A (not so) mean feat of Erdős

Paul Pollack

University of British Columbia/Simon
Fraser University

May 31, 2012

Definition

For each odd prime q, let $n_{2}(q)$ denote the least quadratic nonresidue modulo q. For example, $n_{2}(5)=2$ and $n_{2}(7)=3$. For completeness, put $n_{2}(2)=0$.

Definition

For each odd prime q, let $n_{2}(q)$ denote the least quadratic nonresidue modulo q. For example, $n_{2}(5)=2$ and $n_{2}(7)=3$. For completeness, put $n_{2}(2)=0$.

Theorem (Erdős, 1961)

We can determine the average value of the least quadratic nonresidue modulo primes q :

$$
\lim _{x \rightarrow \infty}\left(\frac{1}{\pi(x)} \sum_{q \leq x} n_{2}(q)\right)=A
$$

where

$$
A:=\sum_{k=1}^{\infty} \frac{p_{k}}{2^{k}},
$$

and p_{k} denotes the k th prime.

Remark

Numerically,

$$
A=3.6746439660113287789956763090840294116777975 \ldots
$$

Remark

Numerically,

$$
A=3.6746439660113287789956763090840294116777975 \ldots
$$

Time muffles the original éclat of a theorem. In 1967, in a Nottingham seminar, I did not get past the value of Erdös's limit . . . before Eduard Wirsing stopped me. "I don't believe it!", says he, looking at the expression for the constant, "I have never seen anything like it!"

- Peter Elliott

Known knowns and known unknowns

Erdős's theorem is about the average order of $n_{2}(q)$. The study of the maximal order of $n_{2}(q)$ is older.

Known knowns and known unknowns

Erdős's theorem is about the average order of $n_{2}(q)$. The study of the maximal order of $n_{2}(q)$ is older.

Theorem (Gauss)
If $q \equiv 1(\bmod 8)$, then there is a prime $p<2 \sqrt{q}+1$ with $\left(\frac{q}{p}\right)=-1$.
Corollary (post-QR)
If $q \equiv 1(\bmod 8)$, then $n_{2}(q)<2 \sqrt{q}+1$.

Known knowns and known unknowns

Erdős's theorem is about the average order of $n_{2}(q)$. The study of the maximal order of $n_{2}(q)$ is older.

Theorem (Gauss)
If $q \equiv 1(\bmod 8)$, then there is a prime $p<2 \sqrt{q}+1$ with $\left(\frac{q}{p}\right)=-1$.
Corollary (post-QR)
If $q \equiv 1(\bmod 8)$, then $n_{2}(q)<2 \sqrt{q}+1$.

Conjecture (I.M. Vinogradov)
For each fixed $\epsilon>0$ and all $q>q_{0}(\epsilon)$, we have

$$
n_{2}(q)<q^{\epsilon} .
$$

Theorem (Ankeny)
Assume the Riemann Hypothesis for Dirichlet L-functions. Then Vinogradov's conjecture is correct. In fact,

$$
n_{2}(q)<C(\log q)^{2}
$$

for all odd primes q.
Theorem (Bach)
We can take $C=2$ in Ankeny's result.

Theorem (Ankeny)
Assume the Riemann Hypothesis for Dirichlet L-functions. Then Vinogradov's conjecture is correct. In fact,

$$
n_{2}(q)<C(\log q)^{2}
$$

for all odd primes q.
Theorem (Bach)
We can take $C=2$ in Ankeny's result.
What about unconditionally?
In 1918, Pólya and Vinogradov showed (independently) that

$$
\left|\sum_{n \leq x}\left(\frac{n}{q}\right)\right|<\sqrt{q} \log q
$$

As an immediate consequence, $n_{2}(q)<1+\sqrt{q} \log q$.

Theorem (Vinogradov)

For each $\epsilon>0$ and all primes $q>q_{0}(\epsilon)$, we have

$$
n_{2}(q)<q^{\frac{1}{2 \sqrt{e}}+\epsilon} .
$$

Theorem (Burgess)
For each $\epsilon>0$ and all primes $q>q_{0}(\epsilon)$, we have

$$
n_{2}(q)<q^{\frac{1}{4 \sqrt{\mathrm{e}}}+\epsilon} .
$$

Theorem (Linnik)
Fix $\epsilon>0$. The number of primes $q \leq x$ with $n_{2}(q)>q^{\epsilon}$ is $<_{\epsilon} \log \log x$.

