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Abstract

Let ϕ denote Euler’s totient function. The frequency with which ϕ(n) is a perfect square has
been investigated by Banks, Friedlander, Pomerance, and Shparlinski, while the frequency
with which ϕ(n) is a sum of two squares has been studied by Banks, Luca, Saidak, and
Shparlinski. Here we look at the corresponding three-squares question. We show that ϕ(n) is
a sum of three squares precisely seven-eighths of the time. We also investigate the analogous
problem with ϕ replaced by Carmichael’s λ-function. We prove that the set of n for which
λ(n) is a sum of three squares has lower density > 0 and upper density < 1.

1. Introduction

Let ϕ(n) denote Euler’s totient function, defined as the size of the unit group (Z/nZ)×. A
theorem of Banks et al. [2, pp. 40, 43] asserts that for any ε > 0 and all large x,

x0.7038 ≤ #{n ≤ x : ϕ(n) = �} ≤ x

L(x)1−ε , (1)

where
L(x) = exp(

√
log x log log log x).

We write “�” here and below to denote a generic member of the set {n2 : n = 0, 1, 2, 3, . . . }
of perfect squares. The same authors present a heuristic argument that the left-hand side of
(1) can be replaced with x1−ε. An investigation into the corresponding question for sums of
two squares appeared the following year, where it was shown [4, p. 124, eq. (1)] that

#{n ≤ x : ϕ(n) = � + �} � x

(log x)
3
2

. (2)
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(Recall that “F � G” means that the ratio F/G is bounded between two positive constants.)
This may be compared with the theorem of Landau [11] that as x→∞,

#{n ≤ x : n = � + �} ∼

 1√
2

∏
p≡3 (mod 4)

p prime

(
1− 1

p2

)− 1
2

 x

(log x)1/2
.

See [15] for an extended discussion of Landau’s theorem and its generalizations, and see [20,
pp. 183–185] for what seems to be the most elementary proof.

What about sums of three squares? (By a theorem of Lagrange, every positive integer is
a sum of four squares, so this is the last interesting case.) The natural numbers which are
sums of three squares are characterized by a theorem of Legendre: n = �+�+� precisely
when n is not of the form 4k(8l + 7), where k and l are nonnegative integers (see, e.g., [21,
Appendix to Chapter IV]). A straightforward consequence of this characterization is that
about 5/6 of all natural numbers up to x are expressible as a sum of three squares, once x
is large. The error term in this approximation is easily seen to be O(log x), but as discussed
in [22] and [17], it displays somewhat complicated pointwise and average behavior. Our first
result is the determination of the density of n for which ϕ(n) = � + � + �.

Theorem 1. The set of n for which ϕ(n) is a sum of three squares has asymptotic density
7/8. More precisely, for x ≥ 2, we have

#{n ≤ x : ϕ(n) = � + � + �} =
7

8
x+O

(
x

(log x)3/10

)
. (3)

It seems amusing that for k = 1, 2, and 3, the odds that ϕ(n) is a sum of k squares are
alternately higher, then lower, then higher, than the corresponding odds that n is a sum of
k squares. One can anticipate a possible objection to these comparisons: Since ϕ(n) is even
for n > 2, we should compare ϕ(n) only with even m. An even number m is a sum of three
squares with probability 11/12, and so ϕ(n) is less likely to be a sum of three squares than
its even brethren. This is all true, but we can respond as follows: ϕ(n) is almost always
a multiple of 4 (since almost every n has at least two different odd prime divisors), and a
multiple of 4 is a sum of three squares with probability 5/6. Our hypothetical detractor
can then counter by suggesting we consider multiples of 8 (where the probability is again
11/12), to which we counter with multiples of 16 (where it is 5/6), etc. In any case, the
objection highlights the importance of the highest power of 2 dividing ϕ(n), which will
feature prominently in the proof of Theorem 1 below.

