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WHAT IS... a perfect number?

Let σ(n) :=
∑

d|n d be the usual sum-of-divisors function, and
let s(n) :=

∑
d|n,d<n d be the sum-of-proper-divisors function,

so that s(n) = σ(n)− n.

Definition

A natural number n is called perfect if σ(n) = 2n, or
equivalently, if s(n) = n.

For example, n = 28 is perfect, since

28 = 1 + 2 + 4 + 7 + 14.

But who decided adding divisors was a reasonable thing to do
in the first place?
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All Greek to us

Among simple even numbers, some are
superabundant, others are deficient: these two classes
are as two extremes opposed one to the other; as for
those that occupy the middle point between the two,
they are said to be perfect.

– Nicomachus (ca. 100 AD), Introductio Arithmetica

Abundant: s(n) > n, e.g., n = 12.
Deficient: s(n) < n, e.g., n = 5.
Perfect: s(n) = n, e.g., n = 6.

Carl Pomerance has called this the “Goldilox classification”.
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Goldilox explained

The superabundant number is . . . as if an adult animal
was formed from too many parts or members, having
“ten tongues”, as the poet says, and ten mouths, or
nine lips, and provided with three lines of teeth; or
with a hundred arms, or having too many fingers on
one of its hands. . . . The deficient number is . . . as if
an animal lacked members or natural parts . . . if he
does not have a tongue or something like that.

. . . In the case of those that are found between the
too much and the too little, that is in equality, is
produced virtue, just measure, propriety, beauty and
things of that sort — of which the most exemplary
form is that type of number which is called perfect.
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You can see a lot just by looking

Let’s list the first several terms of each of these sequences.

Abundants: 12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66,
70, 72, 78, 80, 84, 88, 90, 96, 100, 102, . . . .

Deficients: 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19,
21, 22, 23, 25, 26, 27, . . . .

Perfects: 6, 28, 496, 8128, 33550336, 8589869056,
137438691328, 2305843008139952128, . . . .

Just as . . . ugly and vile things abound, so
superabundant and deficient numbers are plentiful
and can be found without a rule. . . – Nicomachus
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Here’s looking at Euclid

A rule for generating perfect numbers was given by Euclid in
his Elements, written around 300 BCE.

Theorem (Euclid)

If as many numbers as we please beginning from
a unit be set out continuously in double
proportion, until the sum of all becomes a prime,
and if the sum multiplied into the last make
some number, the product will be perfect.

For example: N = 6 (n = 2), N = 28 (n = 3), and

N = 8116868 · · · 22457856 corresponding to n = 3021377.

(About 1.8 million middle digits omitted.)
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Here’s looking at Euclid

A rule for generating perfect numbers was given by Euclid in
his Elements, written around 300 BCE.

Theorem (Euclid)

If 2n − 1 is a prime number, then

N := 2n−1(2n − 1)

is a perfect number.

For example: N = 6 (n = 2), N = 28 (n = 3), and

N = 8116868 · · · 22457856 corresponding to n = 3021377.

(About 1.8 million middle digits omitted.)
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A sequel two thousand years in the making

Theorem (Euler)

If N is an even perfect number, then N can be
written in the form

N = 2n−1(2n − 1),

where 2n − 1 is a prime number.

There are several proofs of Euler’s theorem known. We choose
to present an elegant argument of Graeme Cohen from the
Math. Gazette.
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The mouth speaketh

Let’s define the abundancy of the number n as the ratio

h(n) := σ(n)/n.

We use the following simple lemma:

Lemma

If n | m, then h(n) ≤ h(m). Equality holds only if n = m.

Proof.

This is immediate upon observing that for every n,

h(n) =
1

n

∑
d|n

d =
∑
d|n

d

n
=
∑
d|n

1

n/d
=
∑
e|n

1

e
.
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Making Euler slicker

We now prove Euler’s characterization of even perfect
numbers, following Cohen. Say N is even perfect. Write
N = 2kq, where q is odd and k ≥ 1.

Using that σ is multiplicative, we find that

2k+1q = 2N = σ(N)

= σ(2k)σ(q) = (2k+1 − 1)σ(q).

It follows that 2k+1 − 1 divides q. Hence,

2 =
σ(N)

N
=

2k+1 − 1

2k
· σ(q)
q

≥ 2k+1 − 1

2k
· σ(2

k+1 − 1)

2k+1 − 1
≥ 2k+1 − 1

2k
· 2k+1

2k+1 − 1
= 2.
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Making Euler slicker

We’ve just seen that

2 =
σ(N)

N
=

2k+1 − 1

2k
· σ(q)
q

≥ 2k+1 − 1

2k
· σ(2

k+1 − 1)

2k+1 − 1
≥ 2k+1 − 1

2k
· 2k+1

2k+1 − 1
= 2.