Interlude: A proof that $n_{2}(q)<q^{1 / 2}$

Given a fraction $\frac{a}{b}$ with $q \nmid b$, we identify $\frac{a}{b}$ with $a b^{-1}(\bmod q)$. Notice that

$$
\left.\frac{a}{b} \equiv \frac{c}{d} \quad(\bmod q) \Longleftrightarrow q \right\rvert\, a d-b c .
$$

Interlude: A proof that $n_{2}(q)<q^{1 / 2}$

Given a fraction $\frac{a}{b}$ with $q \nmid b$, we identify $\frac{a}{b}$ with $a b^{-1}(\bmod q)$. Notice that

$$
\left.\frac{a}{b} \equiv \frac{c}{d} \quad(\bmod q) \Longleftrightarrow q \right\rvert\, a d-b c .
$$

Now consider the following set of fractions:

$$
\mathfrak{F}=\left\{\frac{a}{b}: 1 \leq a, b \leq \sqrt{q} \text { and } \operatorname{gcd}(a, b)=1\right\}
$$

Interlude: A proof that $n_{2}(q)<q^{1 / 2}$

Given a fraction $\frac{a}{b}$ with $q \nmid b$, we identify $\frac{a}{b}$ with $a b^{-1}(\bmod q)$. Notice that

$$
\left.\frac{a}{b} \equiv \frac{c}{d} \quad(\bmod q) \Longleftrightarrow q \right\rvert\, a d-b c .
$$

Now consider the following set of fractions:

$$
\mathfrak{F}=\left\{\frac{a}{b}: 1 \leq a, b \leq \sqrt{q} \text { and } \operatorname{gcd}(a, b)=1\right\}
$$

The probability two integers are relatively prime is $1 / \zeta(2)=6 / \pi^{2}$, and so

$$
\# \mathfrak{F} \sim \frac{6}{\pi^{2}} q, \quad \text { which gives } \quad \# \mathfrak{F}>\frac{q}{2}
$$

for large q.

Lemma

No two elements of \mathfrak{F} are congruent modulo q.
Proof.
If $\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}} \in \mathfrak{F}$ (and not the same), then $0<\left|a_{1} b_{2}-a_{2} b_{1}\right|<q$.

Lemma

No two elements of \mathfrak{F} are congruent modulo q.
Proof.
If $\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}} \in \mathfrak{F}$ (and not the same), then $0<\left|a_{1} b_{2}-a_{2} b_{1}\right|<q$.
Since $\# \mathfrak{F}>q / 2$ and there are only $\frac{q-1}{2}$ (nonzero) squares $\bmod q$, some $\frac{a}{b} \in \mathfrak{F}$ reduces to a nonsquare $\bmod q$. So either a is a nonsquare or b is a nonsquare. Hence,

$$
n_{2}(q) \leq \sqrt{q} .
$$

(Of course, equality is impossible here.)

The average least nonresidue, revisited

Theorem (Erdős, 1961)

We can determine the average value of the least quadratic nonresidue modulo primes q :

$$
\lim _{x \rightarrow \infty}\left(\frac{1}{\pi(x)} \sum_{q \leq x} n_{2}(q)\right)=A
$$

where

$$
A:=\sum_{k=1}^{\infty} \frac{p_{k}}{2^{k}}
$$

and p_{k} denotes the k th prime in increasing order.

Why you should believe Erdős

- multiplicativity of the Legendre symbol implies that $n_{2}(q)$ is always a prime,

Why you should believe Erdős

- multiplicativity of the Legendre symbol implies that $n_{2}(q)$ is always a prime,
- for a fixed prime p, we have a $50-50$ chance that $\left(\frac{p}{q}\right)=-1$ for a randomly chosen prime q,

Why you should believe Erdős

- multiplicativity of the Legendre symbol implies that $n_{2}(q)$ is always a prime,
- for a fixed prime p, we have a $50-50$ chance that $\left(\frac{p}{q}\right)=-1$ for a randomly chosen prime q,
- in order for $n_{2}(q)$ to equal p_{k}, it is necessary and sufficient that

$$
\left(\frac{p_{1}}{q}\right)=\left(\frac{p_{2}}{q}\right)=\cdots=\left(\frac{p_{k-1}}{q}\right)=1 \text { and }\left(\frac{p_{k}}{q}\right)=-1
$$