What happens if we replace ϕ with a cognate arithmetic function? Candidates here
include the sum of divisors function σ(n) and Carmichael’s function λ(n), defined as the
exponent of the group (Z/nZ)×. The estimates (1) and (2) remain valid with σ (see [2, pp.
31, 43] and [4, Theorem 2]), and it is straightforward to prove that Theorem 1 also holds
for σ. (See the remarks following the proof of the Theorem 3, which is a generalization of
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Theorem 1.) One can also show that (1) and (2) hold with ϕ replaced by λ (see [2, Theorem
6.3 and §7] and [3]). For sums of three squares, we can prove the following:

Theorem 2. We have

0 < lim inf
x→∞

1

x
#{n ≤ x : λ(n) = � + � + �} ≤ lim sup

x→∞

1

x
#{n ≤ x : λ(n) = � + � + �} < 1.

Perhaps surprisingly, we conjecture that Theorem 1 does not hold for λ. In fact, we
believe that the lim inf and lim sup in Theorem 2 do not coincide, so that the set of n for
which λ(n) = � + � + � does not possess an asymptotic density.

Notation

We write ω(n) :=
∑

p|n 1 for the number of distinct prime factors of n and Ω(n) :=
∑

p`|n 1
for the number of prime factors of n counted with multiplicity. P (n) denotes the largest
prime factor of n, with the understanding that P (1) = 1. We write d ‖ n (read “d exactly
divides n”) if d divides n and gcd(d, n/d) = 1. Throughout the paper, the letters p and q
are reserved for primes. For each prime p and each natural number n, we write vp(n) for
the p-adic order of n; thus, vp(n) = 0 if p - n, and if p | n, then vp(n) is the unique positive
integer for which pvp(n) ‖ n.

The Bachmann–Landau o and O-symbols (see [1, p. 401], [12, §12]), as well as Vino-
gradov’s � and � symbols, appear with their usual meanings. For x > 0, we set log1 x =
max{log x, 1}, and we let logk denote the kth iterate of log1.

2. Euler’s function

2.1. Proof of Theorem 1

For each natural number m, define u(m) (the odd part of m) by the relation m = 2v2(m)u(m).
Note that v2 is completely additive while u is completely multiplicative.

Let G denote the group (Z/2Z)×(Z/8Z)×. We let θ denote the map from N to G defined
by

n 7→ (v2(ϕ(n)) mod 2, u(ϕ(n)) mod 8).

Then θ is a G-valued multiplicative function, in the sense that θ(mn) = θ(m)θ(n) whenever
m and n are coprime. By Legendre’s theorem,

ϕ(n) = � + � + �⇐⇒ θ(n) 6= (0 mod 2, 7 mod 8).
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To prove Theorem 1, we show that as n runs over the natural numbers, the elements θ(n) ∈ G
become equidistributed.

Our starting point is a pretty theorem of Wirsing [24] from probabilistic number theory,
which confirmed a conjecture of Erdős and Wintner.

Theorem A. Let f be a real-valued multiplicative function satisfying −1 ≤ f(n) ≤ 1 for all
n ∈ N. If the series ∑

p

1− f(p)

p

diverges, then f has mean value zero.

Theorem A is enough to obtain Theorem 1 without the error term. To justify the error
expression, we use the following effective version due to Hall and Tenenbaum [9] (see also
[23, Theorem 7, p. 345]):

Theorem B. Suppose that f is a real-valued multiplicative function with −1 ≤ f(n) ≤ 1 for
all n ∈ N. Let φ0 be the unique solution on (0, 2π) of the equation sin(φ0)+(π−φ0) cos(φ0) =
1
2
π, and put L = cosφ0 ≈ 0.32867. Then for x ≥ 1,

1

x

∑
n≤x

f(n)� exp

(
−L

∑
p≤x

1− f(p)

p

)
,

where the implied constant is absolute.

Proof of Theorem 1. Let Ĝ denote the character group of G. Since G has exponent 2, each
χ ∈ Ĝ assumes values in {1,−1}. Given χ ∈ Ĝ, we “lift” χ to N by setting χ(n) = χ(θ(n))
for each n ∈ N. (By abuse of notation, we use the same symbol for the function on N and
the function on G.) Then χ is a multiplicative function taking values in {−1, 1}. By the
orthogonality relations, to prove Theorem 1, it will suffice to show that∑

n≤x

χ(n)� x

(log x)3/10
(4)

for each nontrivial χ.