So equality holds throughout. This means that

2k+1 − 1 = q

and that
σ(2k+1 − 1) = 2k+1,

which forces 2k+1 − 1 to be prime. So N = 2k(2k+1 − 1),
where the second factor is prime.
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The media’s anti-Platonist bias

So even perfect numbers are in one-to-one correspondence with
Mersenne primes. Great!

But we don’t know if there are infinitely many Mersenne
primes, though there is some good evidence for this.

We don’t even have a proof that there are infinitely composite
numbers of the form 2p − 1.
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Odd perfect numbers: the (probably non-existent)
elephant in the room

Maybe the oldest open problem in number theory is the
question of whether there exist odd perfect numbers.

Is there a formula for odd perfect numbers, like the
Euclid–Euler formula? Probably not.

Theorem (Dickson, 1913)

For each positive integer k, there are only
finitely many odd perfect numbers N with
precisely k distinct prime factors.

How many is finitely many? Well,

N < (4k)(4k)
2k

2

(Pomerance, 1977).
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Size matters

Pomerance’s result was later refined by Heath-Brown, Cook,
and finally Nielsen:

Theorem

If N is an odd perfect number with k distinct prime factors,
then

N < 24
k
.

Theorem (P.)

The number of odd perfect N with k distinct prime factors is
at most

4k
2
.
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Sylvester’s web

. . . a prolonged meditation has satisfied me
that the existence of [an odd perfect
number] - its escape, so to say, from the
complex web of conditions which hem it in
on all sides - would be little short of a
miracle. – J. J. Sylvester

We know quite a few conditions an odd perfect number must
satisfy. For instance:

1 N has the form peM2, where p ≡ e ≡ 1 (mod 4) (Euler),

2 N has at least 9 distinct prime factors (Nielsen)

3 N has at least 101 prime factors counted with multiplicity
(Ochem and Rao),

4 N has more than 1500 decimal digits (Ochem and Rao)
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Sylvester’s web

We know quite a few conditions an odd perfect number must
satisfy. For instance:

1 N has the form peM2, where p ≡ e ≡ 1 (mod 4) (Euler),

2 N has at least 9 distinct prime factors (Nielsen)

3 N has at least 101 prime factors counted with multiplicity
(Ochem and Rao),

4 N has more than 1500 decimal digits (Ochem and Rao)

Does this justify Sylvester’s conjecture that odd perfect
numbers don’t exist? It’s amusing to note that almost all
natural numbers satisfy these four conditions!
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A new hope

Rather than try to study the individual members of a set, one
can take a statistical perspective, examining how many
elements of the set there are below a given bound.

If A is a subset of N = {1, 2, 3, . . . }, define the density of A as

lim
x→∞

#A ∩ [1, x]

x
.

For example, the even numbers have density 1/2, and the
prime numbers have density 0. But the set of natural numbers
with first digit 1 does not have a density.

Question

Does the set of abundant numbers have a density? What
about the deficient numbers? The perfect numbers?
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It’s OK to be dense

Theorem (Davenport, 1933)

For each real u ≥ 0, consider the set

Ds(u) = {n : s(n)/n ≤ u}.

This set always possesses an asymptotic
density Ds(u). Considered as a function of u,
the function Ds is continuous and strictly
increasing, with Ds(0) = 0 and Ds(∞) = 1.

Corollary

The perfect numbers have density 0, the deficient numbers
have density Ds(1), and the abundant numbers have density
1−Ds(1).
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Numerics

The following theorem improves on earlier work of Behrend,
Salié, Wall, and Deléglise:

Theorem (Kobayashi, 2010)

For the density of abundant numbers, we have

0.24761 < 1−Ds(1) < 0.24765.

So just under 1 in every 4 natural numbers is
abundant, and just over 3 in 4 are deficient.
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Counting perfect numbers

Let V (x) denote the number of perfect numbers n ≤ x.
Davenport’s theorem says that V (x)/x→ 0 as x→∞.
Can we say anything more precise?

Even perfect numbers correspond to primes of the form 2n − 1.
We know 47 such values of n, the largest being

n = 42643801.