Why you should believe Erdős

- multiplicativity of the Legendre symbol implies that $n_{2}(q)$ is always a prime,
- for a fixed prime p, we have a $50-50$ chance that $\left(\frac{p}{q}\right)=-1$ for a randomly chosen prime q,
- in order for $n_{2}(q)$ to equal p_{k}, it is necessary and sufficient that

$$
\left(\frac{p_{1}}{q}\right)=\left(\frac{p_{2}}{q}\right)=\cdots=\left(\frac{p_{k-1}}{q}\right)=1 \text { and }\left(\frac{p_{k}}{q}\right)=-1
$$

- Independence $\Rightarrow \mathbb{P}\left(n_{2}(q)=p_{k}\right)=\frac{1}{2^{k}}$.

Why you should believe Erdős

- multiplicativity of the Legendre symbol implies that $n_{2}(q)$ is always a prime,
- for a fixed prime p, we have a $50-50$ chance that $\left(\frac{p}{q}\right)=-1$ for a randomly chosen prime q,
- in order for $n_{2}(q)$ to equal p_{k}, it is necessary and sufficient that

$$
\left(\frac{p_{1}}{q}\right)=\left(\frac{p_{2}}{q}\right)=\cdots=\left(\frac{p_{k-1}}{q}\right)=1 \text { and }\left(\frac{p_{k}}{q}\right)=-1
$$

- Independence $\Rightarrow \mathbb{P}\left(n_{2}(q)=p_{k}\right)=\frac{1}{2^{k}}$.
- So we "should" have $\mathbb{E}\left(n_{2}\right)=\sum_{k=1}^{\infty} 2^{-k} p_{k}$.

Sketch of the proof

We want to understand

$$
\frac{1}{\pi(x)} \sum_{q \leq x} n_{2}(q)=\sum_{k} p_{k} \cdot \frac{\#\left\{q \leq x: n_{2}(q)=p_{k}\right\}}{\#\{q \leq x\}} .
$$

Sketch of the proof

We want to understand

$$
\frac{1}{\pi(x)} \sum_{q \leq x} n_{2}(q)=\sum_{k} p_{k} \cdot \frac{\#\left\{q \leq x: n_{2}(q)=p_{k}\right\}}{\#\{q \leq x\}}
$$

Step \#1: Treat small values of $n_{2}(q)$ with precision By quadratic reciprocity, $n_{2}(q)=p_{k}$ if and only if q belongs to a certain set of coprime residue classes modulo $4 p_{1} p_{2} \cdots p_{k}$. The fraction of OK residue classes is $1 / 2^{k}$. The PNT for APs gives:

Lemma
Assume $p_{k} \leq \frac{1}{2} \log \log x$. The number of $q \leq x$ for which $n_{2}(q)=p_{k}$ is $\frac{1}{2^{k}} \pi(x)+O(x \exp (-c \sqrt{\log x}))$.

Using this estimate, we get

$$
\begin{aligned}
& \frac{1}{\pi(x)} \sum_{q \leq x} n_{2}(q)=\sum_{k} p_{k} \cdot \frac{\#\left\{q \leq x: n_{2}(q)=p_{k}\right\}}{\#\{q \leq x\}} \\
& =\sum_{p_{k} \leq \frac{1}{2} \log \log x} \frac{p_{k}}{2^{k}}+o(1) \\
& +\sum_{p_{k}>\frac{1}{2} \log \log x} p_{k} \cdot \frac{\#\left\{q \leq x: n_{2}(q)=p_{k}\right\}}{\#\{q \leq x\}}
\end{aligned}
$$

Using this estimate, we get

$$
\begin{aligned}
& \frac{1}{\pi(x)} \sum_{q \leq x} n_{2}(q)=\sum_{k} p_{k} \cdot \frac{\#\left\{q \leq x: n_{2}(q)=p_{k}\right\}}{\#\{q \leq x\}} \\
& =\sum_{p_{k} \leq \frac{1}{2} \log \log x} \frac{p_{k}}{2^{k}}+o(1) \\
& \quad+\sum_{p_{k}>\frac{1}{2} \log \log x} p_{k} \cdot \frac{\#\left\{q \leq x: n_{2}(q)=p_{k}\right\}}{\#\{q \leq x\}}
\end{aligned}
$$

So as $x \rightarrow \infty$,

$$
\begin{aligned}
\frac{1}{\pi(x)} \sum_{q \leq x} n_{2}(q)= & A+o(1) \\
& +\frac{1}{\pi(x)} \sum_{p_{k}>\frac{1}{2} \log \log x} p_{k} \cdot \#\left\{q \leq x: n_{2}(q)=p_{k}\right\}
\end{aligned}
$$

We need to show that the last term goes to zero as x goes to infinity.

