \log x)\right)$. This was improved by Ikehara [Ike41] to $O\left(x^{\rho} \exp \left(-c^{\prime}(\log \log x)^{4 / 3-\epsilon}\right)\right)$, and later by Hwang [Hwa00] to $O\left(x^{\rho} \exp \left(-c^{\prime \prime}(\log \log x)^{3 / 2-\epsilon}\right)\right)$. In these estimates, $\epsilon>0$ is arbitrary, and c, c^{\prime}, and $c^{\prime \prime}$ are positive constants (which may depend on ϵ).
In 1936, Hille [Hil36] took up the question of the maximal order of $g(n)$. He proved that $g(n) \ll n^{\rho}$, and that for every $\epsilon>0$, there are infinitely many n with $g(n)>n^{\rho-\epsilon}$. Hille's results were refined by Erdős [Erd41] (who gave no proofs), Klazar-Luca [KL07] and Deléglise-Hernane-Nicolas [DHN08]. These last three authors prove that there are positive constants c and C such that

$$
g(n)<n^{\rho} / \exp \left(c(\log n)^{1 / \rho} / \log \log n\right)
$$

for all large n, while

$$
g(n)>n^{\rho} / \exp \left(C(\log n)^{1 / \rho} / \log \log n\right)
$$

[^0]for infinitely many n. See also [CLM00], [CL05], and [BHT16].
In this note, we study the average and maximal order of the related function $G(n)$, which counts ordered factorizations of n into distinct parts larger than 1. (Thus, for instance, $G(20)=5$.) Warlimont [War93] says that the study of $G(n)$ was suggested to him by A. Knopfmacher in private communication.

Warlimont writes (with notation changed to match ours): "At the time [when the problem was posed by Knopfmacher] it was not clear at all that $\sum_{n \leq x} G(n) \ll x^{1+\epsilon}$." Warlimont (ibid.) subsequently proved that

$$
\begin{equation*}
\sum_{n \leq x} G(n) \leq x \cdot L(x)^{O(1)} \tag{1}
\end{equation*}
$$

where here and below

$$
L(x)=\exp \left(\log x \frac{\log \log \log x}{\log \log x}\right)
$$

This indeed shows that $\sum_{n \leq x} G(n) \ll x^{1+\epsilon}$, so that $G(n)$ is considerably smaller on average than $g(n)$. Concerning (1), Warlimont comments: "I am still unable to prove a corresponding lower estimate for $\sum_{n \leq x} G(n) \ldots$. ."
Our first theorem determines the "correct" exponent of $L(x)$ in Warlimont's upper bound, while at the same time supplying a matching lower bound.

Theorem 1. As $x \rightarrow \infty$,

$$
\sum_{n \leq x} G(n)=x \cdot L(x)^{1+o(1)}
$$

An immediate consequence of Theorem 1 is that $G(n) \leq n \cdot L(n)^{1+o(1)}$, as $n \rightarrow \infty$. We show that $n \cdot L(n)^{1+o(1)}$ is the true maximal order of $G(n)$.

Theorem 2. There is a sequence of n tending to infinity along which

$$
G(n) \geq n \cdot L(n)^{1+o(1)}
$$

We conclude this introduction by mentioning that the analogous problems for unordered factorizations are already solved. Let $f(n)$ and $F(n)$ count unordered factorizations, with $F(n)$ carrying the restriction that the factors be distinct. An asymptotic formula for the average of $f(n)$ was obtained by Oppenheim [Opp27] and independently by Szekeres-Turán [ST33]. It is straightforward to modify their proofs to work for $F(n)$; doing so, one finds that $\sum_{n \leq x} F(n) \sim \frac{1}{2} \sum_{n \leq x} f(n)$, as $x \rightarrow \infty$. Thus, "on average" $F(n) \approx \frac{1}{2} f(n)$. (Cf. the discussion near the top of p. 180 of [Hen87].) Regarding maximal orders, it was proved in [CEP83] that both $f(n)$ and $F(n)$ have maximal order $n / L(n)^{1+o(1)}$.

