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Three kinds of natural numbers

Let s(n) =
∑

d |n,d<n d be the sum of the proper divisors of n.

Abundant: s(n) > n.
Deficient: s(n) < n.
Perfect: s(n) = n.

For example, 5 is deficient (s(5) = 1, and similarly for any prime), 12
is abundant (s(12) = 1 + 2 + 3 + 4 + 6 = 16), and 6 is perfect
(s(6) = 1 + 2 + 3 = 6).
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You can see a lot just by looking

Abundants: 12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72,
78, 80, 84, 88, 90, 96, 100, 102, . . . .

Deficients: 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21,
22, 23, 25, 26, 27, . . . .

Perfects: 6, 28, 496, 8128, 33550336, 8589869056, 137438691328,
2305843008139952128, 2658455991569831744654692615953842176,
. . . .
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Nicomachus: No rule needed to generate abundants or deficients.
Just as . . . ugly and vile things abound, so superabundant and
deficient numbers are plentiful and can be found without a rule. . .

Theorem

• The limiting proportion of abundant numbers exists, is ≈ 24.76%.

• The limiting proportion of deficient numbers exists, is ≈75.24%.

• The limiting proportion of perfect numbers exists, is exactly 0%.

“Limiting proportion” = asymptotic density: Count up to x , divide by
x , send x →∞.
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The existence of these densities, as well as the fact that the perfect
numbers have density 0, is a consequence of a general theorem proved
by Davenport in early 1930s. (See book!)

Calculating the densities of the abundant (or deficient) numbers is
another story, for another time.

In this talk, we focus our attention on perfect numbers, which are
arguably the most interesting of the three kinds.
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Main theorems

Theorem (Euclid – Euler)

If 2n − 1 is prime, then

N := 2n−1(2n − 1)

is perfect. Conversely, if N is an even perfect
number, then N has this form.

But what about odd perfect numbers?
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Is there a simple formula for odd perfect numbers, like for even
perfect numbers? Probably not.

Theorem (Dickson, 1913)

For each positive integer k, there are only
finitely many odd perfect numbers with ≤ k
distinct prime factors.
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Dickson’s theorem does not rule out the existence of odd perfect
numbers. It is even compatible with their being infinitely many of
them. But we can at least prove that it cannot be “too big” of an
infinity.

Theorem (Hornfeck)

There are ≤
√
x odd perfect numbers ≤ x , for all x ≥ 1.

The rest of this talk is devoted to giving more or less complete proofs
for these three theorems.
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Euclid–Euler

Observe: N perfect ⇐⇒ σ(N) = 2N.

Euclid’s half of the theorem is “easy”, given modern notations and
notions. If 2n − 1 is prime, and

N := (2n − 1)2n−1,

then

σ(N) = σ(2n − 1)σ(2n−1)

= 2n · (1 + 2 + 22 + · · ·+ 2n−1)

= 2n · (2n − 1) = 2N.

So N is perfect.
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Define h(N) = σ(N)
N . So N is perfect ⇐⇒ h(N) = 2.

Lemma
The function h(N) is multiplicative. It is also “multiplicatively strictly
increasing”: If a | b, then h(a) ≤ h(b), with equality only if a = b.

Proof.
Multiplicativity: Inherited from σ(N) and N.

Multiplicatively strictly increasing: Follows from the identity

h(N) =
∑
d |N

1

d
.
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Lemma
Let m be an integer > 1. If h(N) = m+1

m , then m is prime, and
N = m.

Proof.
Write σ(N)

N = m+1
m . RHS is in lowest terms. Thus, m | N.

By the last proposition,

σ(N)

N
≥ σ(m)

m
≥ m + 1

m
.

Equality holds throughout. We need σ(m) = m + 1, so m is prime.
And we need h(N) = h(m), so N = m.
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Proof that if N is even perfect, N has Euler’s form.

Write N = 2kQ, where Q is odd. Starting from σ(N) = 2N, get

2k+1Q = σ(2k)σ(Q)

= (2k+1 − 1)σ(Q).

Rearrange: h(Q) = σ(Q)
Q = 2k+1

2k+1−1 = m+1
m where

m = 2k+1 − 1.

By lemma: m = 2k+1 − 1 is prime, and Q = m = 2k+1 − 1.