So the PNT for arithmetic progression handles the contribution from small primes $\left(p_{k} \leq \frac{1}{2} \log \log x\right)$, which gives us the correct main term.

So the PNT for arithmetic progression handles the contribution from small primes $\left(p_{k} \leq \frac{1}{2} \log \log x\right)$, which gives us the correct main term.

Step \#2: Handle medium values of $n_{2}(q)$ using a crude upper bound

The Brun-Titchmarsh theorem says that as long as the modulus $m<x^{1 / 2}$ (for example), we have

$$
\pi(x ; m, a) \leq \frac{4}{\phi(m)} \frac{x}{\log x}
$$

So the PNT for arithmetic progression handles the contribution from small primes $\left(p_{k} \leq \frac{1}{2} \log \log x\right)$, which gives us the correct main term.

Step \#2: Handle medium values of $n_{2}(q)$ using a crude upper bound

The Brun-Titchmarsh theorem says that as long as the modulus $m<x^{1 / 2}$ (for example), we have

$$
\pi(x ; m, a) \leq \frac{4}{\phi(m)} \frac{x}{\log x}
$$

Using this, we can show that those values of $n_{2}(q)=p_{k}$ with $\frac{1}{2} \log \log x<p_{k}<(\log x)^{1000}$ make a negligible contribution:

$$
\frac{1}{\pi(x)} \sum_{\frac{1}{2} \log \log x<p_{k} \leq(\log x)^{1000}} p_{k} \cdot \#\left\{q \leq x: n_{2}(q)=p_{k}\right\} \rightarrow 0 .
$$

Step \#3: Handle values $n_{2}(q)>(\log x)^{1000}$, by hook or by crook It remains to show that as $x \rightarrow \infty$,

$$
\frac{1}{\pi(x)} \sum_{\substack{q \leq x \\ n_{2}(q)>(\log x)^{1000}}} n_{2}(q) \rightarrow 0
$$

Step \#3: Handle values $n_{2}(q)>(\log x)^{1000}$, by hook or by crook It remains to show that as $x \rightarrow \infty$,

$$
\frac{1}{\pi(x)} \sum_{\substack{q \leq x \\ n_{2}(q)>(\log x)^{1000}}} n_{2}(q) \rightarrow 0
$$

Trivially,

$$
\sum_{\substack{2<q \leq x \\ n_{2}(q)>(\log x)^{1000}}} n_{2}(q) \leq A B,
$$

where

$$
A:=\max _{q \leq x} n_{2}(q) \text { and } B:=\#\left\{q \leq x: n_{2}(q)>(\log x)^{1000}\right\} .
$$

We proved $A<x^{1 / 2}$ for large x.

To estimate B, we use a result of Erdős, proved using the large sieve ("GRH on average"):
Lemma (Erdős)
Fix $Z>0$ and $\epsilon>0$. The number of $q \leq x$ with $n_{2}(q)>(\log x)^{Z}$ is at most $x^{2 / Z+\epsilon}$. In particular, the number of $q \leq x$ with $n_{2}(q)>(\log x)^{1000}$ is $\ll x^{1 / 499}$.

To estimate B, we use a result of Erdős, proved using the large sieve ("GRH on average"):
Lemma (Erdős)
Fix $Z>0$ and $\epsilon>0$. The number of $q \leq x$ with $n_{2}(q)>(\log x)^{Z}$ is at most $x^{2 / Z+\epsilon}$. In particular, the number of $q \leq x$ with $n_{2}(q)>(\log x)^{1000}$ is $\ll x^{1 / 499}$.

Thus,

$$
A B \ll x^{1 / 2} \cdot x^{1 / 499}<x^{2 / 3}
$$

So

$$
\frac{1}{\pi(x)} \sum_{\substack{2<q \leq x \\ n_{2}(q)>(\log x)^{1000}}} n_{2}(q) \leq \frac{A B}{\pi(x)} \ll \frac{x^{2 / 3}}{\pi(x)}
$$

which goes to zero.

