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Three types of natural numbers

Among simple even numbers, some are
superabundant, others are deficient: these two
classes are as two extremes opposed one to the
other; as for those that occupy the middle point
between the two, they are said to be perfect.

– Nicomachus (ca. 100 AD)

Let s(n) =
∑

d |n,d<n d be the sum of the proper divisors of n.

Abundant: s(n) > n, e.g., n = 12.
Deficient: s(n) < n, e.g., n = 5.
Perfect: s(n) = n, e.g., n = 6.
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The superabundant number is . . . as if an adult animal was
formed from too many parts or members, having “ten tongues”,
as the poet says, and ten mouths, or nine lips, and provided
with three lines of teeth; or with a hundred arms, or having too
many fingers on one of its hands. . . . The deficient number is
. . . as if an animal lacked members or natural parts . . . if he does
not have a tongue or something like that.

. . . In the case of those that are found between the too much
and the too little, that is in equality, is produced virtue, just
measure, propriety, beauty and things of that sort — of which
the most exemplary form is that type of number which is called
perfect.

3 of 32



The superabundant number is . . . as if an adult animal was
formed from too many parts or members, having “ten tongues”,
as the poet says, and ten mouths, or nine lips, and provided
with three lines of teeth; or with a hundred arms, or having too
many fingers on one of its hands. . . . The deficient number is
. . . as if an animal lacked members or natural parts . . . if he does
not have a tongue or something like that.

. . . In the case of those that are found between the too much
and the too little, that is in equality, is produced virtue, just
measure, propriety, beauty and things of that sort — of which
the most exemplary form is that type of number which is called
perfect.

3 of 32



From numerology to number theory

Abundants: 12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72,
78, 80, 84, 88, 90, 96, 100, 102, . . . .

Deficients: 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21,
22, 23, 25, 26, 27, . . . .

Perfects: 6, 28, 496, 8128, 33550336, 8589869056, 137438691328,
2305843008139952128, 2658455991569831744654692615953842176,
. . . .

Problem: Describe the distribution of each sequence.
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Densities

If A is a subset of N = {1, 2, 3, . . . }, define the density of A as

lim
x→∞

#A ∩ [1, x ]

x
.

For example, the even numbers have density 1/2, and the prime
numbers have density 0. But the set of natural numbers with first
digit 1 does not have a density.

Question: Does the set of abundant numbers have a density? What
about the deficient numbers? The perfect numbers?
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A theorem of Davenport

Theorem (Davenport, 1933)

For each real u ≥ 0, consider the set

Ds(u) = {n : s(n)/n ≤ u}.

This set always possesses an asymptotic
density Ds(u). Considered as a function of u,
the function Ds is continuous and strictly
increasing, with Ds(0) = 0 and Ds(∞) = 1.

Corollary

The perfect numbers have density 0, the deficient numbers have
density Ds(1), and the abundant numbers have density 1− Ds(1).
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Numerics

The following theorem improves on earlier work of Behrend, Salié,
Wall, and Deléglise:

Theorem (Kobayashi, 2010)

For the density of abundant numbers, we have

0.24761 < 1− Ds(1) < 0.24765.

So just under 1 in every 4 natural numbers is abundant, and just over
3 in 4 are deficient.
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Local distribution of abundant and deficient numbers

On “average”, an interval of length y has about δy deficient numbers
and about (1− δ)y abundants, where δ = Ds(1). But not every
interval is average!

Theorem (I. M. Trivial)

For n > 6, the interval (n, n + 6] contains an abundant number.

Proof.
If n = 6k and k > 1, then s(n) ≥ 1 + k + 2k + 3k = 6k + 1 > n.

So there is no gap of length > 6 between abundant numbers.
(It can be shown that each gap size ≤ 6 occurs infinitely often.)
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How large can the gap be between consecutive deficient numbers?
Alternatively, how long can a run of abundant numbers be?

