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Definition
For each odd prime q, let n2(q) denote the least quadratic nonresidue
modulo q. For example, n2(5) = 2 and n2(7) = 3. For completeness,
put n2(2) = 0.

Theorem (Erdős, 1961)

We can determine the average value of the
least quadratic nonresidue modulo primes q:

lim
x→∞

 1

π(x)

∑
q≤x

n2(q)

 = A,

where

A :=
∞∑
k=1

pk

2k
,

and pk denotes the kth prime.
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Remark
Numerically,

A = 3.6746439660113287789956763090840294116777975 . . .

Time muffles the original éclat of a theorem. In
1967, in a Nottingham seminar, I did not get
past the value of Erdős’s limit . . . before Eduard
Wirsing stopped me. “I don’t believe it!”, says
he, looking at the expression for the constant, “I
have never seen anything like it!”
– Peter Elliott
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Known knowns and known unknowns

Erdős’s theorem is about the average order of n2(q).
The study of the maximal order of n2(q) is older.

Theorem (Gauss)

If q ≡ 1 (mod 8), then there is a prime p < 2
√

q + 1 with
(q
p

)
= −1.

Corollary (post-QR)

If q ≡ 1 (mod 8), then n2(q) < 2
√

q + 1.

Conjecture (I.M. Vinogradov)

For each fixed ε > 0 and all q > q0(ε), we have

n2(q) < qε.
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Theorem (Ankeny)

Assume the Riemann Hypothesis for Dirichlet L-functions. Then
Vinogradov’s conjecture is correct. In fact,

n2(q) < C (log q)2

for all odd primes q.

Theorem (Bach)

We can take C = 2 in Ankeny’s result.

What about unconditionally?
In 1918, Pólya and Vinogradov showed (independently) that∣∣∣∣∣∣

∑
n≤x

(
n

q

)∣∣∣∣∣∣ < √q log q.

As an immediate consequence, n2(q) < 1 +
√

q log q.
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Theorem (Vinogradov)

For each ε > 0 and all primes q > q0(ε), we have

n2(q) < q
1

2
√
e
+ε
.

Theorem (Burgess)

For each ε > 0 and all primes q > q0(ε), we have

n2(q) < q
1

4
√
e
+ε
.

Theorem (Linnik)

Fix ε > 0. The number of primes q ≤ x with
n2(q) > qε is �ε log log x.
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Interlude: A proof that n2(q) < q1/2

Given a fraction a
b with q - b, we identify a

b with ab−1 (mod q).
Notice that

a

b
≡ c

d
(mod q)⇐⇒ q | ad − bc.

Now consider the following set of fractions:

F =
{a

b
: 1 ≤ a, b ≤ √q and gcd(a, b) = 1

}
.

The probability two integers are relatively prime is 1/ζ(2) = 6/π2,
and so

#F ∼ 6

π2
q, which gives #F >

q

2

for large q.
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Lemma
No two elements of F are congruent modulo q.

Proof.
If a1

b1
, a2b2 ∈ F (and not the same), then 0 < |a1b2 − a2b1| < q.

Since #F > q/2 and there are only q−1
2 (nonzero) squares mod q,

some a
b ∈ F reduces to a nonsquare mod q. So either a is a

nonsquare or b is a nonsquare. Hence,

n2(q) ≤ √q.

(Of course, equality is impossible here.)
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The average least nonresidue, revisited

Theorem (Erdős, 1961)

We can determine the average value of the least quadratic nonresidue
modulo primes q:

lim
x→∞

 1

π(x)

∑
q≤x

n2(q)

 = A,

where

A :=
∞∑
k=1

pk

2k
,

and pk denotes the kth prime in increasing order.
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Why you should believe Erdős

• multiplicativity of the Legendre symbol implies that n2(q) is always
a prime,

• for a fixed prime p, we have a 50-50 chance that
(p
q

)
= −1 for a

randomly chosen prime q,

• in order for n2(q) to equal pk , it is necessary and sufficient that(
p1

q

)
=

(
p2

q

)
= · · · =

(
pk−1

q

)
= 1 and

(
pk

q

)
= −1.

• Independence ⇒ P(n2(q) = pk) = 1
2k

.

• So we “should” have E(n2) =
∑∞

k=1 2−kpk .

10 of 29



Why you should believe Erdős
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Sketch of the proof

We want to understand

1

π(x)

∑
q≤x

n2(q) =
∑
k

pk ·
#{q ≤ x : n2(q) = pk}

#{q ≤ x}
.

