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Abstract

Following Beard, O’Connell and West (1977) we call a polynomial over a finite field
Fq perfect if it coincides with the sum of its monic divisors. The study of perfect
polynomials was initiated in 1941 by Carlitz’s doctoral student Canaday in the case
q = 2, who proposed the still unresolved conjecture that every perfect polynomial
over F2 has a root in F2. Beard, et al. later proposed the analogous hypothesis
for all finite fields. Counterexamples to this general conjecture were found by Link
(in the cases q = 11, 17) and Gallardo & Rahavandrainy (in the case q = 4).
Here we show that the Beard-O’Connell-West conjecture fails in all cases except
possibly when q is prime. When q = p is prime, utilizing a construction of Link
we exhibit a counterexample whenever p ≡ 11 or 17 (mod 24). On the basis of a
polynomial analog of Schinzel’s Hypothesis H, we argue that if there is a single
perfect polynomial over the finite field Fq with no linear factor, then there are
infinitely many. Lastly, we prove without any hypothesis that there are infinitely
many perfect polynomials over F11 with no linear factor.
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1 Introduction and Statement of Results

For polynomials with coefficients in a fixed finite field, we denote by σ(·) the
polynomial analog of the usual sum of divisors function, which we define by

σ(A) :=
∑

D|A
D monic

D.

This yields an Fq[T ]-valued function which is multiplicative and whose value
on powers of monic primes is given by the familiar geometric series. We call a
polynomial A perfect if A is the sum of all its monic divisors, i.e., if σ(A) = A.
For example, T (T + 1) is perfect over F2 because modulo 2,

σ(T (T + 1)) = σ(T )σ(T + 1) = (T + 1)((T + 1) + 1) = T (T + 1). (1)

The study of perfect polynomials was begun by Canaday [1], who treated only
the case q = 2. For polynomials which split into linear factors over F2 he gave
the following criterion, which may be considered an analog of the classical
Euler-form for even perfect numbers:

Proposition 1 If A splits over F2, then A is perfect if and only if A =
(T (T + 1))2n−1 for some positive integer n.

Our example (1) is of course the case n = 1.

The distribution of non-splitting perfect polynomials is far more mysterious.
Canaday discovered 11 examples of such, which are displayed in Table 1. A
striking feature of Canaday’s list is that all the polynomials which appear have
a root over F2. Are there perfect polynomials without such a root? Sixty years
later we can do no better than echo Canaday’s assessment: “it is plausible that
none of this type exist, but this is not proved.”

Let us agree to call a polynomial over F2 even if it possesses a root over F2 and
odd otherwise. This is more sensible than it may appear at first glance: indeed,
with the usual definition of the absolute value of a polynomial over a finite
field, viz. |A| := qdeg A, the even polynomials are exactly those with a divisor
of absolute value 2. In complete analogy with the integer case, Canaday’s
conjecture now assumes the following tantalizing form:
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Table 1
Canaday’s list of nonsplitting perfect polynomials over F2.

Degree Factorization into Irreducibles

5 T (T + 1)2(T 2 + T + 1)

T 2(T + 1)(T 2 + T + 1)

11 T (T + 1)2(T 2 + T + 1)2(T 4 + T + 1)

T 2(T + 1)(T 2 + T + 1)2(T 4 + T + 1)

T 3(T + 1)4(T 4 + T 3 + 1)

T 4(T + 1)3(T 4 + T 3 + T 2 + T + 1)

15 T 3(T + 1)6(T 3 + T + 1)(T 3 + T 2 + 1)

T 6(T + 1)3(T 3 + T + 1)(T 3 + T 2 + 1)

16 T 4(T + 1)4(T 4 + T 3 + 1)(T 4 + T 3 + T 2 + T + 1)

20 T 4(T + 1)6(T 3 + T + 1)(T 3 + T 2 + 1)(T 4 + T 3 + T 2 + T + 1)

T 6(T + 1)4(T 3 + T + 1)(T 3 + T 2 + 1)(T 4 + T 3 + 1)

Conjecture 2 There are no odd perfect polynomials.

The study of perfect polynomials over arbitrary finite fields was taken up 35
years later by Beard, O’Connell and West ([2], [3]). There one finds proposed
the following bold extension of Canaday’s conjecture:

Conjecture 3 If A is a perfect polynomial over Fq, then A has a linear factor
over Fq.