Answer: Arbitrarily long.
But we can be more precise:

Theorem (Erdős, 1934)

Let G (x) be the largest gap n′ − n between
two consecutive deficient numbers n < n′ ≤ x.
There are positive constants c1 and c2 with

c1 log log log x < G (x) < c2 log log log x .
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Theorem (P., 2009)

Let G (x) be the largest gap n′ − n between two consecutive deficient
numbers n < n′ ≤ x. As x →∞, we have

G (x)

log log log x
→ C ,

where C ≈ 3.5. In fact,

C =

(∫ 1

0

Ds(u)

u + 1
du

)−1
.
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Looking for perfect numbers

Just as . . . ugly and vile things abound, so superabundant and
deficient numbers are plentiful and can be found without a
rule. . .

What about perfect numbers?

Theorem (Euclid)

If as many numbers as we please beginning
from a unit be set out continuously in double
proportion, until the sum of all becomes a
prime, and if the sum multiplied into the last
make some number, the product will be
perfect.
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Looking for perfect numbers

Just as . . . ugly and vile things abound, so superabundant and
deficient numbers are plentiful and can be found without a
rule. . .

What about perfect numbers?

Theorem (Euclid)

If 2n − 1 is a prime number, then

N := 2n−1(2n − 1)

is a perfect number.
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Theorem (Euler)

If N is an even perfect number, then
N = 2n−1(2n − 1), where 2n − 1 is a prime number.

We know 47 primes of the form 2n − 1, and so 47 corresponding even
perfect numbers, the largest being

N := 243112608(243112609 − 1).

But we don’t know if there are infinitely many primes of the form
2n − 1. We don’t even know if 2p − 1 is composite for infinitely many
primes p.
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The web of conditions

. . . a prolonged meditation has satisfied me that
the existence of [an odd perfect number] - its
escape, so to say, from the complex web of
conditions which hem it in on all sides - would be
little short of a miracle. – J. J. Sylvester

If N is an odd perfect number, then:

1. N has the form peM2, where p ≡ e ≡ 1 (mod 4),

2. N has at least 9 distinct prime factors and at least 75 prime factors
counted with multiplicity,

3. N > 10300.

Conjecture

There are no odd perfect numbers.
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Conjecture

There are no odd perfect numbers.

There is probably no simple formula for odd perfect numbers.

Theorem (Dickson, 1913)

For each positive integer k, there are only
finitely many odd perfect numbers n with
precisely k distinct prime factors.

14 of 32



Conjecture

There are no odd perfect numbers.

There is probably no simple formula for odd perfect numbers.

Theorem (Dickson, 1913)

For each positive integer k, there are only
finitely many odd perfect numbers n with
precisely k distinct prime factors.

14 of 32



Theorem (Pomerance, 1977)

If n is an odd perfect number with k distinct prime factors, then

n < (4k)(4k)
2k

2

.

This was refined by Heath-Brown (’94), Cook, and Nielsen:

Theorem
If n is an odd perfect number with k distinct prime factors, then

n < 24
k
.

Theorem (P., 2010)

The number of odd perfect n with k distinct prime factors is at most

4k
2
.
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Perfect numbers in prescribed sequences

Many problems in number theory fit the following rubric:

Let A and B be sets of natural numbers, each of which has a
convenient arithmetic description. Say something “interesting”
about A ∩ B.

Dickson’s example is A = {odd perfect numbers} and
B = {n with k prime factors}.

Theorem (Luca, 2000)

Take A = {perfect numbers} and
B = {Fibonacci numbers}. Then A ∩ B = ∅.
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Call a number a repdigit in base g if all of the digits in its base g
expansion are equal. For example, N = 2222 is a repdigit in base 10.

Theorem (P., 2009)

Take A = {perfect numbers} and B = {repdigits in base g}. Then
A ∩ B is always finite. If g = 10, then A ∩ B = {6}.
Call a number N multiply perfect if N | s(N). For example, if
N = 120, then s(N) = 240.