Step #1: Treat small values of n2(q) with precision
By quadratic reciprocity, n2(q) = pk if and only if q belongs to a
certain set of coprime residue classes modulo 4p1p2 · · · pk . The
fraction of OK residue classes is 1/2k . The PNT for APs gives:

Lemma
Assume pk ≤ 1

2 log log x. The number of q ≤ x for which n2(q) = pk

is 1
2k
π(x) + O(x exp(−c

√
log x)).
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Using this estimate, we get

1

π(x)

∑
q≤x

n2(q) =
∑
k

pk ·
#{q ≤ x : n2(q) = pk}

#{q ≤ x}

=
∑

pk≤ 1
2
log log x

pk

2k
+ o(1)

+
∑

pk>
1
2
log log x

pk ·
#{q ≤ x : n2(q) = pk}

#{q ≤ x}

So as x →∞,

1

π(x)

∑
q≤x

n2(q) = A + o(1)

+
1

π(x)

∑
pk>

1
2
log log x

pk ·#{q ≤ x : n2(q) = pk}.

We need to show that the last term goes to zero as x goes to infinity.
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So the PNT for arithmetic progression handles the contribution from
small primes (pk ≤ 1

2 log log x), which gives us the correct main term.

Step #2: Handle medium values of n2(q) using a crude upper
bound

The Brun–Titchmarsh theorem says that as long as the modulus
m < x1/2 (for example), we have

π(x ; m, a) ≤ 4

φ(m)

x

log x
.

Using this, we can show that those values of n2(q) = pk with
1
2 log log x < pk < (log x)1000 make a negligible contribution:

1

π(x)

∑
1
2
log log x<pk≤(log x)1000

pk ·#{q ≤ x : n2(q) = pk} → 0.
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Step #3: Handle values n2(q) > (log x)1000, by hook or by crook

It remains to show that as x →∞,

1

π(x)

∑
q≤x

n2(q)>(log x)1000

n2(q)→ 0.

Trivially, ∑
2<q≤x

n2(q)>(log x)1000

n2(q) ≤ AB,

where

A := max
q≤x

n2(q) and B := #{q ≤ x : n2(q) > (log x)1000}.

We proved A < x1/2 for large x .
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To estimate B, we use a result of Erdős, proved using the large sieve
(“GRH on average”):

Lemma (Erdős)

Fix Z > 0 and ε > 0. The number of q ≤ x with n2(q) > (log x)Z is
at most x2/Z+ε. In particular, the number of q ≤ x with
n2(q) > (log x)1000 is � x1/499.

Thus,
AB � x1/2 · x1/499 < x2/3.

So
1

π(x)

∑
2<q≤x

n2(q)>(log x)1000

n2(q) ≤ AB

π(x)
� x2/3

π(x)
,

which goes to zero.

This completes the proof of Erdős’s theorem.
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Variations

For primes q ≡ 1 (mod k), let nk(q) denote the least kth power
nonresidue and rk(q) denote the least prime kth power residue. The
following results are due to Peter Elliott:

Theorem
For each fixed k, the mean value of nk(q) exists.

Theorem
For each of k = 2, 3, 4, the mean value of rk(q)
exists. When k = 2, the mean value of r2 agrees
with the mean value of n2.

Non-analogy: We have nk(q)�ε q1/4
√
e+ε (Burgess),

but we only know rk(q)�ε q
1
4
(k−1)+ε (Linnik–Vinogradov, Elliott).
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Prime splitting in number fields

For each prime q, let K be the quadratic field of conductor q. So

K = Q(
√

q∗), where q∗ = (−1)
q−1
2 q. Then for any prime p 6= q,

p is inert in K ⇐⇒
(

p

q

)
= −1

and

p splits in K ⇐⇒
(

p

q

)
= 1.

So rephrasing the results of Erdős and Elliott:

Theorem
The average least inert prime in a quadratic field of prime conductor
is
∑∞

k=1 2−kpk . The same holds for the average least split prime.
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The quadratic field case

For each prime p, one can show that if one chooses a quadratic field
uniformly at random,

P(p inert) =
1/2

1 + 1/p
,

and similarly for P(p split).

In other words, as x →∞,∑
|D|≤x , (Dp)=−1 1∑

|D|≤x 1
→ 1/2

1 + 1/p
.

and similarly with
(
D
p

)
= 1. Here D runs over fundamental

discriminants.

We can prove this by hand, using that
(
D
p

)
= 1 is a congruence

condition on D modulo 4p.
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Theorem (P.)

Let n(D) be the least inert prime in the quadratic field of discriminant
D and r(D) the least split prime. Then as x →∞,∑

|D|≤x n(D)∑
|D|≤x 1

→ θ,

where

θ =
∞∑
k=1

pk ·

(
P(pk inert)

k−1∏
i=1

(1− P(pk−1 inert))

)
.

