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e
Definition
For each odd prime g, let ny(q) denote the least quadratic nonresidue
modulo g. For example, np(5) = 2 and np(7) = 3. For completeness,
put mp(2) = 0.
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e
Definition
For each odd prime g, let ny(q) denote the least quadratic nonresidue
modulo g. For example, np(5) = 2 and np(7) = 3. For completeness,
put mp(2) = 0.

Theorem (Erdés, 1961)

We can determine the average value of the
least quadratic nonresidue modulo primes q:

. 1
Jn | Ty 2@ ] =4

where

| k]
>

2o 20 and py denotes the kth prime.




Remark
Numerically,

A = 3.6746439660113287789956763090840294116777975 . ..
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Remark
Numerically,

A = 3.6746439660113287789956763090840294116777975 . ..

Time muffles the original éclat of a theorem. In
1967, in a Nottingham seminar, | did not get
past the value of Erdés’s limit . .. before Eduard
Wirsing stopped me. “I don’t believe it!", says
he, looking at the expression for the constant, “I
have never seen anything like it!”

— Peter Elliott
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Known knowns and known unknowns

Erd6s's theorem is about the average order of na(q).
The study of the maximal order of ny(q) is older.
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Known knowns and known unknowns

Erd6s's theorem is about the average order of na(q).
The study of the maximal order of ny(q) is older.

Theorem (Gauss)
If =1 (mod 8), then there is a prime p < 2,/q + 1 with (%) = 1.

Corollary (post-QR)
If g =1 (mod 8), then nx(q) < 2,/q + 1.
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Known knowns and known unknowns

Erd6s's theorem is about the average order of na(q).
The study of the maximal order of ny(q) is older.

Theorem (Gauss)
If =1 (mod 8), then there is a prime p < 2,/q + 1 with (%) = —1.

Corollary (post-QR)
If g =1 (mod 8), then nx(q) < 2,/q + 1.

Conjecture (I.M. Vinogradov)
For each fixed e > 0 and all g > qo(e), we have

n(q) < q-.




——
Theorem (Ankeny)

Assume the Riemann Hypothesis for Dirichlet L-functions. Then
Vinogradov's conjecture is correct. In fact,

m(q) < C(log q)?
for all odd primes q.

Theorem (Bach)
We can take C = 2 in Ankeny's result.
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Theorem (Ankeny)

Assume the Riemann Hypothesis for Dirichlet L-functions. Then
Vinogradov's conjecture is correct. In fact,

m(q) < C(log q)?
for all odd primes q.
Theorem (Bach)

We can take C = 2 in Ankeny's result.

What about unconditionally?
In 1918, Pdlya and Vinogradov showed (independently) that

> (g) < qloggq.

n<x

As an immediate consequence, ny(q) < 1+ ,/qlogq.
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Theorem (Vinogradov)
For each ¢ > 0 and all primes q > qo(€), we have

1
no(q) < g3 e

Theorem (Burgess)
For each ¢ > 0 and all primes q > qo(€), we have

1
m(q) < g=ve .

Theorem (Linnik)

Fix € > 0. The number of primes q < x with
m(q) > ¢° is <. loglog x.




Interlude: A proof that ny(q) < g%/

Given a fraction 2 with g { b, we identify 2 with ab=! (mod q).
Notice that

(mod q) <= q | ad — bc.

Q|0

2
b
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Interlude: A proof that ny(q) < g%/

Given a fraction 2 with g { b, we identify 2 with ab=! (mod q).
Notice that

c
553 (mod q) <= q | ad — bc.

Now consider the following set of fractions:

32{%:1§a,b§\/ﬁand gcd(aab):1}‘
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Interlude: A proof that ny(q) < g%/

Given a fraction 2 with g { b, we identify 2 with ab=! (mod q).
Notice that

c
553 (mod q) <= q | ad — bc.

Now consider the following set of fractions:

32{%:1§a,b§\/ﬁand gcd(aab):1}‘

The probability two integers are relatively prime is 1/¢(2) = 6/72,
and so

4T ~ %q, which gives #§ > 2
s 2
for large q.
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Lemma
No two elements of § are congruent modulo q.

Proof.

If 3+, 2 € § (and not the same), then 0 < |a1b> — a2b1] < q.
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Lemma
No two elements of § are congruent modulo q.

Proof.

If 3+, 2 € § (and not the same), then 0 < |a1b, — a2b1] < q.

Since #F > q/2 and there are only qT_l (nonzero) squares mod g,
some £ € § reduces to a nonsquare mod g. So either a is a
nonsquare or b is a nonsquare. Hence,

n2(q) < V4.