Theorem (Luca–P., 2010)

Take A = {multiply perfect numbers} and B = {repdigits in base g}.
Then A ∩ B is always finite, and if g = 10, equals {1, 6}.
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Can we count perfect numbers?

The prototypical theorem in analytic number theory is probably ...

Theorem
Let π(x) be the number of prime numbers p ≤ x. Then

π(x) ∼ x/ log x as x →∞.

Question: Is there a perfect number theorem?
Euclid–Euler: The number of even perfect numbers N ≤ x is
O(log x).

Theorem (Hornfeck–Wirsing, 1957)

Let V1(x) be the number of perfect numbers
n ≤ x. For each fixed ε > 0, we have
V1(x) < xε for all x > x0(ε).
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Messing with perfection

Two natural numbers n and m are said to form an amicable pair if
s(n) = m and s(m) = n. For example,

s(220) = 284 and s(284) = 220.

Pythagoras, when asked what a friend was, replied:

One who is the other I, such are 220 and 284.

According to Dickson’s History of the Theory of Numbers, the 11th
century Arab mathematician and astronomer al-Majriti

had himself put to the test the erotic effect of “giving any one
the smaller number 220 to eat, and himself eating the larger
number 284.”
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The distribution of amicable numbers

There are over ten million amicable pairs known, but we have no
proof that there are infinitely many.

Theorem (Erdős, 1955)

Almost all numbers are not amicable.

Theorem (Pomerance, 1981)

The number V2(x) of amicable numbers n ≤ x
satisfies

V2(x) ≤ x/ exp((log x)1/3)

for large x. In particular, the sum of the
reciprocals of the amicable numbers converges.
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Sociable numbers

Call n a k-sociable number if n starts a cycle of length k. (So
perfect corresponds to k = 1, amicable to k = 2.) For example,

2115324 7→ 3317740 7→ 3649556 7→ 2797612 7→ 2115324 7→ . . .

is a sociable 4-cycle. We know 175 cycles of order > 2.

Let Vk(x) denote the number of k-sociable numbers n ≤ x .

Theorem (Erdős, 1976)

Fix k. The set of k-sociable numbers has asymptotic density zero. In
other words, Vk(x)/x → 0 as x →∞.
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Counting sociables

How fast does Vk(x)/x → 0? Erdős’s proof gives . . .

Vk(x)/x ≤ 1/

3k times︷ ︸︸ ︷
log log · · · log x .

We (K.-P.-P.) obtain more reasonable bounds.
A further improvement is possible for odd k.

Theorem (P., 2010)

Suppose k is odd, and let ε > 0. Then

Vk(x) ≤ x/(log x)1−ε

for all large x.
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Vk(x)/x ≤ 1/

3k times︷ ︸︸ ︷
log log · · · log x .

We (K.-P.-P.) obtain more reasonable bounds.
A further improvement is possible for odd k.

Theorem (P., 2010)

Suppose k is odd, and let ε > 0. Then

Vk(x) ≤ x/(log x)1−ε

for all large x.

22 of 32



Counting sociables

What if we count all sociable numbers at once? Put

V (x) := V1(x) + V2(x) + V3(x) + . . .

Is it still true that most numbers are not sociable numbers?

Theorem (K.–P.–P., 2009)

lim sup V (x)/x ≤ 0.0021.

Theorem (K.–P.–P., 2009)

The number V ′(x) of natural numbers belonging to a cycle contained
entirely in [1, x ] is o(x). In other words, V ′(x)/x → 0.

Our upper bound in the first theorem is the density of odd abundant
numbers (e.g., n = 945).
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Another fine mess . . .

Let σ(n) :=
∑

d |n d be the usual sum-of-divisors function. Then

n is perfect⇐⇒ σ(n) = 2n.