To estimate B, we use a result of Erdős, proved using the large sieve ("GRH on average"):
Lemma (Erdős)
Fix $Z>0$ and $\epsilon>0$. The number of $q \leq x$ with $n_{2}(q)>(\log x)^{Z}$ is at most $x^{2 / Z+\epsilon}$. In particular, the number of $q \leq x$ with $n_{2}(q)>(\log x)^{1000}$ is $\ll x^{1 / 499}$.

Thus,

$$
A B \ll x^{1 / 2} \cdot x^{1 / 499}<x^{2 / 3}
$$

So

$$
\frac{1}{\pi(x)} \sum_{\substack{2<q \leq x \\ n_{2}(q)>(\log x)^{1000}}} n_{2}(q) \leq \frac{A B}{\pi(x)} \ll \frac{x^{2 / 3}}{\pi(x)},
$$

which goes to zero.
This completes the proof of Erdős's theorem.

Variations

For primes $q \equiv 1(\bmod k)$, let $n_{k}(q)$ denote the least k th power nonresidue and $r_{k}(q)$ denote the least prime k th power residue. The following results are due to Peter Elliott:

Theorem

For each fixed k, the mean value of $n_{k}(q)$ exists.
Theorem
For each of $k=2,3,4$, the mean value of $r_{k}(q)$ exists. When $k=2$, the mean value of r_{2} agrees with the mean value of n_{2}.

Variations

For primes $q \equiv 1(\bmod k)$, let $n_{k}(q)$ denote the least k th power nonresidue and $r_{k}(q)$ denote the least prime k th power residue. The following results are due to Peter Elliott:

Theorem

For each fixed k, the mean value of $n_{k}(q)$ exists.
Theorem
For each of $k=2,3,4$, the mean value of $r_{k}(q)$ exists. When $k=2$, the mean value of r_{2} agrees with the mean value of n_{2}.

Non-analogy: We have $n_{k}(q) \ll_{\epsilon} q^{1 / 4 \sqrt{e}+\epsilon}$ (Burgess), but we only know $r_{k}(q) \ll_{\epsilon} q^{\frac{1}{4}(k-1)+\epsilon}$ (Linnik-Vinogradov, Elliott).

Prime splitting in number fields

For each prime q, let K be the quadratic field of conductor q. So $K=\mathbb{Q}\left(\sqrt{q^{*}}\right)$, where $q^{*}=(-1)^{\frac{q-1}{2}} q$. Then for any prime $p \neq q$,

$$
p \text { is inert in } K \Longleftrightarrow\left(\frac{p}{q}\right)=-1
$$

and

$$
p \text { splits in } K \Longleftrightarrow\left(\frac{p}{q}\right)=1 .
$$

So rephrasing the results of Erdős and Elliott:
Theorem
The average least inert prime in a quadratic field of prime conductor is $\sum_{k=1}^{\infty} 2^{-k} p_{k}$. The same holds for the average least split prime.

The quadratic field case

For each prime p, one can show that if one chooses a quadratic field uniformly at random,

$$
\mathbb{P}(p \text { inert })=\frac{1 / 2}{1+1 / p}
$$

and similarly for $\mathbb{P}(p$ split $)$.
In other words, as $x \rightarrow \infty$,

$$
\frac{\sum_{|D| \leq x,\left(\frac{D}{p}\right)=-1} 1}{\sum_{|D| \leq x} 1} \rightarrow \frac{1 / 2}{1+1 / p}
$$

and similarly with $\left(\frac{D}{p}\right)=1$. Here D runs over fundamental discriminants.

The quadratic field case

For each prime p, one can show that if one chooses a quadratic field uniformly at random,

$$
\mathbb{P}(p \text { inert })=\frac{1 / 2}{1+1 / p}
$$

and similarly for $\mathbb{P}(p$ split $)$.
In other words, as $x \rightarrow \infty$,

$$
\frac{\sum_{|D| \leq x,\left(\frac{D}{p}\right)=-1} 1}{\sum_{|D| \leq x} 1} \rightarrow \frac{1 / 2}{1+1 / p}
$$

and similarly with $\left(\frac{D}{p}\right)=1$. Here D runs over fundamental discriminants.

We can prove this by hand, using that $\left(\frac{D}{p}\right)=1$ is a congruence condition on D modulo $4 p$.

Theorem (P.)