So N = 2k(2k+1 − 1).
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Dickson’s finiteness theorem

Theorem (Dickson, 1913)

For each positive integer k, there are only
finitely many odd perfect numbers with ≤ k
distinct prime factors.

We will give a supernatural proof of this theorem, due (essentially)
to HN Shapiro.
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Supernatural numbers

Definition
A supernatural number is a formal product

2e23e35e5 · · · =
∏

p prime

pep ,

where each ep ∈ {0, 1, 2, 3, . . . } ∪ {∞}.

Examples

1. Every natural number is a supernatural number.

2. 2 · 3∞ · 17 is also a supernatural number, as is
∏

p p
∞.

There is a natural notion of what it means for one supernatural
number to divide another.
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Definition (p-adic valuation)

If N is a supernatural number, and p is a prime, we let vp(N) be the
exponent of p in the factorization of N. Thus,
vp(N) ∈ {0, 1, 2, . . . } ∪ {∞}.

Definition (supernatural convergence)

If N1,N2,N3, . . . is a sequence of supernatural numbers, and N is a
supernatural number, we say Ni → N if:

For every prime p, we have vp(Ni )→ vp(N).

Examples

• 2, 3, 5, 7, 11, 13, . . . converges to 1.

• 2, 22 · 32, 23 · 33 · 53, . . . converges to
∏

p p
∞.
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Lemma
Every sequence of supernatural numbers has a subsequence that
converges to a supernatural number.

Proof.
Exercise! (Related to Tychonoff’s theorem.)
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For each positive integer k , let Sk be the set of supernatural numbers
where at most k exponents are nonzero.

Lemma
If N1,N2,N3, . . . is a sequence of elements of Sk converging
supernaturally to a limit N. Then N ∈ Sk .

Proof.
If not, there are at least k + 1 different primes p for which vp(N) 6= 0.

Let p be one of these primes. By definition, vp(Ni )→ vp(N).

If vp(N) <∞, then vp(Ni ) = vp(N) for all large i . If vp(N) =∞,
then vp(Ni ) is eventually arbitrarily large. In either case, vp(Ni ) is
nonzero for all large i .

But then Ni has at least k + 1 nonzero exponents eventually. This
contradicts that each Ni ∈ Sk .
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Lemma
If N1,N2,N3, . . . is a sequence of supernatural numbers converging
supernaturally to a limit N. If N is a natural number, then N divides
Ni eventually (= for all large i).

Proof.
Let p be a prime dividing N. Say vp(N) = ep. By definition,
vp(Ni ) = ep for all large i . Choose i large enough that this holds
simultaneously for all the (finitely) many primes p dividing N.

Then for all large i , we have vp(N) ≤ vp(Ni ) for all primes p. So
N | Ni .
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Recall that h(N) = σ(N)
N . We can extend h(N) to Sk . How?

If N ∈ Sk , define
h(N) =

∏
p

h(pep).

This is “morally” a finite product.

Here we understand

h(p∞) = lim
e→∞

h(pe) = lim
e→∞

(pe+1 − 1)/(p − 1)

pe
=

p

p − 1
.

If N is a natural number with ≤ k prime factors, then h(N) makes
sense with N thought of as either a natural number, or an element of
Sk , and we get the same answer.
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Lemma (Continuity lemma)

If N1,N2,N3, . . . is a sequence of elements of Sk converging
supernaturally to N, then h(Ni )→ h(N).

Proof.
Write N = pe11 · · · p

e`
` , where e1, . . . , e` are the nonzero exponents in

the factorization of N. We can write

Ni = p
e1,i
1 p

e2,i
2 · · · p

e`,i
` Mi ,

where Mi is the part of the factorization consisting of primes other
than p1, . . . , p`. Then

h(Ni ) = h(p
e1,i
1 )h(p

e2,i
2 ) · · · h(p

e`,i
` )h(Mi ).

And as i →∞,

h(p
e1,i
1 )h(p

e2,i
2 ) · · · h(p

e`,i
` )→ h(N).
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Write N = pe11 · · · p
e`
` , where e1, . . . , e` are the nonzero exponents in

the factorization of N. We can write

Ni = p
e1,i
1 p

e2,i
2 · · · p

e`,i
` Mi .

Observe: For every p, the exponent vp(Mi ) is eventually zero.

Claim: h(Mi )→ 1.

