On a Conjecture of Beard, O'Connell and West Concerning Perfect Polynomials

Luis Gallardo
Department of Mathematics
University of Brest
Paul Pollack ${ }^{1, *}$
Department of Mathematics
Dartmouth College
Olivier Rahavandrainy
Department of Mathematics
University of Brest

Abstract

Following Beard, O'Connell and West (1977) we call a polynomial over a finite field \mathbf{F}_{q} perfect if it coincides with the sum of its monic divisors. The study of perfect polynomials was initiated in 1941 by Carlitz's doctoral student Canaday in the case $q=2$, who proposed the still unresolved conjecture that every perfect polynomial over \mathbf{F}_{2} has a root in \mathbf{F}_{2}. Beard, et al. later proposed the analogous hypothesis for all finite fields. Counterexamples to this general conjecture were found by Link (in the cases $q=11,17$) and Gallardo \& Rahavandrainy (in the case $q=4$). Here we show that the Beard-O'Connell-West conjecture fails in all cases except possibly when q is prime. When $q=p$ is prime, utilizing a construction of Link we exhibit a counterexample whenever $p \equiv 11$ or $17(\bmod 24)$. On the basis of a polynomial analog of Schinzel's Hypothesis H, we argue that if there is a single perfect polynomial over the finite field \mathbf{F}_{q} with no linear factor, then there are infinitely many. Lastly, we prove without any hypothesis that there are infinitely many perfect polynomials over \mathbf{F}_{11} with no linear factor.

Key words: Perfect polynomials, Beard-O'Connell-West Conjecture, Hypothesis H 1991 MSC: 11T06, 11T55

1 Introduction and Statement of Results

For polynomials with coefficients in a fixed finite field, we denote by $\sigma(\cdot)$ the polynomial analog of the usual sum of divisors function, which we define by

$$
\sigma(A):=\sum_{\substack{D \mid A \\ D \text { monic }}} D .
$$

This yields an $\mathbf{F}_{q}[T]$-valued function which is multiplicative and whose value on powers of monic primes is given by the familiar geometric series. We call a polynomial A perfect if A is the sum of all its monic divisors, i.e., if $\sigma(A)=A$. For example, $T(T+1)$ is perfect over \mathbf{F}_{2} because modulo 2,

$$
\begin{equation*}
\sigma(T(T+1))=\sigma(T) \sigma(T+1)=(T+1)((T+1)+1)=T(T+1) \tag{1}
\end{equation*}
$$

The study of perfect polynomials was begun by Canaday [1], who treated only the case $q=2$. For polynomials which split into linear factors over \mathbf{F}_{2} he gave the following criterion, which may be considered an analog of the classical Euler-form for even perfect numbers:

Proposition 1 If A splits over \mathbf{F}_{2}, then A is perfect if and only if $A=$ $(T(T+1))^{2^{n}-1}$ for some positive integer n.

Our example (1) is of course the case $n=1$.
The distribution of non-splitting perfect polynomials is far more mysterious. Canaday discovered 11 examples of such, which are displayed in Table 1. A striking feature of Canaday's list is that all the polynomials which appear have a root over \mathbf{F}_{2}. Are there perfect polynomials without such a root? Sixty years later we can do no better than echo Canaday's assessment: "it is plausible that none of this type exist, but this is not proved."

Let us agree to call a polynomial over \mathbf{F}_{2} even if it possesses a root over \mathbf{F}_{2} and odd otherwise. This is more sensible than it may appear at first glance: indeed, with the usual definition of the absolute value of a polynomial over a finite field, viz. $|A|:=q^{\operatorname{deg} A}$, the even polynomials are exactly those with a divisor of absolute value 2 . In complete analogy with the integer case, Canaday's conjecture now assumes the following tantalizing form:

[^0]Table 1
Canaday's list of nonsplitting perfect polynomials over \mathbf{F}_{2}.