Link, a master’s student of Beard’s, showed that this conjecture is too opti-
mistic by exhibiting explicit counterexamples for q = 11 and q = 17 ([4], [5]).
Counterexamples for q = 4 appear in a paper of Gallardo & Rahavandrainy
[6].

Here we show that the Beard-O’Connell-West conjecture fails in all cases ex-
cept possibly when q is prime:

Theorem 4 If Fq is a nontrivial extension of its prime field Fp, then there
is always a perfect polynomial over Fq with no linear factor.

The remaining cases appear much more subtle. Here we note that the Link’s
construction of a counterexample for p = 11 generalizes to an infinite class of
primes:
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Theorem 5 Let p be any prime for which

(

−2

p

)

= 1 while

(

−3

p

)

= −1.

Then A :=
∏

α∈Fp
((T + α)2 − 3/8)

2
is perfect yet without linear factors.

Remark 6 The primes obeying the conditions of the theorem are exactly the
primes p ≡ 11 or 17 (mod 24), the first few of which are 11, 17, 41, 59, 83, 89,
107, 113, . . . . By the prime number theorem for arithmetic progressions (or
Chebotarev’s density theorem), these constitute asymptotically 1

4
of all primes;

in particular, the conjecture of Beard, O’Connell and West fails for infinitely
many primes.

As we noted above, the case p = 2 (Canaday’s conjecture) remains open.
However, assuming a plausible hypothesis on the distribution of prime poly-
nomials, it is easy to prove that if there is a single odd perfect polynomial,
then there are infinitely many. The hypothesis we need is the following, which
is a partial polynomial analogue of Schinzel’s Hypothesis H:

Conjecture 7 Let f1(T ), . . . , fk(T ) be irreducible polynomials over Fq. As-
sume that there is no irreducible polynomial π ∈ Fq[T ] for which the map
Fq[T ] → Fq[T ]/π given by

g 7→ f1(g)f2(g) · · ·fk(g) (mod π)

is identically zero. Then there are infinitely many monic polynomials g(T ) for
which the specializations f1(g(T )), . . . , fk(g(T )) are all irreducible.

Recently progress has been made on this conjecture by the second author [7],
who shows that its conclusion holds whenever q is sufficiently large, depending
only on k and the degrees of the fi. Here we prove:

Theorem 8 Assume Conjecture 7. If there is a single perfect polynomial over
Fq without linear factors, then there are infinitely many.

If a counterexample to the Beard-O’Connell-West conjecture is known for a
specific Fq (for example, if p satisfies the condition of Theorem 5), then we can
often obtain infinitely many counterexamples without the need for Conjecture
7. We illustrate by bootstrapping Link’s counterexample in the case p = 11 to
obtain the following unconditional result:

Theorem 9 There are infinitely many perfect polynomials over F11 with no
linear factor.

4



2 Proof of Theorem 4

We begin with the following construction of special irreducible trinomials
taken from Cohen [8, Lemma 2]:

Lemma 10 For any β ∈ Fq, the polynomial T p −αT − β is irreducible in Fq

if and only if

α = Ap−1 for some A ∈ Fq and TrFq/Fp
(β/Ap) 6= 0.

Here p denotes the characteristic of Fq.

PROOF OF THEOREM 4. Since the trace is a linear map from Fq down
to Fp, and Fq is a nontrivial extension of Fp, the kernel of the trace map is
necessarily nonzero. Thus we can fix A ∈ Fq so that the trace of A−1 vanishes.
After fixing A in this way, choose β ∈ Fq so that

TrFq/Fp
(β/Ap) 6= 0;

this is possible since the left hand side can be written as a polynomial in β of
degree q/p, so cannot vanish on all of Fq. We claim that the p polynomials

xp − Ap−1x − (β + γ), γ = 0, 1, 2, . . . , p − 1

are each irreducible over Fq. By Lemma 10 it suffices to check that TrFq/Fp
((β+

γ)/Ap) is nonvanishing for each γ. But this is easy: by the Fp-linearity of the
trace,

TrFq/Fp
((β + γ)/Ap) = TrFq/Fp

(β/Ap) + γ · TrFq/Fp
(1/Ap)

= TrFq/Fp
(β/Ap) + γ · TrFq/Fp

(1/A) = TrFq/Fp
(β/Ap),

and this is nonzero by the choice of β. To complete the proof we set A :=
∏

γ∈Fp
(xp − Ap−1x − β − γ) and observe that

σ(A) =
∏

γ∈Fp

(xp − Ap−1x − β − γ + 1) = A.