(Of course, equality is impossible here.)
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The average least nonresidue, revisited

Theorem (Erdés, 1961)

We can determine the average value of the least quadratic nonresidue
modulo primes q:

Jim_ 7T(X)an(q = A,

q<x

where

| ke
x

o0
k=1
and py denotes the kth prime in increasing order.
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Why you should believe Erdds

e multiplicativity of the Legendre symbol implies that ny(q) is always
a prime,
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Why you should believe Erdds

e multiplicativity of the Legendre symbol implies that ny(q) is always
a prime,

e for a fixed prime p, we have a 50-50 chance that (g) = —1 for a
randomly chosen prime g,
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Why you should believe Erdds

e multiplicativity of the Legendre symbol implies that ny(q) is always
a prime,

e for a fixed prime p, we have a 50-50 chance that (g) = —1 for a
randomly chosen prime g,

e in order for ny(q) to equal py, it is necessary and sufficient that

() ()= () oo ) -

10 of 29
EEEEE————————————————————————



Why you should believe Erdds

multiplicativity of the Legendre symbol implies that ny(q) is always
a prime,

for a fixed prime p, we have a 50-50 chance that (g) = —1 for a
randomly chosen prime g,

in order for ny(q) to equal py, it is necessary and sufficient that
(3)= ()= =)= (§)
q q q q

Independence = P(n2(q) = px) = 2—1k
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Why you should believe Erdds

multiplicativity of the Legendre symbol implies that ny(q) is always
a prime,

for a fixed prime p, we have a 50-50 chance that (g) = —1 for a
randomly chosen prime g,

in order for ny(q) to equal py, it is necessary and sufficient that
(3)= ()= =)= (§)
q q q q

Independence = P(n2(q) = pk) = 2—1k
So we “should” have E(m) = .72, 27 py.

10 of 29



Sketch of the proof

We want to understand

1 #{q < x:m(q) = p«}
man(Q):zk:Pk' #{q;x} k .

q<x
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Sketch of the proof

We want to understand

LN ) = #{g < x:m(q) = pi}
™) qzs:x A0 =D #{q < x} '

Step #1: Treat small values of n,(q) with precision

By quadratic reciprocity, n2(q) = py if and only if g belongs to a
certain set of coprime residue classes modulo 4p1ps - - - px. The
fraction of OK residue classes is 1/2X. The PNT for APs gives:

Lemma
Assume py < % 5 loglog x. The number of g < x for which n2(q) = px

is m(x) + O(x exp(—cy/log x)).
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Using this estimate, we get

1 _ #{q < x:m(q) = pi}
EOPPLLEP L TR
= > g—,f +0(1)
pr<1 loglog x

#{q < x:m(q) = p«}
2 e #{q < x} :

q<x

pk>% log log x
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Using this estimate, we get

1 _ #{q < x:m(q) = pi}
EOPPLLEP L TR
= > g—,f +0(1)
pr<1 loglog x

#{q < x:m(q) = p«}
2 e #{q < x} :

q<x

pk>% log log x

So as x — 00,

%an):Awm
I > - #{a < x:m(q) = pi)-

W(X) pk>% log log x

\/1\4efr219eed to show that the last term goes to zero as x goes to infinity.
[




So the PNT for arithmetic progression handles the contribution from
small primes (px < %Iog log x), which gives us the correct main term.
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So the PNT for arithmetic progression handles the contribution from
small primes (px < %Iog log x), which gives us the correct main term.

Step #2: Handle medium values of ny(q) using a crude upper
bound

The Brun—Titchmarsh theorem says that as long as the modulus
m < x/2 (for example), we have
4 X

m(x;m,a) < () fog x”
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So the PNT for arithmetic progression handles the contribution from
small primes (px < %Iog log x), which gives us the correct main term.

Step #2: Handle medium values of ny(q) using a crude upper
bound

The Brun—Titchmarsh theorem says that as long as the modulus
m < x/2 (for example), we have

4 X
d(m) log x”

Using this, we can show that those values of ny(q) = px with

m(x;m,a) <

%Iog log x < px < (log x)1%%° make a negligible contribution:
— E -4 x:n = .
7(x) Pk q= 2\q Pk

% log log x< px < (log x)1000
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Step #3: Handle values ny(q) > (log x)1°%°, by hook or by crook

It remains to show that as x — oo,

1 Z na(q) — 0.

7(x) =

n2(q)>(log x)1000
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Step #3: Handle values ny(q) > (log x)1°%°, by hook or by crook

It remains to show that as x — oo,

1 Z na(q) — 0.

7(x) =
n2(q)>(log x)1000

Trivially,
Z n2(q) S A87
2<q<x
n2(q)>(log x)1000
where

A= max m(q) and B :=#{qg < x: m(q) > (logx)%}.
g<x

We proved A < x1/2 for large x.
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To estimate B, we use a result of Erd6s, proved using the large sieve
(“GRH on average”):