Degree	Factorization into Irreducibles
5	$T(T+1)^{2}\left(T^{2}+T+1\right)$
	$T^{2}(T+1)\left(T^{2}+T+1\right)$
11	$T(T+1)^{2}\left(T^{2}+T+1\right)^{2}\left(T^{4}+T+1\right)$
	$T^{2}(T+1)\left(T^{2}+T+1\right)^{2}\left(T^{4}+T+1\right)$
	$T^{3}(T+1)^{4}\left(T^{4}+T^{3}+1\right)$
	$T^{4}(T+1)^{3}\left(T^{4}+T^{3}+T^{2}+T+1\right)$
15	$T^{3}(T+1)^{6}\left(T^{3}+T+1\right)\left(T^{3}+T^{2}+1\right)$
	$T^{6}(T+1)^{3}\left(T^{3}+T+1\right)\left(T^{3}+T^{2}+1\right)$
16	$T^{4}(T+1)^{4}\left(T^{4}+T^{3}+1\right)\left(T^{4}+T^{3}+T^{2}+T+1\right)$
20	$T^{4}(T+1)^{6}\left(T^{3}+T+1\right)\left(T^{3}+T^{2}+1\right)\left(T^{4}+T^{3}+T^{2}+T+1\right)$
	$T^{6}(T+1)^{4}\left(T^{3}+T+1\right)\left(T^{3}+T^{2}+1\right)\left(T^{4}+T^{3}+1\right)$

Conjecture 2 There are no odd perfect polynomials.

The study of perfect polynomials over arbitrary finite fields was taken up 35 years later by Beard, O'Connell and West ([2], [3]). There one finds proposed the following bold extension of Canaday's conjecture:

Conjecture 3 If A is a perfect polynomial over \mathbf{F}_{q}, then A has a linear factor $\operatorname{over} \mathbf{F}_{q}$.

Link, a master's student of Beard's, showed that this conjecture is too optimistic by exhibiting explicit counterexamples for $q=11$ and $q=17$ ([4], [5]). Counterexamples for $q=4$ appear in a paper of Gallardo \& Rahavandrainy [6].

Here we show that the Beard-O'Connell-West conjecture fails in all cases except possibly when q is prime:

Theorem 4 If \mathbf{F}_{q} is a nontrivial extension of its prime field \mathbf{F}_{p}, then there is always a perfect polynomial over \mathbf{F}_{q} with no linear factor.

The remaining cases appear much more subtle. Here we note that the Link's construction of a counterexample for $p=11$ generalizes to an infinite class of primes:

Theorem 5 Let p be any prime for which

$$
\left(\frac{-2}{p}\right)=1 \quad \text { while } \quad\left(\frac{-3}{p}\right)=-1
$$

Then $A:=\prod_{\alpha \in \mathbf{F}_{p}}\left((T+\alpha)^{2}-3 / 8\right)^{2}$ is perfect yet without linear factors.
Remark 6 The primes obeying the conditions of the theorem are exactly the primes $p \equiv 11$ or $17(\bmod 24)$, the first few of which are $11,17,41,59,83,89$, $107,113, \ldots$. By the prime number theorem for arithmetic progressions (or Chebotarev's density theorem), these constitute asymptotically $\frac{1}{4}$ of all primes; in particular, the conjecture of Beard, O'Connell and West fails for infinitely many primes.

As we noted above, the case $p=2$ (Canaday's conjecture) remains open. However, assuming a plausible hypothesis on the distribution of prime polynomials, it is easy to prove that if there is a single odd perfect polynomial, then there are infinitely many. The hypothesis we need is the following, which is a partial polynomial analogue of Schinzel's Hypothesis H:

Conjecture 7 Let $f_{1}(T), \ldots, f_{k}(T)$ be irreducible polynomials over \mathbf{F}_{q}. Assume that there is no irreducible polynomial $\pi \in \mathbf{F}_{q}[T]$ for which the map $\mathbf{F}_{q}[T] \rightarrow \mathbf{F}_{q}[T] / \pi$ given by

$$
g \mapsto f_{1}(g) f_{2}(g) \cdots f_{k}(g) \quad(\bmod \pi)
$$

is identically zero. Then there are infinitely many monic polynomials $g(T)$ for which the specializations $f_{1}(g(T)), \ldots, f_{k}(g(T))$ are all irreducible.

Recently progress has been made on this conjecture by the second author [7], who shows that its conclusion holds whenever q is sufficiently large, depending only on k and the degrees of the f_{i}. Here we prove:

Theorem 8 Assume Conjecture 7. If there is a single perfect polynomial over \mathbf{F}_{q} without linear factors, then there are infinitely many.

If a counterexample to the Beard-O'Connell-West conjecture is known for a specific \mathbf{F}_{q} (for example, if p satisfies the condition of Theorem 5), then we can often obtain infinitely many counterexamples without the need for Conjecture 7. We illustrate by bootstrapping Link's counterexample in the case $p=11$ to obtain the following unconditional result:

Theorem 9 There are infinitely many perfect polynomials over \mathbf{F}_{11} with no linear factor.