Thus A is perfect over Fq with no linear factors.

3 Proof of Theorem 5

PROOF. Our construction generalizes Link’s treatment of the case p = 11.
We begin by observing that over any field of characteristic 6= 2 in which −2
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is a square, we have the polynomial identity

1 + (T 2 − 3/8) + (T 2 − 3/8)2 = (T 2 + T
√
−2 − 7/8)(T 2 − T

√
−2 − 7/8)

= ((T +
1

2

√
−2)2 − 3/8)((T − 1

2

√
−2)2 − 3/8).

Our condition that −3 is not a square implies that also 3/8 = (−3)(−2)−3 is
not a square. It follows that T 2 − 3/8 as well as the two polynomial factors
appearing on the right hand side are all irreducible. But then with A :=
∏

α∈Fp
((T + α)2 − 3/8)2, we have

σ(A) =
∏

α∈Fp

σ

(

(

(T + α)2 − 3

8

)2
)

=
∏

α∈Fp

(

1 +
(

(T + α)2 − 3

8

)

+
(

(T + α)2 − 3

8

)2
)

=
∏

α∈Fp

(

(T + α +
1

2

√
−2)2 − 3

8

)

∏

α∈Fp

(

(T + α − 1

2

√
−2)2 − 3

8

)

=
∏

α′∈Fp

(

(T + α′)2 − 3

8

)

∏

α′∈Fp

(

(T + α′)2 − 3

8

)

= A,

so A is perfect. Moreover, by construction A is composed of p irreducible
quadratic factors, so is a counterexample to the conjecture of Beard, O’Connell
and West.

4 Proof of Theorem 8

PROOF. Let A be a perfect polynomial over Fq without linear factors and
write A =

∏k
i=1 Pi(T )ei, where the Pi are distinct monic irreducibles of degree

≥ 2. For any prime polynomial π of Fq[T ], the map

g 7→ P1(g)P2(g) · · ·Pk(g) (mod π)

is not identically zero, since g = 0 is sent to a nonzero residue class. So by
Conjecture 7, there are infinitely many monic polynomials g(T ) for which
P1(g(T )), . . . , Pk(g(T )) are each irreducible.

Since A is perfect, we have

A =
k
∏

i=1

(1 + Pi(T ) + Pi(T )2 + · · · + Pi(T )ei).
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Since the substitution T 7→ g(T ) induces an endomorphism of Fq[T ], we have

A(g(T )) =
k
∏

i=1

(1 + Pi(g(T )) + Pi(g(T ))2 + · · ·+ Pi(g(T ))ei). (2)

By the choice of g, the Pi(g(T )) are all irreducible; moreover, since the Pi are
distinct and g is transcendental over Fq, the Pi(g(T )) are also distinct. It fol-
lows that the right hand side of (2) is exactly σ(

∏

Pi(g(T ))ei) = σ(A(g(T ))),
and comparing with the left hand side we see that A(g(T )) is perfect. More-
over, none of the prime factors Pi(g(T )) of A(g(T )) is linear, so we obtain
in this manner infinitely many counterexamples to the Beard-O’Connell-West
conjecture.

It seems plausible that we can strengthen the conclusion of Conjecture 7 to
read that there are ≫f1,...,fk,ǫ x1−ǫ such g with absolute value not exceeding x,
as x → ∞. Under this additional assumption, the above argument shows that
if a single counterexample to the Beard-O’Connell-West conjecture exists over
Fq, then the number of counterexamples of absolute value ≤ x is at least xδ

for some small positive δ and all large x. By contrast, in the classical setting
Hornfeck & Wirsing [9] have shown that there are only Oǫ(x

ǫ) perfect numbers
≤ x for every ǫ > 0.

Another nonanalogy is worth pointing out: the above proof also shows that
if an odd perfect polynomial with k distinct prime factors exists, then (under
Hypothesis H) infinitely many such odd perfect polynomials exist. This is
perhaps surprising in light of Dickson’s classical result [10] that for each k
there are only finitely many odd perfect numbers with k distinct prime factors.