We have Ĝ ∼= ̂(Z/2Z) × ̂(Z/8Z)×. Moreover, the isomorphism shows that for each
nontrivial χ, there is a ζ ∈ {−1, 1} and a Dirichlet character χ̃ to the modulus 8, with

χ(n) = ζv2(ϕ(n))χ̃(u(ϕ(n)))

for all natural numbers n. Since χ is nontrivial, either ζ 6= 1 or χ̃ is not the trivial character
mod 8.
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Suppose first that χ̃ is trivial, so that ζ = −1. In this case, χ(n) = (−1)v2(ϕ(n)). Then
χ(p) = −1 whenever p ≡ 3 (mod 4), so that∑

p≤x

1− χ(p)

p
≥ 2

∑
p≤x

p≡3 (mod 4)

1

p

∼ log log x,

where the asymptotic relation holds as x → ∞. Here we use a form of Dirichlet’s theorem
on primes in progressions (see, e.g., [5, p. 57]): Whenever a and m are coprime natural
numbers, ∑

p≤x
p≡a (mod m)

1

p
∼ 1

ϕ(m)
log log x as x→∞. (5)

The estimate (4) for this χ now follows from Theorem B. In fact, we can replace the exponent
3/10 on the right-hand side of (4) with any constant smaller than L.

Suppose now that χ̃ is nontrivial. Fix a large natural number K, and decompose∑
p≤x

χ(p)

p
=
χ(2)

2
+
∑

1≤k≤K

ζk
∑

b mod 8
gcd(b,8)=1

χ̃(b)
∑
p≤x

v2(p−1)=k
u(p−1)≡b (mod 8)

1

p
+

∑
p≤x

v2(p−1)≥K+1

χ(p)

p

=
χ(2)

2
+
∑

1
+
∑

2
.

We estimate the triple sum
∑

1 using (5): For fixed k and b, the condition on p in
∑

1

says precisely that p ≡ 2kb + 1 (mod 2k+3). So the sum over p is asymptotic (as x → ∞)
to 1

2k+2 log log x. Notice that the coefficient of log log x exhibits no dependence on b. Since∑
χ̃(b) vanishes when b runs over a system of coprime residues modulo 8, it follows that∑
1 = o(log log x) as x→∞. Also,

lim sup
x→∞

1

log log x

∣∣∣∑
2

∣∣∣ ≤ lim sup
x→∞

1

log log x

∑
p≤x

v2(p−1)>K

1

p
=

1

2K
,

by (5) with m = 2K+1 and a = 1. Since K was arbitrary, these estimates show that∑
p≤x χ(p)/p = o(log log x). But

∑
p≤x

1
p
∼ log log x (by (5) with a = m = 1), and so we

deduce that ∑
p≤x

1− χ(p)

p
∼ log log x

as x→∞. Now (4) follows from Theorem B, as above.
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2.2. A generalization

A similar argument allows us to prove a more general equidistribution result: Let Q be a
finite, nonempty set of primes, and redefine u(n) as the part of n coprime to

∏
q∈Q q, so that

n = u(n)
∏
q∈Q

qvq(n).

Suppose that to each q ∈ Q is associated a positive integer mq. Finally, assume that we are
also given a positive integer l, and put

M :=
∏
q∈Q

ql. (6)

We now introduce the group

G :=

(∏
q∈Q

(Z/mqZ)

)
× (Z/MZ)×,

and we define θ : N→ G by

n 7→ ((vq(ϕ(n)) mod mq)q∈Q, u(ϕ(n)) mod M) .

Theorem 3. As n ranges over N, the elements θ(n) become equidistributed in G. In other
words, for each g ∈ G, the set θ−1(g) has asymptotic density |G|−1 = (ϕ(M)

∏
q∈Qmq)

−1.

Remarks.

1. We recover the density statement of Theorem 1 by taking Q = {2}, m2 = 2, and l = 3.

2. Since l may be taken arbitrarily large, it follows that the equidistribution statement
of Theorem 3 holds for any M supported on the primes in Q, not only those of the
particular form (6).