2 Proof of Theorem 4

We begin with the following construction of special irreducible trinomials taken from Cohen [8, Lemma 2]:

Lemma 10 For any $\beta \in \mathbf{F}_{q}$, the polynomial $T^{p}-\alpha T-\beta$ is irreducible in \mathbf{F}_{q} if and only if

$$
\alpha=A^{p-1} \quad \text { for some } \quad A \in \mathbf{F}_{q} \quad \text { and } \quad \operatorname{Tr}_{\mathbf{F}_{q} / \mathbf{F}_{p}}\left(\beta / A^{p}\right) \neq 0
$$

Here p denotes the characteristic of \mathbf{F}_{q}.

PROOF OF THEOREM 4. Since the trace is a linear map from \mathbf{F}_{q} down to \mathbf{F}_{p}, and \mathbf{F}_{q} is a nontrivial extension of \mathbf{F}_{p}, the kernel of the trace map is necessarily nonzero. Thus we can fix $A \in \mathbf{F}_{q}$ so that the trace of A^{-1} vanishes. After fixing A in this way, choose $\beta \in \mathbf{F}_{q}$ so that

$$
\operatorname{Tr}_{\mathbf{F}_{q} / \mathbf{F}_{p}}\left(\beta / A^{p}\right) \neq 0
$$

this is possible since the left hand side can be written as a polynomial in β of degree q / p, so cannot vanish on all of \mathbf{F}_{q}. We claim that the p polynomials

$$
x^{p}-A^{p-1} x-(\beta+\gamma), \quad \gamma=0,1,2, \ldots, p-1
$$

are each irreducible over \mathbf{F}_{q}. By Lemma 10 it suffices to check that $\operatorname{Tr}_{\mathbf{F}_{q} / \mathbf{F}_{p}}((\beta+$ $\left.\gamma) / A^{p}\right)$ is nonvanishing for each γ. But this is easy: by the \mathbf{F}_{p}-linearity of the trace,

$$
\begin{aligned}
\operatorname{Tr}_{\mathbf{F}_{q} / \mathbf{F}_{p}}\left((\beta+\gamma) / A^{p}\right) & =\operatorname{Tr}_{\mathbf{F}_{q} / \mathbf{F}_{p}}\left(\beta / A^{p}\right)+\gamma \cdot \operatorname{Tr}_{\mathbf{F}_{q} / \mathbf{F}_{p}}\left(1 / A^{p}\right) \\
& =\operatorname{Tr}_{\mathbf{F}_{q} / \mathbf{F}_{p}}\left(\beta / A^{p}\right)+\gamma \cdot \operatorname{Tr}_{\mathbf{F}_{q} / \mathbf{F}_{p}}(1 / A)=\operatorname{Tr}_{\mathbf{F}_{q} / \mathbf{F}_{p}}\left(\beta / A^{p}\right),
\end{aligned}
$$

and this is nonzero by the choice of β. To complete the proof we set $A:=$ $\prod_{\gamma \in \mathbf{F}_{p}}\left(x^{p}-A^{p-1} x-\beta-\gamma\right)$ and observe that

$$
\sigma(A)=\prod_{\gamma \in \mathbf{F}_{p}}\left(x^{p}-A^{p-1} x-\beta-\gamma+1\right)=A .
$$

Thus A is perfect over \mathbf{F}_{q} with no linear factors.

3 Proof of Theorem 5

PROOF. Our construction generalizes Link's treatment of the case $p=11$. We begin by observing that over any field of characteristic $\neq 2$ in which -2
is a square, we have the polynomial identity

$$
\begin{aligned}
1+\left(T^{2}-3 / 8\right)+\left(T^{2}-3 / 8\right)^{2} & =\left(T^{2}+T \sqrt{-2}-7 / 8\right)\left(T^{2}-T \sqrt{-2}-7 / 8\right) \\
& =\left(\left(T+\frac{1}{2} \sqrt{-2}\right)^{2}-3 / 8\right)\left(\left(T-\frac{1}{2} \sqrt{-2}\right)^{2}-3 / 8\right)
\end{aligned}
$$