Conjecture

The number of n ≤ x for which 2n− 1 is prime is asymptotic to

eγ

log 2
log x.
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An exercise in heuristic reasoning

Where does this conjecture come from? First, if 2n − 1 is
prime, then n = p is also prime. A random number of size ≈ 2p

is prime with probability about 1
log(2p) =

1
p log 2 . But 2p − 1 has

a ‘leg up’ on being prime: One can easily prove that it’s never
divisible by any prime < 2p. This suggests multiply our naive
probability by ∏

q<2p

(1− 1/q)−1 ≈ eγ log p.

This gives a “corrected” probability of about eγ/ log 2 · log p/p.

Summing this probability over p ≤ x gives us an expected
count of about eγ

log 2 log x.
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An exercise in heuristic reasoning

This conjecture on the distribution of Mersenne primes
suggests a corresponding conjecture for even perfect numbers:

Conjecture

The number of even perfect numbers up to x is asymptotic to
eγ

log 2 log log x, as x→∞.

Since we don’t think there are any odd perfect numbers, we
can also erase the word “even”.
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A good half-decade for perfect numbers

Theorem

We have the following estimates for V (x):

Volkmann, 1955 V (x) = O(x5/6)

Hornfeck, 1955 V (x) = O(x1/2)

Kanold, 1956 V (x) = o(x1/2)

Erdős, 1956 V (x) = O(x1/2−δ)

Kanold, 1957 V (x) = O(x1/4
log x

log log x
)

Hornfeck & Wirsing, 1957 V (x) = O(xε)
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A good half-decade for perfect numbers

The sharpest result to date is due to Wirsing
(1959): For all x > 3,

V (x) ≤ xW/ log log x

for a certain absolute constant W . This is no
doubt still very far from the truth.

In the opposite direction, the following conjecture is wide open:

Conjecture

There are infinitely many perfect numbers, i.e., V (x)→∞ as
x→∞.
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Higher order generalizations of the perfect numbers

Problem (Catalan, 1888)

Start with a natural number n. What is the
eventual behavior of the sequence of iterates
n, s(n), s(s(n)), s(s(s(n))), . . . (the aliquot
sequence at n)?

Example

n = 20 leads to the sequence 20, 22, 14, 10, 8, 7, 1, 0.

Example

n = 25 leads to the sequence 25, 6, 6, 6, 6, 6, . . . .
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Higher order generalizations

Conjecture (Catalan)

Every starting n leads to a sequence terminating at 0, or hits a
perfect number.

As noticed almost immediately by Perrott, this is false:

Example

n = 220 leads to the sequence 220, 284, 220, 284, 220, 284, . . . .

Conjecture (Catalan–Dickson, 1913)

Every starting n leads to a bounded sequence, i.e., either a
sequence terminating in 0 or reaching a cycle.

The first n for which this conjecture is in doubt is n = 276.
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Higher order generalizations

Definition

We call n a sociable number if the aliquot sequence at n is
purely periodic; in this case, the length of the period is called
the order of sociability.

Definition

An amicable number is a sociable number of order 2. In this
case, the pair {n, s(n)} is an amicable pair.
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We tend to scoff at the beliefs of the ancients. But we can’t scoff at them personally, to their faces, and this is

what annoys me. (Deep Thoughts, Jack Handey)

Persons who have concerned
themselves with talismans affirm that
the amicable numbers 220 and 284
have an influence to establish a union
or close friendship between two
individuals. – Ibn Khaldun

Al-Majriti (ca. 1050 years ago) claims to have tested the erotic
effect of

giving any one the smaller number 220 to eat, and
himself eating the larger number 284.
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The distribution of amicable numbers

Let Vk(x) denote the number of sociable numbers of order k
not exceeding x. (So V (x) = V1(x).)

Conjecture (Bratley, Lunnon, and McKay)

V2(x)/x
1/2 → 0 as x→∞.

Conjecture (Erdős)

For each ε > 0, we have V2(x) > x1−ε once x > x0(ε).

Though we know > 12 million amicable pairs, we still have no
proof that there are infinitely many, or even any plausible
strategy.
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The distribution of amicable numbers

The first theorem in this area is due to Erdős.

Theorem (Erdős 1955)

The set of natural numbers which belong to an amicable pair
has asymptotic density zero.

A more explicit result was obtained in joint work with Rieger
twenty years later.

Theorem (Erdős and Rieger 1975)

The set of amicable numbers has asymptotic density zero. In
fact,

V2(x)�
x

log log log x
.
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A wholly inadequate sketch of the proof that
V2(x)/x→ 0

It’s enough to prove this for the set consisting of the smaller
member of each amicable pair.

Applying s to any of the numbers n in this set, we jump to the
larger member s(n) of the pair. So each n in this set is
abundant. But if we apply s one more time, we jump back
down to n. So s(n) is deficient.