3. The restriction to moduli M supported on primes in Q is a natural one. Indeed, if M ′

is a fixed integer coprime to
∏

q∈Q q, then M ′ | u(ϕ(n)) for almost all natural numbers
n. A somewhat stronger claim appears as [14, Lemma 2].

The proof of Theorem 3 is similar to the argument of the last section. The key difference
is that the characters of G need no longer be real-valued, so that Wirsing’s theorem may not
apply. But the following result of Hall [8] is a suitable stand-in:

Theorem C. Let D be a closed, convex proper subset of the closed unit disc in C which
contains 0. Suppose that f is a complex-valued multiplicative function satisfying |f(n)| ≤ 1
for all n ∈ N and f(p) ∈ D for all primes p. If the series∑

p

1−<(f(p))

p
(7)
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diverges, then f has mean value zero. In fact, letting L(D) denote the perimeter of D, we
have

1

x

∣∣∣∣∣∑
n≤x

f(n)

∣∣∣∣∣� exp

(
−1

2

(
1− L(D)

2π

)∑
p≤x

1−<(f(p))

p

)
for x ≥ 1. The implied constant here depends only on the region D.

For each χ ∈ Ĝ, we lift χ to a multiplicative function on N by setting χ(n) = χ(θ(n)).
We will apply Theorem C with f = χ, where we take D as the convex hull of the #Gth roots
of unity. Notice that for each prime p, either f(p) = 1 or 1−<(f(p)) ≥ 1− cos 2π

#G
> 0. (We

assume here that #G > 1; otherwise Theorem 3 is trivial.) So the series (7), with f = χ,
diverges if

∑
p : χ(p)6=1

1
p

diverges. We will show that this is true for every nontrivial χ.

Let χ be a nontrivial character. Then there are complex numbers {ζq}q∈Q, with each
ζ
mq
q = 1, and a Dirichlet character χ̃ mod M , with

χ(n) =

(∏
q∈Q

ζvq(ϕ(n))
q

)
χ̃(u(ϕ(n)))

for all n ∈ N. Suppose first that χ̃ is not trivial, and choose an integer a coprime to M with
χ̃(a) 6= 1. Then χ(p) = χ̃(a) 6= 1 for all primes p satisfying

p ≡ 1 + a
∏
q∈Q

qmq (mod
∏
q∈Q

qmq+l).

The sum of the reciprocals of these primes p diverges by Dirichlet’s theorem. Now suppose
that χ̃ is trivial. Since χ is nontrivial, we must have ζq 6= 1 for some q ∈ Q, say ζq0 6= 1. But
then χ(p) = ζq0 6= 1 if

p ≡

{
1 + q (mod q2) when q = q0,

1 + qmq (mod qmq+1) when q ∈ Q \ {q0}.

The sum of the reciprocals of these primes diverges also, again by Dirichlet’s result.

Remarks.

1. As in Theorem 1, the error term in the asymptotic formula of Theorem 3 may be taken
as O(x/(log x)c) for some c > 0 (which may depend on Q, the mq, and l). To see this,
we have only to insert into the above argument the form of Dirichlet’s result appearing
in the proof of Theorem 1 and the quantitative half of Hall’s Theorem C.

2. To prove that Theorems 1 and 3 are valid with σ in place of ϕ, it is only necessary
is to replace each (implicit) occurrence of “p − 1” in the proofs with “p + 1”. The
reason this is so simple is that Theorems A–C refer only to the values of f at prime
arguments, and not at proper prime powers.
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3. It is clear that Theorem 3 does not hold for all positive integer-valued multiplicative
functions, but a very general result of Ruzsa [19, Theorem (1.4)] implies that for any
such function, each of the sets θ−1(g) referred to in that theorem has an asymptotic
density.

3. Carmichael’s function

While Carmichael’s λ-function is not multiplicative, it is nonetheless easy to compute λ(m)
given the prime factorization of m. For any two coprime positive integers a and b, the
isomorphism (Z/abZ)× ∼= (Z/aZ)× × (Z/bZ)× yields that λ(ab) = lcm[λ(a), λ(b)]. As a
consequence,

λ(m) = lcm{λ(pk) : pk ‖ m}; (8)

moreover, for each prime power pk,

λ(pk) =

{
pk−1(p− 1) if p is odd, or if p = 2 but k ∈ {1, 2},
pk−2 if p = 2 and k ≥ 3.