Our condition that -3 is not a square implies that also $3 / 8=(-3)(-2)^{-3}$ is not a square. It follows that $T^{2}-3 / 8$ as well as the two polynomial factors appearing on the right hand side are all irreducible. But then with $A:=$ $\prod_{\alpha \in \mathbf{F}_{p}}\left((T+\alpha)^{2}-3 / 8\right)^{2}$, we have

$$
\begin{aligned}
\sigma(A) & =\prod_{\alpha \in \mathbf{F}_{p}} \sigma\left(\left((T+\alpha)^{2}-\frac{3}{8}\right)^{2}\right) \\
& =\prod_{\alpha \in \mathbf{F}_{p}}\left(1+\left((T+\alpha)^{2}-\frac{3}{8}\right)+\left((T+\alpha)^{2}-\frac{3}{8}\right)^{2}\right) \\
& =\prod_{\alpha \in \mathbf{F}_{p}}\left(\left(T+\alpha+\frac{1}{2} \sqrt{-2}\right)^{2}-\frac{3}{8}\right) \prod_{\alpha \in \mathbf{F}_{p}}\left(\left(T+\alpha-\frac{1}{2} \sqrt{-2}\right)^{2}-\frac{3}{8}\right) \\
& =\prod_{\alpha^{\prime} \in \mathbf{F}_{p}}\left(\left(T+\alpha^{\prime}\right)^{2}-\frac{3}{8}\right) \prod_{\alpha^{\prime} \in \mathbf{F}_{p}}\left(\left(T+\alpha^{\prime}\right)^{2}-\frac{3}{8}\right)=A,
\end{aligned}
$$

so A is perfect. Moreover, by construction A is composed of p irreducible quadratic factors, so is a counterexample to the conjecture of Beard, O'Connell and West.

4 Proof of Theorem 8

PROOF. Let A be a perfect polynomial over \mathbf{F}_{q} without linear factors and write $A=\prod_{i=1}^{k} P_{i}(T)^{e_{i}}$, where the P_{i} are distinct monic irreducibles of degree ≥ 2. For any prime polynomial π of $\mathbf{F}_{q}[T]$, the map

$$
g \mapsto P_{1}(g) P_{2}(g) \cdots P_{k}(g) \quad(\bmod \pi)
$$

is not identically zero, since $g=0$ is sent to a nonzero residue class. So by Conjecture 7, there are infinitely many monic polynomials $g(T)$ for which $P_{1}(g(T)), \ldots, P_{k}(g(T))$ are each irreducible.

Since A is perfect, we have

$$
A=\prod_{i=1}^{k}\left(1+P_{i}(T)+P_{i}(T)^{2}+\cdots+P_{i}(T)^{e_{i}}\right)
$$

Since the substitution $T \mapsto g(T)$ induces an endomorphism of $\mathbf{F}_{q}[T]$, we have

$$
\begin{equation*}
A(g(T))=\prod_{i=1}^{k}\left(1+P_{i}(g(T))+P_{i}(g(T))^{2}+\cdots+P_{i}(g(T))^{e_{i}}\right) \tag{2}
\end{equation*}
$$

By the choice of g, the $P_{i}(g(T))$ are all irreducible; moreover, since the P_{i} are distinct and g is transcendental over \mathbf{F}_{q}, the $P_{i}(g(T))$ are also distinct. It follows that the right hand side of (2) is exactly $\sigma\left(\Pi P_{i}(g(T))^{e_{i}}\right)=\sigma(A(g(T)))$, and comparing with the left hand side we see that $A(g(T))$ is perfect. Moreover, none of the prime factors $P_{i}(g(T))$ of $A(g(T))$ is linear, so we obtain in this manner infinitely many counterexamples to the Beard-O'Connell-West conjecture.

It seems plausible that we can strengthen the conclusion of Conjecture 7 to read that there are $\gg_{f_{1}, \ldots, f_{k}, \epsilon} x^{1-\epsilon}$ such g with absolute value not exceeding x, as $x \rightarrow \infty$. Under this additional assumption, the above argument shows that if a single counterexample to the Beard-O'Connell-West conjecture exists over \mathbf{F}_{q}, then the number of counterexamples of absolute value $\leq x$ is at least x^{δ} for some small positive δ and all large x. By contrast, in the classical setting Hornfeck \& Wirsing [9] have shown that there are only $O_{\epsilon}\left(x^{\epsilon}\right)$ perfect numbers $\leq x$ for every $\epsilon>0$.