When Mi = 1, also h(Mi ) = 1. For other i , let qi = least prime with
a nonzero exponent in Mi . Then h(Mi ) is a product of at most k
numbers, each of the form h(qe) with q ≥ qi . It follows that

1 ≤ h(Mi ) ≤
(

qi
qi − 1

)k

.

But qi →∞ along the sequence of Mi for which qi exists, so upper
bound → 1. Completes the proof of continuity lemma.
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Proof of Dickson’s theorem.
Suppose for a contradiction that there are infinitely many odd perfect
numbers with ≤ k distinct prime factors.

Then we can choose a supernaturally convergent sequence of distinct
such numbers, say N1,N2,N3, . . . . Say Ni → N, where

N = pe11 · · · p
er
r ,

where r ≤ k.

Each h(Ni ) = 2, so h(N) = lim h(Ni ) = 2.

Observation: At least one of the exponents ej =∞. Otherwise, N is
a natural number, and N divides Ni for all large i . At most one Ni

can equal N. So from some point on, N is a proper divisor of Ni ,
meaning that

2 = h(Ni ) > h(N) = 2.
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Write
N = pe11 · · · p

er
r ,

where r ≤ k and h(N) = 2.

Can order the primes so that e1, . . . , e` <∞, and e`+1, . . . , er =∞.
Then

2 =
pe1+1
1 − 1

pe11 (p1 − 1)
· · ·

pe`+1
` − 1

pe`` (p` − 1)
· p`+1

p`+1 − 1
· · · pr

pr − 1
.

Clear some denominators:

2pe11 · · · p
e`
` (p`+1 − 1) · · · (pr − 1)

=
pe1+1
1 − 1

p1 − 1
· · ·

pe`+1
` − 1

p` − 1
· p`+1 · · · pr .

Can assume p`+1 < · · · < pr . Then pr divides RHS but not LHS !
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Hornfeck’s theorem

Theorem (Hornfeck)

There are ≤
√
x odd perfect numbers ≤ x .

24 of 30



Lemma
(Descartes)

If N is odd and
perfect, then
N = pkm2, where
the prime p does
not divide m, and
k is odd.
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Lemma (Descartes)

If N is odd and perfect, then N = pkm2, where the prime p does not
divide m, and k is odd.

Proof.
If q is an odd prime, then

σ(qe) = 1 + q + ...+ qe

≡ e + 1 (mod 2).

So σ(qe) is odd if and only if e is even.

Now write N =
∏

qe‖N qe . Then 2N =
∏

qe‖N σ(qe). Since 2N is
twice an odd number, each σ(qe) is odd, with one exception.
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Proof of Hornfeck’s theorem.
Let N be odd perfect, N ≤ x , and write N = pkm2 a la Descartes.
We will show each m corresponds to at most one N. Since m ≤

√
x ,

result will follow.

Since 2N = σ(N), we get 2pkm2 = σ(pk)σ(m2), and so

2σ(m2)/m2 = σ(pk)/pk

= (1 + p + · · ·+ pk)/pk .

RHS is in lowest terms, LHS depends only on m.

Hence, pk is determined by m: It is the denomintor when LHS is put
in lowest terms!
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Where do we stand today?

We still do not know if there are infinitely many even perfect
numbers, because we do not know if there are infinitely many primes
of the form 2n − 1.

It is easy to see we only need to consider 2p − 1, with p itself prime.

But we can prove almost nothing about numbers of the form 2p − 1.
We cannot even show 2p − 1 is composite infinitely often!
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Where do we stand today?

After Heath-Brown, Cook, and Nielsen, we have the following explicit
forms of Dickson’s theorem.

Theorem
If N is odd and perfect with ≤ k distinct prime factors, then N < 24

k
.

As a complement to this:

Theorem (P.)

The number of odd perfect N with ≤ k distinct prime factors is < 4k
2
.
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Theorem (Hornfeck–Wirsing)

For each ε > 0, the number of odd perfect N ≤ x is < xε, for all
x > x0(ε).

Theorem (Wirsing)

For some absolute constant C and all large x , the number of odd
perfect N ≤ x is at most xC/ log log x .

Wirsing’s theorem (1959) is still the “state-of-the-art”: After 60+
years, we still do not know how to show that C can be taken
arbitrarily small in that result.
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