Lemma (Erdés)

Fix Z > 0 and € > 0. The number of g < x with na(q) > (log x)? is
at most x2/2t€_ In particular, the number of g < x with
ma(q) > (log x)1000 js < x1/499.
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To estimate B, we use a result of Erd6s, proved using the large sieve
(“GRH on average”):

Lemma (Erdés)

Fix Z > 0 and € > 0. The number of g < x with na(q) > (log x)? is
at most x2/2t€_ In particular, the number of g < x with
na(q) > (log x)1000 js < x1/499,

Thus,
AB < x1/2 . x1/499 _ 2/3.
So ) Z (@ < AB %2/3
— mq) < —— < ——;
SORR-) 7)< 7(x)

m(q)>(log x)10%

which goes to zero.
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To estimate B, we use a result of Erd6s, proved using the large sieve
(“GRH on average”):

Lemma (Erdés)

Fix Z > 0 and € > 0. The number of g < x with na(q) > (log x)? is
at most x2/2t€_ In particular, the number of g < x with
na(q) > (log x)1000 js < x1/499,

Thus,
AB < x1/2 . x1/499 _ 2/3.
So ) Z (@ < AB %2/3
— mq) < —— < ——;
SORR-) ) < 7

m(q)>(log x)10%

which goes to zero.
This completes the proof of Erdds's theorem.
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Variations

For primes g =1 (mod k), let nk(q) denote the least kth power
nonresidue and ri(q) denote the least prime kth power residue. The
following results are due to Peter Elliott:

Theorem
For each fixed k, the mean value of ni(q) exists.

Theorem

For each of k = 2,3,4, the mean value of ri(q)
exists. When k = 2, the mean value of ry agrees
with the mean value of ns.
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Variations

For primes g =1 (mod k), let nk(q) denote the least kth power
nonresidue and ri(q) denote the least prime kth power residue. The
following results are due to Peter Elliott:

Theorem
For each fixed k, the mean value of ni(q) exists.

Theorem

For each of k = 2,3,4, the mean value of ri(q)
exists. When k = 2, the mean value of ry agrees
with the mean value of ns.

Non-analogy: We have ny(q) <. g*/4Vet< (Burgess),
but we only know r(q) <. gi(k—te (Linnik=Vinogradov, Elliott).
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Prime splitting in number fields

For each prime q, let K be the quadratic field of conductor q. So
-1
K = Q(+/q*), where g* = (—1)qTq. Then for any prime p # q,

pis inert in K <= <E) =-1
q

and

p splits in K <= (E) ~ 1.
q

So rephrasing the results of Erdds and Elliott:

Theorem
The average least inert prime in a quadratic field of prime conductor
5y oy 2= kp,. The same holds for the average least split prime.
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The quadratic field case

For each prime p, one can show that if one chooses a quadratic field
uniformly at random,
1/2

P(p inert) = T+ 1/p

and similarly for P(p split).
In other words, as x — 00,
2ipj<x, (2)=-11 L1
> 1pj<x 1 1+1/p

and similarly with (%) = 1. Here D runs over fundamental
discriminants.
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The quadratic field case

For each prime p, one can show that if one chooses a quadratic field
uniformly at random,
1/2

P(p inert) = T+ 1/p

and similarly for P(p split).
In other words, as x — 00,
2ipj<x, (2)=-11 L1
> 1pj<x 1 1+1/p

and similarly with (%) = 1. Here D runs over fundamental
discriminants.

We can prove this by hand, using that (%) =1 is a congruence

condition on D modulo 4p.
18 of 29



Theorem (P.)

Let n(D) be the least inert prime in the quadratic field of discriminant
D and r(D) the least split prime. Then as x — oo,

Z|D|§x n(D) Ny

Z\D|§x1

where

] k—1
0= Z Pk - <P(pk inert) H(l — P(pk-1 inert))) .

k=1 i=1

The constant § satisfies 6 ~ 4.98095. The same result holds for r(D).
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-
Cubic fields

In a cubic field K, there are more splitting options, for example,

p = pipop;  (split completely)
p=pip2 (partially split)
p=p1 (inert)

We would like to be able compute the average least prime in each
case (or not in each case).

Theorem (Martin, P.)

We can do any of these averages — assuming
the Generalized Riemann Hypothesis.

20 of 29



Theorem (Martin, P.)

For a cubic number field K, let nk denote the least rational prime
that does not split completely in K. Define

503 + 6% 4 6/
A= ~ 2.1211027269
Z6€2+£+ )H6 +p+1 ’

where the sum and product are taken over primes { and p. Then
(unconditionally!)