2. Proof of Theorem 1

2.1. Upper bound. Our proof of the upper bound implicit in Theorem 1 is an elaboration on Warlimont's proof of (1). As in [War93], the idea is to apply "Rankin's trick." That is, we observe that

$$
\begin{equation*}
\sum_{n \leq x} G(n) \leq x^{s} \sum_{n=1}^{\infty} \frac{G(n)}{n^{s}} \tag{2}
\end{equation*}
$$

for any choice of $s>1$, and we choose s to optimize the result.
Warlimont shows on pp. 189-191 of [War93] that for all $s>1$,

$$
\sum_{n=1}^{\infty} \frac{G(n)}{n^{s}}=\int_{0}^{\infty} e^{-t} \prod_{m>1}\left(1+\frac{t}{m^{s}}\right) d t
$$

From this, he derives on p. 191 that (again, for $s>1$)

$$
\sum_{n=1}^{\infty} \frac{G(n)}{n^{s}} \leq 2 \cdot 3^{M(s)} \cdot(1+\Gamma(M(s)+1))
$$

where

$$
M(s)=\left\lfloor\exp \left(\frac{1}{s-1} \log \frac{2}{s-1}\right)\right\rfloor+1 .
$$

From these last results and Stirling's formula, we find that as $s \downarrow 1$,

$$
\sum_{n=1}^{\infty} \frac{G(n)}{n^{s}} \leq \exp \left(\exp \left((1+o(1)) \frac{1}{s-1} \log \frac{1}{s-1}\right)\right)
$$

With $\epsilon>0$ arbitrary, choose s such that

$$
s-1=(1+\epsilon) \frac{\log \log \log x}{\log \log x} .
$$

We then deduce from (2) that for all large x,

$$
\begin{aligned}
\sum_{n \leq x} G(n) & \leq x \exp \left((s-1) \log x+\exp \left((1+o(1)) \frac{1}{s-1} \log \frac{1}{s-1}\right)\right) \\
& \leq x \exp \left((1+2 \epsilon) \log x \frac{\log \log \log x}{\log \log x}\right) \\
& =x \cdot L(x)^{1+2 \epsilon}
\end{aligned}
$$

Since $\epsilon>0$ was arbitrary, this establishes the upper bound implicit in Theorem 1.
Remark. The upper bound implicit in Theorem 1 can also be derived from a theorem of Mardjanichvili. Let $d_{k}(n)$ denote the number of expressions of n as an ordered product of k positive integers. Mardjanichvili proved [Mar39] that for all positive integers k, and all $x \geq 1$,

$$
\sum_{n \leq x} d_{k}(n) \leq x \frac{(\log x+k-1)^{k-1}}{(k-1)!}
$$

Now let K be the largest integer with $(K+1)!\leq x$, so that $K=(1+o(1)) \log x / \log \log x$ as $x \rightarrow \infty$. Observe that if $n \leq x$, then every ordered factorization of n into distinct integers larger than 1 involves at most K parts. Padding each factorization with 1s, we obtain an injection from the set counted by $G(n)$ into the set counted by $d_{K}(n)$. It follows that $\sum_{n \leq x} G(n) \leq x(\log x+K-1)^{K-1} /(K-1)$!, once $x \geq 2$ (so that $K \geq 1$). A straightforward calculation with Stirling's formula shows that the upper bound here has size $x \cdot L(x)^{1+o(1)}$, as $x \rightarrow \infty$.