What Erdős really proved was the following theorem:

Theorem

If n is abundant, then almost all of the time, s(n) is also
abundant. More precisely, the set of abundant n for which s(n)
is non-abundant has density zero.
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A wholly inadequate sketch of the proof that
V2(x)/x→ 0

How do you prove the theorem? Notice that whether or not n
is abundant depends on the size of the ratio

σ(n)

n
=
∏
pe‖n

(
1 +

1

p
+ · · ·+ 1

pe

)
,

and the size of this ratio is usually governed by the small prime
powers dividing n.

Erdős’s idea was to show that almost always, s(n) and n have
the same set of small prime power divisors. He argues that if n
is abundant, it’s probably the small prime powers that put it
over the top, and since s(n) shares these small prime powers,
s(n) should be abundant too!
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Sketchiness, continued

Why should n and s(n) share the same small prime power
factors? By definition,

s(n) = σ(n)− n.

Erdős noticed that σ(n) is usually divisible by high powers of
all the small primes (powers higher than those that appear in a
typical number n). So the ultrametric inequality forces s(n)
and n to share the same small prime power divisors.

Why should σ(n) be so highly divisible? Let’s start by looking
at a special case: Why is σ(n) almost always divisible by 3?
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Sketchiness, continued

A classical result of Hardy and Ramanujan states that almost
all numbers n have roughly log logn distinct prime factors;
moreover, this holds even if we count only primes that appear
only to the first power.

If q is a prime that appears to the first power in the
factorization of n, then

q + 1 = σ(q) | σ(n).

So if 3 | q + 1, then 3 | σ(n).

We said above that there are log log n of these primes q
(typically). Half of the primes are −1 (mod 3), so it’s highly
unlikely that none of our q satisfy q ≡ −1 (mod 3).
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This (non-rigorous) argument suggests that σ(n) is, almost all
of the time, divisible by every natural number up to about
log logn. One can prove a (slightly weaker) version of this
claim using sieve methods.
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The distribution of amicable numbers

Pomerance proved a much sharper upper bound on V2(x) than
Erdős and Rieger.

Theorem (Pomerance, 1981)

For all large x,

V2(x) ≤
x

exp((log x)1/3)
.

As a consequence, the sum of the reciprocals
of the amicable numbers converges.
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Sociable numbers of higher order, or “three is a
crowd”

Example

Here is a sociable cycle of order 5 (found by Poulet in 1918):

12496→ 14288→ 15472→ 14536→ 14264→ 12496→ . . .

order of the cycle number of known examples

1 47
2 > 12 million
4 206
5 1
6 5
8 3
9 1

28 1
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The distribution of sociable numbers

Theorem (Erdős, 1976)

For each fixed k, the set of sociable numbers of order k has
density zero.

Erdős’s bounds for Vk(x) were very weak. How weak? His
method proves:

Vk(x)�
x

log log log log · · · log x
,

where the denominator is a (3k)-fold iterated log.

With Kobayashi and Pomerance, we improved this. For
example, we can replace the denominator with any fixed power
of log3 x.
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All together now

Put
V ∗(x) = V1(x) + V2(x) + V3(x) + . . . ,

so that V ∗(x) is the counting function of all the sociable
numbers.

Conjecture

As x→∞, we have V ∗(x)/x→ 0. In other words, the set of
sociable numbers has density zero.

Theorem (Kobayashi, Pomerance, P., 2009)

The set of deficient sociable numbers has density zero. The set
of even abundant sociable numbers has density zero. Finally,
the set of odd abundant numbers has density ≈ 1/500.

66 / 68

Paul Pollack The quest for perfection



The quest for
perfection

Paul Pollack

History
lessons

Even perfect
numbers

Odd perfect
numbers

The statistical
perspective

Sociable
numbers

All together now

Put
V ∗(x) = V1(x) + V2(x) + V3(x) + . . . ,

so that V ∗(x) is the counting function of all the sociable
numbers.

Conjecture

As x→∞, we have V ∗(x)/x→ 0. In other words, the set of
sociable numbers has density zero.

Theorem (Kobayashi, Pomerance, P., 2009)

The set of deficient sociable numbers has density zero. The set
of even abundant sociable numbers has density zero. Finally,
the set of odd abundant numbers has density ≈ 1/500.

67 / 68

Paul Pollack The quest for perfection



The quest for
perfection

Paul Pollack

History
lessons

Even perfect
numbers

Odd perfect
numbers

The statistical
perspective

Sociable
numbers

Thank you for your attention!
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