Another nonanalogy is worth pointing out: the above proof also shows that if an odd perfect polynomial with k distinct prime factors exists, then (under Hypothesis H) infinitely many such odd perfect polynomials exist. This is perhaps surprising in light of Dickson's classical result [10] that for each k there are only finitely many odd perfect numbers with k distinct prime factors.

5 Proof of Theorem 9

Let A denote Link's counterexample to Beard's conjecture for $p=11$, so that

$$
A:=\prod_{\alpha \in \mathbf{F}_{11}}\left((T+\alpha)^{2}+1\right)^{2} .
$$

Lemma 11 Let $f(T)$ be an irreducible quadratic polynomial over \mathbf{F}_{p}, where p is prime. Then the substitution $T \mapsto T^{p}+T$ leaves f irreducible.

PROOF. Let $\beta \in \mathbf{F}_{p^{2}}$ be a root of $f(T)$. The irreducibility of $f\left(T^{p}+T\right)$ over \mathbf{F}_{p} is equivalent to the irreducibility of $T^{p}+T-\beta$ over $\mathbf{F}_{p^{2}}$. By Lemma 10,
we have this property if and only if

$$
\begin{equation*}
-1=A^{p-1} \quad \text { for some } \quad A \in \mathbf{F}_{p^{2}} \quad \text { and } \quad \operatorname{Tr}_{\mathbf{F}_{p^{2}} / \mathbf{F}_{p}}\left(\beta / A^{p}\right)=1 \tag{3}
\end{equation*}
$$

Fix a generator g of \mathbf{F}_{p}^{\times}and set $A:=\sqrt{g} \in \mathbf{F}_{p^{2}}$. Then $A^{p-1}=A^{p} / A=$ $-\sqrt{g} / \sqrt{g}=-1$. So to complete the proof it suffices to verify the nonvanishing condition on the trace appearing in (3). But

$$
\operatorname{Tr}_{\mathbf{F}_{p}^{2} / \mathbf{F}_{p}}\left(\beta / A^{p}\right)=\beta / A^{p}+\beta^{p} / A^{p^{2}}=-\beta / A+\beta^{p} / A=A^{-1}\left(\beta^{p}-\beta\right),
$$

which is nonzero since otherwise β belongs to \mathbf{F}_{p}, contradicting the irreducibility of f.

Since each irreducible factor of A is quadratic, Lemma 11 implies that the substitution $T \mapsto T^{11}+T$ takes A to another perfect polynomial, say \tilde{A} (cf. the proof of Theorem 8). We now show how from \tilde{A} one can obtain an infinite family of perfect polynomials over \mathbf{F}_{11} without linear factors.

Recall that if $f(T) \in \mathbf{F}_{q}[T]$ is an irreducible polynomial not a constant multiple of T, then by the order of f we mean the order of any of its roots in the multiplicative group of its splitting field, or equivalently, the order of T in the unit group $\left(\mathbf{F}_{q}[T] / f\right)^{\times}$. The next lemma is contained in the classical researches of Serret and Dickson; a modern reference is [11, Theorem 3.3.5].

Lemma 12 Let $f(T) \in \mathbf{F}_{q}[T]$ be an irreducible polynomial of degree m and order e. Suppose that l is an odd prime for which

$$
\begin{equation*}
l \text { divides } e \text { but } l \text { does not divide }\left(q^{m}-1\right) / e \text {. } \tag{4}
\end{equation*}
$$

Then the substitution $T \mapsto T^{l^{k}}$ leaves f irreducible for every $k=1,2,3, \ldots$.
From the data in Table 2, we observe that Lemma 12 can be simultaneously applied to each of the irreducible factors of \tilde{A} with the same prime $l=15797$ (or with $l=1806113$). Then each of the substitutions $T \mapsto T^{l^{k}}$ takes \tilde{A} to another perfect polynomial.

Summarizing, we have shown that each of the composite substitutions

$$
T \mapsto T^{11}+T \quad \text { followed by } \quad T \mapsto T^{15797^{k}}
$$

takes A to a perfect polynomial over \mathbf{F}_{11} without linear factors. This completes the proof of Theorem 9.

Table 2
Data needed for the proof of Theorem 9. Note that $11^{2}-1=2^{3} \cdot 3 \cdot 5$ while $11^{22}-1=2^{3} \cdot 3 \cdot 5 \cdot 23 \cdot 89 \cdot 199 \cdot 15797 \cdot 58367 \cdot 1806113$.