In some ways, this argument seems more flexible than Warlimont's. For instance, we can easily obtain the same upper bound if we relax the definition of $G(n)$ to allow factorizations with each part repeated at most L times, for any fixed L. This time we define K as the largest positive integer with $(\lfloor K / L\rfloor+1)!^{L} \leq x$. This K still satisfies
$K=(1+o(1)) \log x / \log \log x$ as $x \rightarrow \infty$, and the remainder of the argument goes through without change.
2.2. Lower bound. Fix $0<\epsilon<1$. For large x, let

$$
y=(1-\epsilon) \frac{\log x}{\log \log x}, \quad \text { so that } \quad x^{1 / y}=(\log x)^{1 /(1-\epsilon)} .
$$

Put

$$
k=\lfloor y\rfloor-1 .
$$

We consider (only) factorizations of the form $n_{1} n_{2} \cdots n_{k+1}$, where $n_{1}, n_{2}, \ldots, n_{k}$ are distinct integers in $\left(1, x^{1 / y}\right]$, and n_{k+1} is an integer in $\left(1, \frac{x}{n_{1} \cdots n_{k}}\right]$ distinct from n_{1}, \ldots, n_{k}. Clearly, $n_{1} \cdots n_{k+1}$ is a factorization into distinct parts of a number in $[1, x]$, and so is counted in $\sum_{n \leq x} G(n)$. Given n_{1}, \ldots, n_{k} as above,

$$
\frac{x}{n_{1} \cdots n_{k}} \geq x^{1-\frac{k}{y}} \geq x^{1 / y}>2(k+2)
$$

Hence, the number of possible choices for n_{k+1} is

$$
\left\lfloor\frac{x}{n_{1} \cdots n_{k}}\right\rfloor-(k+1) \geq \frac{x}{n_{1} \cdots n_{k}}-(k+2) \geq \frac{1}{2} \frac{x}{n_{1} \cdots n_{k}} .
$$

It follows that

$$
\sum_{n \leq x} G(n) \geq \frac{1}{2} x \sum_{\substack{n_{1}, \ldots, n_{k} \in\left(1, x^{1 / y}\right] \\ \text { distinct }}} \frac{1}{n_{1} \cdots n_{k}}
$$

Given $n_{1}, \ldots, n_{k-1} \in\left(1, x^{1 / y}\right]$,

$$
\sum_{\substack{n_{k} \in\left(1, x^{1 / y}\right] \\ n_{k} \notin\left\{n_{1}, \ldots, n_{k-1}\right\}}} \frac{1}{n_{k}} \geq \sum_{n \leq x^{1 / y}} \frac{1}{n}-\sum_{n=1}^{k} \frac{1}{n} \geq \log \left(x^{1 / y}\right)-(1+\log k)
$$

and so

$$
\begin{aligned}
\sum_{\substack{n_{1}, \ldots, n_{k} \in\left(1, x^{1 / y}\right] \\
\text { distinct }}} \frac{1}{n_{1} \cdots n_{k}} & =\sum_{\substack{n_{1}, \ldots, n_{k-1} \in\left(1, x^{1 / y}\right] \\
\text { distinct }}} \frac{1}{n_{1} \cdots n_{k-1}} \sum_{\substack{n_{k} \in\left(1, x^{1 / y}\right] \\
n_{k} \notin\left\{n_{1}, \ldots, n_{k-1}\right\}}} \frac{1}{n_{k}} \\
& \geq\left(\log \left(x^{1 / y}\right)-\log k-1\right) \sum_{\substack{n_{1}, \ldots, n_{k-1} \in\left(1, x^{1 / y}\right] \\
\text { distinct }}} \frac{1}{n_{1} \cdots n_{k-1}} .
\end{aligned}
$$

Iterating, we are led to the lower bound

$$
\sum_{\substack{n_{1}, \ldots, n_{k} \in\left(1, x^{1 / y}\right] \\ \text { distinct }}} \frac{1}{n_{1} \cdots n_{k}} \geq\left(\log \left(x^{1 / y}\right)-\log k-1\right)^{k}
$$

With k and y as above,

$$
\log \left(x^{1 / y}\right)-\log k-1=\left(\frac{\epsilon}{1-\epsilon}+o(1)\right) \log \log x
$$

as $x \rightarrow \infty$. So for large x,

$$
\left(\log \left(x^{1 / y}\right)-\log k-1\right)^{k} \geq \exp \left((1-2 \epsilon) \log x \frac{\log \log \log x}{\log \log x}\right)
$$

and

$$
\sum_{n \leq x} G(n) \geq x \exp \left((1-3 \epsilon) \log x \frac{\log \log \log x}{\log \log x}\right)=x \cdot L(x)^{1-3 \epsilon}
$$

This completes the proof of the lower bound.