The constant θ satisfies θ ≈ 4.98095. The same result holds for r(D).
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Cubic fields

In a cubic field K , there are more splitting options, for example,

p = p1p2p3 (split completely)

p = p1p2 (partially split)

p = p1 (inert)

We would like to be able compute the average least prime in each
case (or not in each case).

Theorem (Martin, P.)

We can do any of these averages – assuming
the Generalized Riemann Hypothesis.
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Theorem (Martin, P.)

For a cubic number field K , let nK denote the least rational prime
that does not split completely in K . Define

∆ =
∑
`

5`3 + 6`2 + 6`

6(`2 + `+ 1)

∏
p<`

p2

6(p2 + p + 1)
≈ 2.1211027269,

where the sum and product are taken over primes ` and p. Then
(unconditionally!)

lim
x→∞

( ∑
|DK |≤x

1

)−1( ∑
|DK |≤x

nK

)
= ∆,

where the sums on the left-hand side are taken over (all isomorphism
classes of) cubic fields K for which |DK | ≤ x.
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Why you should believe us

• We split the average up according to the value of nK :∑
|DK |≤x nK∑
|DK |≤x 1

=
∑
k

pk ·
#{|DK | ≤ x , pk = nK}∑

|DK |≤x 1
.

The ratio on the RHS is P(nK = pk : |DK | ≤ x).

• For the denominator in the averages, we have
(Davenport–Heilbronn) that as x →∞,∑

|DK |≤x

1 ∼ 1

3ζ(3)
x .
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• For each prime p, let cp = 1/6
1+1/p+1/p2

.

It is known that the limiting probability pk is the least split
completely prime is

P(nK = pk) = (1− cpk )
k−1∏
j=1

cpj .

Our claim for the “average value”

∆ =
∑
k

pk · P(nK = pk).

• Work of
Taniguchi–Thorne/Bhargava–Shankar–Tsimerman
gives a uniform estimate. We get a main term of ∆
from the primes pk ≤ (log x)1000.
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It remains to show that∑
|DK |≤x

nK>(log x)1000
nK∑

|DK |≤x 1
→ 0.

We bound ∑
K : |DK |≤x

nK>(log x)1000

nK

by AB, where A is the largest term and B is the number of terms.

The contribution to the average is obtained by dividing by the
number of cubic fields with |DK | ≤ x , which is ∼ 1

ζ(3)x . So we want

AB = o(x).
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Claim 1: each nK �ε |DK |1/4
√
e+ε, so that A < x0.152 (say).

For non-Galois K , we use the quadratic-resolvent of K : The field
Q(
√

DK ) sits inside the normal closure of K . The least non-split
prime in K is bounded above by the least non-split prime in Q(

√
DK ),

which is
� |DK |1/4

√
e+ε.

If K/Q is Galois, then K/Q is abelian and DK = f 2 is a square. In
this case, the least non-split prime in K is the least prime p with
χ(p) 6∈ {0, 1}, where χ is a primitive cubic character modulo f . This
implies (Burgess/Norton) an even better upper bound on nK : namely,

� |DK |1/8
√
e+ε.

25 of 29



Claim 2: B < x0.84; in other words,
the number of K with |DK | ≤ x and nK > (log x)1000 is < x0.84

[Assuming this: 0.152 + 0.84 < 0.995, so AB < x0.995 = o(X ), and
we are done!]

To prove the claim, we first throw away the Galois cubic fields. There
are only � x1/2 of those (Cohn), so this is OK. Each K that is left
has a quadratic resolvent Q(

√
D), where D = DK . We can write

D = df 2,

where d is the discriminant of Q(
√

D). Given d , there are at most√
x/f <

√
x possibilities for D.
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We count the number of possibilities for d , then D, then K .

Since Q(
√

d) = Q(
√

DK ) is a subfield of the Galois closure of K , all
primes < (log x)1000 are split.

We use the following lemma:

Lemma (proved using the large sieve)

The number of quadratic fields with discriminant bounded by x in
absolute value for which all primes ≤ (log x)Z split completely is at
most x2/Z+o(1), as x →∞.

So the number of possibilities for d is ≤ x1/500+o(1).

So the number of possibilities for D is < x1/2+1/500+o(1).
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Theorem (Ellenberg–Venkatesh)

Let ε > 0. As |D| → ∞, the number of cubic fields
of discriminant D is ≤ |D|1/3+o(1).

It follows that
B < x1/2+1/500+1/3+o(1),

which is eventually smaller than x0.84. This completes the proof of
Claim #2 and so also the theorem.

• The GRH-conditional results are simpler. Indeed, under GRH, the
least prime with a given splitting type is � (log |DK |)2 (effective
Chebotarev). So primes > (log x)1000 make no contribution. So
we only need the Taniguchi–Thorne/Bhargava-Shankar-Tsimerman
results.
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Thank you!
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