Let $n(D)$ be the least inert prime in the quadratic field of discriminant D and $r(D)$ the least split prime. Then as $x \rightarrow \infty$,

$$
\frac{\sum_{|D| \leq x} n(D)}{\sum_{|D| \leq x} 1} \rightarrow \theta
$$

where

$$
\theta=\sum_{k=1}^{\infty} p_{k} \cdot\left(\mathbb{P}\left(p_{k} \text { inert }\right) \prod_{i=1}^{k-1}\left(1-\mathbb{P}\left(p_{k-1} \text { inert }\right)\right)\right)
$$

The constant θ satisfies $\theta \approx 4.98095$. The same result holds for $r(D)$.

Cubic fields

In a cubic field K, there are more splitting options, for example,

$$
\begin{aligned}
& p=\mathfrak{p}_{1} \mathfrak{p}_{2} \mathfrak{p}_{3} \quad \text { (split completely) } \\
& p=\mathfrak{p}_{1} \mathfrak{p}_{2} \quad \text { (partially split) } \\
& p=\mathfrak{p}_{1} \quad \text { (inert) }
\end{aligned}
$$

We would like to be able compute the average least prime in each case (or not in each case).

Theorem (Martin, P.)
We can do any of these averages - assuming the Generalized Riemann Hypothesis.

Theorem (Martin, P.)

For a cubic number field K, let n_{K} denote the least rational prime that does not split completely in K. Define

$$
\Delta=\sum_{\ell} \frac{5 \ell^{3}+6 \ell^{2}+6 \ell}{6\left(\ell^{2}+\ell+1\right)} \prod_{p<\ell} \frac{p^{2}}{6\left(p^{2}+p+1\right)} \approx 2.1211027269
$$

where the sum and product are taken over primes ℓ and p. Then (unconditionally!)

$$
\lim _{x \rightarrow \infty}\left(\sum_{\left|D_{K}\right| \leq x} 1\right)^{-1}\left(\sum_{\left|D_{K}\right| \leq x} n_{K}\right)=\Delta
$$

where the sums on the left-hand side are taken over (all isomorphism classes of) cubic fields K for which $\left|D_{K}\right| \leq x$.

Why you should believe us

- We split the average up according to the value of n_{K} :

$$
\frac{\sum_{\left|D_{K}\right| \leq x} n_{K}}{\sum_{\left|D_{K}\right| \leq x} 1}=\sum_{k} p_{k} \cdot \frac{\#\left\{\left|D_{K}\right| \leq x, p_{k}=n_{K}\right\}}{\sum_{\left|D_{K}\right| \leq x} 1}
$$

The ratio on the RHS is $\mathbb{P}\left(n_{K}=p_{k}:\left|D_{K}\right| \leq x\right)$.

- For the denominator in the averages, we have (Davenport-Heilbronn) that as $x \rightarrow \infty$,

$$
\sum_{\left|D_{K}\right| \leq x} 1 \sim \frac{1}{3 \zeta(3)} x
$$

- For each prime p, let $c_{p}=\frac{1 / 6}{1+1 / p+1 / p^{2}}$.

It is known that the limiting probability p_{k} is the least split completely prime is

$$
\mathbb{P}\left(n_{K}=p_{k}\right)=\left(1-c_{p_{k}}\right) \prod_{j=1}^{k-1} c_{p_{j}}
$$

Our claim for the "average value"

$$
\Delta=\sum_{k} p_{k} \cdot \mathbb{P}\left(n_{K}=p_{k}\right)
$$

- Work of

Taniguchi-Thorne/Bhargava-Shankar-Tsimerman gives a uniform estimate. We get a main term of Δ from the primes $p_{k} \leq(\log x)^{1000}$.

It remains to show that

$$
\frac{\sum_{\substack{\left|D_{K}\right| \leq x \\ n_{K}>(\log x)^{1000}}} n_{K}}{\sum_{\left|D_{K}\right| \leq x} 1} \rightarrow 0 .
$$

We bound

$$
\sum_{\substack{K:\left|D_{K}\right| \leq x \\ n_{K}>(\log x)^{1000}}} n_{K}
$$

by $A B$, where A is the largest term and B is the number of terms.
The contribution to the average is obtained by dividing by the number of cubic fields with $\left|D_{K}\right| \leq x$, which is $\sim \frac{1}{\zeta(3)} x$. So we want

$$
A B=o(x)
$$

Claim 1: each $n_{K}<_{\epsilon}\left|D_{K}\right|^{1 / 4 \sqrt{e}+\epsilon}$, so that $A<x^{0.152}$ (say).
For non-Galois K, we use the quadratic-resolvent of K : The field $\mathbb{Q}\left(\sqrt{D_{K}}\right)$ sits inside the normal closure of K. The least non-split prime in K is bounded above by the least non-split prime in $\mathbb{Q}\left(\sqrt{D_{K}}\right)$, which is