3. Proof of Theorem 2

Recall that a positive integer n is called z-smooth if every prime factor of n belongs to the interval $[2, z]$. We follow convention in writing $\Psi(x, z)$ for the count of z-smooth integers in $[1, x]$. Below, a^{\prime} on a sum always indicates that the sum is to be restricted to integers that are $(\log x)$-smooth.
Theorem 2 is an easy consequence of the following estimate.
Lemma 3. As $x \rightarrow \infty$,

$$
\sum_{n \leq x}^{\prime} \frac{G(n)}{n} \geq L(x)^{1+o(1)} .
$$

Suppose Lemma 3 is proved. It is well-known (see, e.g., [Ten15, Theorem 5.2, p. 513]) that the count of $(\log x)$-smooth integers in $[1, x]$ is $\exp ((2 \log 2+o(1)) \log x / \log \log x)$ as $x \rightarrow \infty$, and so in particular is $L(x)^{o(1)}$. So from Lemma 3, we may choose $n=n_{x} \in[1, x]$ such that

$$
\frac{G(n)}{n} \geq L(x)^{1+o(1)}
$$

Clearly, $n \rightarrow \infty$ as $x \rightarrow \infty$. Since $n \leq x$ and $L(x)$ is an increasing function, $L(x) \geq L(n)$, and

$$
G(n) \geq n \cdot L(n)^{1+o(1)}
$$

yielding Theorem 2.
It remains to prove Lemma 3.
Proof of Lemma 3. Fix a small $\epsilon>0$. For large x, let $y=(1-\epsilon) \log x / \log \log x$ (as before). We let $k=\lfloor y\rfloor$. If n_{1}, \ldots, n_{k} are distinct $(\log x)$-smooth integers in $\left(1, x^{1 / y}\right]$, then $n_{1} n_{2} \cdots n_{k}$ is a factorization into distinct parts of a $(\log x)$-smooth integer in $[1, x]$. Hence,

$$
\sum_{n \leq x}^{\prime} \frac{G(n)}{n} \geq \sum_{\substack{n_{1}, \ldots, n_{k} \in\left(1, x^{1 / y}\right] \\ \text { distinct }}}^{\prime} \frac{1}{n_{1} \cdots n_{k}}
$$

Reasoning as in the proof of Theorem 1, the right-hand side here has size at least

$$
\left(\sum_{n \leq x^{1 / y}}^{\prime} \frac{1}{n}-(1+\log k)\right)^{k}
$$

As $x \rightarrow \infty$,

$$
\begin{aligned}
\sum_{n \in\left(1, x^{1 / y}\right]}^{\prime} \frac{1}{n} & =\sum_{1<n \leq \log x} \frac{1}{n}+\sum_{\log x<n \leq(\log x)^{1 /(1-\epsilon)}}^{\prime} \frac{1}{n} \\
& =(1+o(1)) \log \log x+\int_{\log x}^{(\log x)^{1 /(1-\epsilon)}} \frac{d \Psi(t, \log x)}{t} .
\end{aligned}
$$

We assume (as we may) that $\epsilon \leq \frac{1}{2}$, so that $1 /(1-\epsilon) \leq 2$. As $x \rightarrow \infty$, we have, uniformly for t in our range of integration,

$$
\begin{aligned}
\Psi(t, \log x) & \geq\lfloor t\rfloor-\sum_{\log x<p \leq t}\lfloor t / p\rfloor \\
& \geq t\left(1-\sum_{\log x<p \leq(\log x)^{2}} \frac{1}{p}\right)-1 \\
& =t(1-\log 2+o(1)) .
\end{aligned}
$$

Integrating by parts, it follows that

$$
\int_{\log x}^{(\log x)^{1 /(1-\epsilon)}} \frac{d \Psi(t, \log x)}{t} \geq(1-\log 2+o(1)) \frac{\epsilon}{(1-\epsilon)} \log \log x .
$$