5 Proof of Theorem 9

Let A denote Link’s counterexample to Beard’s conjecture for p = 11, so that

A :=
∏

α∈F11

(

(T + α)2 + 1
)2

.

Lemma 11 Let f(T ) be an irreducible quadratic polynomial over Fp, where
p is prime. Then the substitution T 7→ T p + T leaves f irreducible.

PROOF. Let β ∈ Fp2 be a root of f(T ). The irreducibility of f(T p +T ) over
Fp is equivalent to the irreducibility of T p + T − β over Fp2 . By Lemma 10,
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we have this property if and only if

−1 = Ap−1 for some A ∈ Fp2 and TrF
p2/Fp

(β/Ap) = 1. (3)

Fix a generator g of F×
p and set A :=

√
g ∈ Fp2 . Then Ap−1 = Ap/A =

−√
g/
√

g = −1. So to complete the proof it suffices to verify the nonvanishing
condition on the trace appearing in (3). But

TrF2
p/Fp

(β/Ap) = β/Ap + βp/Ap2

= −β/A + βp/A = A−1(βp − β),

which is nonzero since otherwise β belongs to Fp, contradicting the irreducibil-
ity of f .

Since each irreducible factor of A is quadratic, Lemma 11 implies that the
substitution T 7→ T 11 + T takes A to another perfect polynomial, say Ã (cf.
the proof of Theorem 8). We now show how from Ã one can obtain an infinite
family of perfect polynomials over F11 without linear factors.

Recall that if f(T ) ∈ Fq[T ] is an irreducible polynomial not a constant multiple
of T , then by the order of f we mean the order of any of its roots in the
multiplicative group of its splitting field, or equivalently, the order of T in the
unit group (Fq[T ]/f)×. The next lemma is contained in the classical researches
of Serret and Dickson; a modern reference is [11, Theorem 3.3.5].

Lemma 12 Let f(T ) ∈ Fq[T ] be an irreducible polynomial of degree m and
order e. Suppose that l is an odd prime for which

l divides e but l does not divide (qm − 1)/e. (4)

Then the substitution T 7→ T lk leaves f irreducible for every k = 1, 2, 3, . . . .

From the data in Table 2, we observe that Lemma 12 can be simultaneously
applied to each of the irreducible factors of Ã with the same prime l = 15797
(or with l = 1806113). Then each of the substitutions T 7→ T lk takes Ã to
another perfect polynomial.

Summarizing, we have shown that each of the composite substitutions

T 7→ T 11 + T followed by T 7→ T 15797k

takes A to a perfect polynomial over F11 without linear factors. This completes
the proof of Theorem 9.
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Table 2
Data needed for the proof of Theorem 9. Note that 112 − 1 = 23 · 3 · 5 while
1122 − 1 = 23 · 3 · 5 · 23 · 89 · 199 · 15797 · 58367 · 1806113.

Polynomial Order after substitution T 7→ T 11 + T

T 2 + 1 22 · 15797 · 1806113
(T + 1)2 + 1 23 · 5 · 23 · 89 · 199 · 15797 · 58367 · 1806113
(T + 2)2 + 1 3 · 5 · 23 · 89 · 199 · 15797 · 58367 · 1806113
(T + 3)2 + 1 23 · 3 · 23 · 89 · 199 · 15797 · 58367 · 1806113
(T + 4)2 + 1 23 · 3 · 5 · 23 · 89 · 199 · 15797 · 58367 · 1806113
(T + 5)2 + 1 22 · 3 · 5 · 23 · 89 · 199 · 15797 · 58367 · 1806113
(T + 6)2 + 1 22 · 3 · 5 · 23 · 89 · 199 · 15797 · 58367 · 1806113
(T + 7)2 + 1 23 · 3 · 5 · 23 · 89 · 199 · 15797 · 58367 · 1806113
(T + 8)2 + 1 23 · 3 · 23 · 89 · 199 · 15797 · 58367 · 1806113
(T + 9)2 + 1 2 · 3 · 5 · 23 · 89 · 199 · 15797 · 58367 · 1806113
(T + 10)2 + 1 23 · 5 · 23 · 89 · 199 · 15797 · 58367 · 1806113
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