Call a number prime-perfect if n and σ(n) have the same set of
distinct prime factors. For example, if n = 270, then

n = 2 · 33 · 5, and σ(n) = 24 · 32 · 5,

so n is prime-perfect.

Theorem (Pomerance–P., 2011)

There are infinitely many prime-perfect numbers n; in fact, for each
k, there are more than (log x)k examples n ≤ x once x is large. In the
opposite direction, the number of examples up to x is at most x1/3+ε

for all large x.
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More on counting sociable numbers

Allow me to outline the proof of the following result:

Theorem
The deficient sociable numbers comprise a set of asymptotic density
zero. In other words, the number Vdef(x) of deficient sociable numbers
up to x satisfies Vdef(x)/x → 0.

We need a lemma. Let sk denote the kth iterate of s. So n is
k-sociable ⇐⇒ sk(n) = n.

Lemma (Neighboring friends tend to share, ver. 0)

Fix k. Then for most sociable numbers n,

s(n)

n
≈ s2(n)

s(n)
≈ · · · ≈ sk+1(n)

sk(n)
.
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Lemma (Neighboring friends tend to share)

Fix k, and fix η > 0. Then for all sociable numbers n excluding a set
of asymptotic density zero, we have∣∣∣∣sj+1(n)

sj(n)
− s(n)

n

∣∣∣∣ < η

for all 1 ≤ j ≤ k.
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Proof idea:
The ratio

s(m)

m
+ 1 =

σ(m)

m
=
∏
pe |m

(
1 +

1

p
+

1

p2
+ · · ·+ 1

pe

)

is usually “nearly determined” by the small prime powers dividing m.

For most numbers n, both n and s(n) have the same small prime
power. This follows since

σ(n) = n + s(n)

is usually divisible by all small prime powers (sieve methods).
So we expect

s(s(n))

s(n)
≈ s(n)

n
.

Now iterate.
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Back to the proof that Vdef(x)/x → 0

Let ε > 0, and fix a natural number K .
We place each deficient sociable number in [1, x ] in one of three
classes.

Class 1 (Barely deficient): 1− ε < s(n)/n < 1

By Davenport’s theorem on Ds(·), the number of natural numbers
n ≤ x satisfying this inequality is asymptotically

(Ds(1)− Ds(1− ε))x ,

as x →∞.

28 of 32



Back to the proof that Vdef(x)/x → 0

Let ε > 0, and fix a natural number K .
We place each deficient sociable number in [1, x ] in one of three
classes.

Class 1 (Barely deficient): 1− ε < s(n)/n < 1
By Davenport’s theorem on Ds(·), the number of natural numbers
n ≤ x satisfying this inequality is asymptotically

(Ds(1)− Ds(1− ε))x ,

as x →∞.

28 of 32



Class 2 (Moderately deficient but not persistently):

s(n)/n ≤ 1− ε,

but sj+1(n)/sj(n) > 1− 1

2
ε for some 1 ≤ j ≤ K .

The set of n in class 2 comprise asymptotically 0% of the integers in
[1, x ], by our lemma.
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Class 3 (Moderately deficient and persistently so):

s(n)/n ≤ 1− ε,

and sj+1(n)/sj(n) ≤ 1− 1

2
ε for some 1 ≤ j ≤ K .

In this case,
sK+1(n) ≤ (1− ε/2)Kx ,

and so the number of possibilities for sK+1(n) is at most

(1− ε/2)Kx .

But every iterate of s is injective on sociable numbers.
So the number of n in this class is at most (1− ε/2)Kx .
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Hence,

lim sup
x→∞

Vdef(x)

x
≤ (Ds(1)− Ds(1− ε)) + (1− ε/2)K .

Given δ < 0, we fix ε > 0 so that the first term is smaller than δ/2.
Then fix K so that the second is smaller than δ/2. So

lim sup
x→∞

Vdef(x)

x
< δ

for all δ > 0.
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Thank you!
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