Since $\log k=(1+o(1)) \log \log x$, the above estimates combine to show that

$$
\sum_{n \in\left(1, x^{1 / y}\right]}^{\prime} \frac{1}{n}-(1+\log k) \geq(1-\log 2+o(1)) \frac{\epsilon}{1-\epsilon} \log \log x
$$

Hence,

$$
\begin{aligned}
\sum_{n \leq x}^{\prime} \frac{G(n)}{n} & \geq\left(\sum_{n \leq x^{1 / y}}^{\prime} \frac{1}{n}-(1+\log k)\right)^{k} \\
& \geq \exp \left((1-2 \epsilon) \log x \frac{\log \log \log x}{\log \log x}\right) .
\end{aligned}
$$

Since ϵ can be arbitrarily small, the lemma follows.

Acknowledgements

During the writing of this paper, the second author was supported by NSF award DMS-1402268.

References

[BHT16] A. Bayad, M. O. Hernane, and A. Togbé, On extended Eulerian numbers, Funct. Approx. Comment. Math. 55 (2016), 113-130.
[CEP83] E. R. Canfield, P. Erdős, and C. Pomerance, On a problem of Oppenheim concerning "factorisatio numerorum", J. Number Theory 17 (1983), 1-28.
[CL05] D. Coppersmith and M. Lewenstein, Constructive bounds on ordered factorizations, SIAM J. Discrete Math. 19 (2005), 301-303.
[CLM00] B. Chor, P. Lemke, and Z. Mador, On the number of ordered factorizations of natural numbers, Discrete Math. 214 (2000), 123-133.
[DHN08] M. Deléglise, M. O. Hernane, and J.-L. Nicolas, Grandes valeurs et nombres champions de la fonction arithmétique de Kalmár, J. Number Theory 128 (2008), 1676-1716.
[Erd41] P. Erdős, On some asymptotic formulas in the theory of the "Factorisatio Numerorum", Ann. of Math. (2) 42 (1941), 989-993.
[Hen87] D. Hensley, The distribution of the number of factors in a factorization, J. Number Theory 26 (1987), 179-191.
[Hil36] E. Hille, A problem in "Factorisatio Numerorum", Acta Arith. 2 (1936), 134-144.
[Hwa00] H.-K. Hwang, Distribution of the number of factors in random ordered factorizations of integers, J. Number Theory 81 (2000), 61-92.
[Ike41] S. Ikehara, On Kalmár's problem in "Factorisatio Numerorum." II, Proc. Phys.-Math. Soc. Japan (3) 23 (1941), 767-774.
[Kal32] L. Kalmár, Über die mittlere Anzahl der Produktdarstellungen der Zahlen, erste Mitteilung, Acta Litt. Sci. Szeged. 5 (1930-1932), 95-107.
[KL07] M. Klazar and F. Luca, On the maximal order of numbers in the "factorisatio numerorum" problem, J. Number Theory 124 (2007), 470-490.
[Mar39] C. Mardjanichvili, Estimation d'une somme arithmétique, C.R. (Dokl.) de l'Académie des Sciences de l'URSS 22 (1939), 387-389.
[Opp27] A. Oppenheim, On an arithmetic function (II), J. London Math. Soc. 2 (1927), 123-130.
[ST33] G. Szekeres and P. Turán, Über das zweite Hauptproblem der "Factorisatio numerorum", Acta Litt. Sci. Szeged 6 (1933), 143-154.
[Ten15] G. Tenenbaum, Introduction to analytic and probabilistic number theory, third ed., Graduate Studies in Mathematics, vol. 163, American Mathematical Society, Providence, RI, 2015.
[War93] R. Warlimont, Factorisatio numerorum with constraints, J. Number Theory 45 (1993), 186-199.

Department of Mathematics, University of Georgia, Athens, GA 30602
Email address: nlebowi@gmail.com
Email address: pollack@uga.edu

[^0]: 2010 Mathematics Subject Classification. 11N37 (primary), 11N64 (secondary).