-1
(5 (2 )
|Dk|<x |Dk|<x

where the sums on the left-hand side are taken over (all isomorphism
classes of) cubic fields K for which |Dk| < x.
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Why you should believe us

e We split the average up according to the value of ngk:

2 ioxl<x K _ - (H#UIDk| = x, px =Nk}
ZlDK|<X k Z|DK|<X

The ratio on the RHS is P(nk = pi : |Dk| < x).

e For the denominator in the averages, we have
(Davenport—Heilbronn) that as x — oo,

1
Z 1~T(3)x.

|Di |<x
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* For each prime p, let ¢, = 1372772

It is known that the limiting probability py is the least split
completely prime is

P(nk = pk) = (1 — ¢cp,) H Cp;-

Our claim for the “average value”

A= Zpk -P(nK = pk).
k

e Work of
Taniguchi—Thorne/Bhargava—Shankar—Tsimerman
gives a uniform estimate. We get a main term of A
from the primes p; < (log x)10%°.
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It remains to show that

Z IDk|<x 1K
nk>(log x)1000

— 0.
Z|DK|SX 1
We bound
>
K: |Dk|<x
nk > (log x)1000

by AB, where A is the largest term and B is the number of terms.

The contribution to the average is obtained by dividing by the
number of cubic fields with |Dg| < x, which is ~ ﬁx. So we want

AB = o(x).
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Claim 1: each ni < |Dk|/*4Vete, so that A < x%152 (say).

For non-Galois K, we use the quadratic-resolvent of K: The field
Q(v/Dg) sits inside the normal closure of K. The least non-split
prime in K is bounded above by the least non-split prime in Q(v/Dk),
which is

< ’DK’1/4\/6+6.

If K/Q is Galois, then K/Q is abelian and Dx = 2 is a square. In
this case, the least non-split prime in K is the least prime p with
x(p) € {0,1}, where x is a primitive cubic character modulo f. This
implies (Burgess/Norton) an even better upper bound on nk: namely,

< | Dy |M/BVete,

25 of 29
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Claim 2: B < x%8%; in other words,
the number of K with |Dk| < x and nk > (log x)19%0 is < x0:84

[Assuming this: 0.152 4 0.84 < 0.995, so AB < x%9% = o(X), and
we are done!]

To prove the claim, we first throw away the Galois cubic fields. There
are only < x'/2 of those (Cohn), so this is OK. Each K that is left
has a quadratic resolvent Q(v/D), where D = Dx. We can write

D = df?,

where d is the discriminant of Q(v/D). Given d, there are at most

Vx/f < /x possibilities for D.
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We count the number of possibilities for d, then D, then K.

Since Q(v/d) = Q(v/Dk) is a subfield of the Galois closure of K, all
primes < (log x)19% are split.
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We count the number of possibilities for d, then D, then K.

Since Q(v/d) = Q(v/Dk) is a subfield of the Galois closure of K, all
primes < (log x)19% are split.

We use the following lemma:

Lemma (proved using the large sieve)

The number of quadratic fields with discriminant bounded by x in
absolute value for which all primes < (log x)? split completely is at
most x2/Z+°(1) a5 x — .

So the number of possibilities for d is < x1/500+0(1),
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We count the number of possibilities for d, then D, then K.

Since Q(v/d) = Q(v/Dk) is a subfield of the Galois closure of K, all
primes < (log x)19% are split.

We use the following lemma:

Lemma (proved using the large sieve)

The number of quadratic fields with discriminant bounded by x in
absolute value for which all primes < (log x)? split completely is at
most x2/Z+°(1) a5 x — .

So the number of possibilities for d is < x1/500+0(1),

So the number of possibilities for D is < x1/2+1/500+0(1),
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Theorem (Ellenberg—Venkatesh)

Let e > 0. As |D| — oo, the number of cubic fields
of discriminant D is < |D|}/3+e(1)

It follows that
B < x1/2+1/500+1/3+0(1)

)

which is eventually smaller than x%84. This completes the proof of
Claim #2 and so also the theorem.
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Theorem (Ellenberg—Venkatesh)

Let € > 0. As |D| — oo, the number of cubic fields
of discriminant D is < |D\1/3+°(1)_

It follows that
B < x1/2+1/500+1/3+0(1)

)

which is eventually smaller than x%84. This completes the proof of
Claim #2 and so also the theorem.

e The GRH-conditional results are simpler. Indeed, under GRH, the
least prime with a given splitting type is < (log|Dx|)? (effective
Chebotarev). So primes > (log x)!%%° make no contribution. So
we only need the Taniguchi—Thorne/Bhargava-Shankar-Tsimerman
results.
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Thank you!
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