Polynomial	Order after substitution $T \mapsto T^{11}+T$
$T^{2}+1$	$2^{2} \cdot 15797 \cdot 1806113$
$(T+1)^{2}+1$	$2^{3} \cdot 5 \cdot 23 \cdot 89 \cdot 199 \cdot 15797 \cdot 58367 \cdot 1806113$
$(T+2)^{2}+1$	$3 \cdot 5 \cdot 23 \cdot 89 \cdot 199 \cdot 15797 \cdot 58367 \cdot 1806113$
$(T+3)^{2}+1$	$2^{3} \cdot 3 \cdot 23 \cdot 89 \cdot 199 \cdot 15797 \cdot 58367 \cdot 1806113$
$(T+4)^{2}+1$	$2^{3} \cdot 3 \cdot 5 \cdot 23 \cdot 89 \cdot 199 \cdot 15797 \cdot 58367 \cdot 1806113$
$(T+5)^{2}+1$	$2^{2} \cdot 3 \cdot 5 \cdot 23 \cdot 89 \cdot 199 \cdot 15797 \cdot 58367 \cdot 1806113$
$(T+6)^{2}+1$	$2^{2} \cdot 3 \cdot 5 \cdot 23 \cdot 89 \cdot 199 \cdot 15797 \cdot 58367 \cdot 1806113$
$(T+7)^{2}+1$	$2^{3} \cdot 3 \cdot 5 \cdot 23 \cdot 89 \cdot 199 \cdot 15797 \cdot 58367 \cdot 1806113$
$(T+8)^{2}+1$	$2^{3} \cdot 3 \cdot 23 \cdot 89 \cdot 199 \cdot 15797 \cdot 58367 \cdot 1806113$
$(T+9)^{2}+1$	$2 \cdot 3 \cdot 5 \cdot 23 \cdot 89 \cdot 199 \cdot 15797 \cdot 58367 \cdot 1806113$
$(T+10)^{2}+1$	$2^{3} \cdot 5 \cdot 23 \cdot 89 \cdot 199 \cdot 15797 \cdot 58367 \cdot 1806113$

Acknowledgements

We thank Felipe Voloch for enlightening e-mail correspondence related to Theorem 8.

References

[1] E. F. Canaday, The sum of the divisors of a polynomial, Duke Math. J. 8 (1941) 721-737.
[2] J. R. O'Connell, Perfect polynomials over GF(p), Master's thesis, Univ. Texas at Arlington (1974).
[3] J. T. B. Beard, Jr., J. R. O'Connell, Jr., K. I. West, Perfect polynomials over GF (q), Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 62 (1977) 283-291.
[4] M. L. Link, Iterated sums of polynomial divisors over GF(p), Master's thesis, Tennessee Technological University (1995).
[5] J. T. B. Beard, Jr., M. L. Link, Iterated sums of polynomial divisors, Libertas Math. 17 (1997) 111-124.
[6] L. Gallardo, O. Rahavandrainy, On perfect polynomials over \mathbf{F}_{4}, Port. Math. (N.S.) 62 (1) (2005) 109-122.
[7] P. Pollack, An explicit approach to Hypothesis H for polynomials over a finite field, In Proceedings of the Anatomy of Integers Conference, Montréal, March 2006, to appear.
[8] S. D. Cohen, The reducibility theorem for linearised polynomials over finite fields, Bull. Austral. Math. Soc. 40 (3) (1989) 407-412.
[9] B. Hornfeck, E. Wirsing, Über die Häufigkeit vollkommener Zahlen, Math. Ann. 133 (1957) 431-438.
[10] L. E. Dickson, Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors, Amer. J. Math. 35 (4) (1913) 413-422.
[11] R. Lidl and H. Niederreiter, Finite fields, second ed., Encyclopedia of Mathematics and its Applications, vol. 20, Cambridge University Press, Cambridge, 1997. With a foreword by P. M. Cohn.

[^0]: * Corresponding author. Address: 6188 Kemeny Hall, Dartmouth College, Hanover, New Hampshire 03755. Phone: (603) 646-2415. Fax: (603) 646-1312.

 Email addresses: Luis.Gallardo@univ-brest.fr (Luis Gallardo), Paul.Pollack@dartmouth.edu (Paul Pollack),
 Olivier.Rahavandrainy@univ-brest.fr (Olivier Rahavandrainy).
 1 Supported by an NSF Graduate Research Fellowship.