$$
\ll\left|D_{K}\right|^{1 / 4 \sqrt{\mathrm{e}}+\epsilon} .
$$

If K / \mathbb{Q} is Galois, then K / \mathbb{Q} is abelian and $D_{K}=f^{2}$ is a square. In this case, the least non-split prime in K is the least prime p with $\chi(p) \notin\{0,1\}$, where χ is a primitive cubic character modulo f. This implies (Burgess/Norton) an even better upper bound on n_{K} : namely,

$$
\ll\left|D_{K}\right|^{1 / 8 \sqrt{\mathrm{e}}+\epsilon} .
$$

Claim 2: $B<x^{0.84}$; in other words, the number of K with $\left|D_{K}\right| \leq x$ and $n_{K}>(\log x)^{1000}$ is $<x^{0.84}$
[Assuming this: $0.152+0.84<0.995$, so $A B<x^{0.995}=o(X)$, and we are done!]

To prove the claim, we first throw away the Galois cubic fields. There are only $\ll x^{1 / 2}$ of those (Cohn), so this is OK. Each K that is left has a quadratic resolvent $\mathbb{Q}(\sqrt{D})$, where $D=D_{K}$. We can write

$$
D=d f^{2}
$$

where d is the discriminant of $\mathbb{Q}(\sqrt{D})$. Given d, there are at most $\sqrt{x / f}<\sqrt{x}$ possibilities for D.

We count the number of possibilities for d, then D, then K.
Since $\mathbb{Q}(\sqrt{d})=\mathbb{Q}\left(\sqrt{D_{K}}\right)$ is a subfield of the Galois closure of K, all primes $<(\log x)^{1000}$ are split.

We count the number of possibilities for d, then D, then K.
Since $\mathbb{Q}(\sqrt{d})=\mathbb{Q}\left(\sqrt{D_{K}}\right)$ is a subfield of the Galois closure of K, all primes $<(\log x)^{1000}$ are split.

We use the following lemma:

Lemma (proved using the large sieve)

The number of quadratic fields with discriminant bounded by x in absolute value for which all primes $\leq(\log x)^{Z}$ split completely is at most $x^{2 / Z+o(1)}$, as $x \rightarrow \infty$.

So the number of possibilities for d is $\leq x^{1 / 500+o(1)}$.

We count the number of possibilities for d, then D, then K.
Since $\mathbb{Q}(\sqrt{d})=\mathbb{Q}\left(\sqrt{D_{K}}\right)$ is a subfield of the Galois closure of K, all primes $<(\log x)^{1000}$ are split.

We use the following lemma:

Lemma (proved using the large sieve)

The number of quadratic fields with discriminant bounded by x in absolute value for which all primes $\leq(\log x)^{Z}$ split completely is at most $x^{2 / Z+o(1), ~ a s ~} x \rightarrow \infty$.

So the number of possibilities for d is $\leq x^{1 / 500+o(1)}$.
So the number of possibilities for D is $<x^{1 / 2+1 / 500+o(1)}$.

Theorem (Ellenberg-Venkatesh)

Let $\epsilon>0$. As $|D| \rightarrow \infty$, the number of cubic fields of discriminant D is $\leq|D|^{1 / 3+o(1)}$.

It follows that

$$
B<x^{1 / 2+1 / 500+1 / 3+o(1)},
$$

which is eventually smaller than $x^{0.84}$. This completes the proof of Claim \#2 and so also the theorem.

Theorem (Ellenberg-Venkatesh)

Let $\epsilon>0$. As $|D| \rightarrow \infty$, the number of cubic fields of discriminant D is $\leq|D|^{1 / 3+o(1)}$.

It follows that

$$
B<x^{1 / 2+1 / 500+1 / 3+o(1)},
$$

which is eventually smaller than $x^{0.84}$. This completes the proof of Claim \#2 and so also the theorem.

- The GRH-conditional results are simpler. Indeed, under GRH, the least prime with a given splitting type is $\ll\left(\log \left|D_{K}\right|\right)^{2}$ (effective Chebotarev). So primes $>(\log x)^{1000}$ make no contribution. So we only need the Taniguchi-Thorne/Bhargava-Shankar-Tsimerman results.

Thank you!