(9)

(For a proof of (9), see, e.g., [10, Chapter 4].) These facts will be used without further
comment in the sequel.

We will treat the upper and lower bounds in Theorem 2 separately. To begin, we need a
strengthening of (5) in the case a = 1, which can be found in [16] or [18]:

Lemma 1. For all integers m > 1 and all x ≥ 3,∑
p≤x

p≡1 (mod m)

1

p
=

log log x

ϕ(m)
+O

(
logm

ϕ(m)

)
, (10)

with an O-constant uniform in both m and x.

The next lemma is implicit in the work of Li [13, proof of Theorem 3.1]. We include a
proof for the sake of completeness.

Lemma 2. Fix H > 0. Suppose that x is large, depending on H. Then for any integer R
with log3 x

log 2
− H ≤ R ≤ log3 x

log 2
+ H, there are � x values of n ≤ x satisfying v2(λ(n)) = R.

The implied constant here depends at most on H.

Proof. We will construct � x odd numbers n ≤ x of the form mp, where v2(p− 1) = R and

v2(q − 1) < R for all primes q | m. (11)

Notice that each n constructed in this way satisfies v2(λ(n)) = maxp|n v2(p − 1) = R, as
desired.
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Fix a prime p ≤ x1/2 satisfying v2(p − 1) = R. For each such p, we count the number
of odd m ≤ x/p satisfying (11). Put y := exp(log x/ log log x), and from all odd m ≤ x/p,
remove those with a prime factor q ≡ 1 (mod 2R) with q ≤ y. Since y = xo(1) and x/p ≥ x1/2,
the fundamental lemma of the sieve (see [7, Theorem 7.2]) guarantees that the number of m
surviving this process is

� x

2p

∏
q≤y

q≡1 (mod 2R)

(
1− 1

q

)
� x

p
exp

− ∑
q≤y

q≡1 (mod 2R)

1

q

 .

We estimate the sum over q with (10). Since 2R � log log x, we see that∑
q≤y

q≡1 (mod 2R)

1

q
=

log log y

ϕ(2R)
+O

(
log (2R)

2R

)
� 1,

and so the number of remaining m is� x/p. If m has not been sieved out, but m fails (11),
then m has a prime divisor q ≡ 1 (mod 2R) with q > y. But the number of such m is

� x

p

∑
y<q≤x/p

q≡1 (mod 2R)

1

q
=
x

p

(
log log (x/p)− log log y

ϕ(2R)
+O

(
log(2R)

2R

))
� x

p

log log log x

log log x
.

So for large x, the number of odd m ≤ x/p satisfying (11) is� x/p, uniformly in p. Summing
over p, we see that the number of n constructed in this way is

� x
∑
p≤x1/2

p≡1 (mod 2R)

p 6≡1 (mod 2R+1)

1

p
= x

(
log log (x1/2)

ϕ(2R)
− log log (x1/2)

ϕ(2R+1)

)
+O

(
x

log(2R)

2R

)

= x
log log x

2R
+O

(
x

log log log x

log log x

)
� x.

Notice that there is no overcounting here, since in the decomposition n = mp, the prime p
is the unique prime divisor of n with v2(p− 1) = R.

We can now prove half of Theorem 2.

Proof of the lower bound in Theorem 2. Applying Lemma 2 with H = 1 and R the nearest
odd integer to log3 x/ log 2 (breaking ties arbitrarily), we see that there are � x values of
n ≤ x with v2(λ(n)) odd. But then λ(n) = � + � + � by Legendre’s criterion.

The proof of the upper bound in Theorem 2 is more difficult. The strategy we will use
was suggested to the author by Florian Luca and Carl Pomerance.
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We begin by quoting a special case of [6, Theorem 4.1]. Let

E(n, x) :=
∑

p≤log log x
p-λ(n)

1

p
+

∑
p>log log x
p|λ(n)

1

p
. (12)

Lemma 3. For x ≥ 1, we have
∑

n≤xE(n, x)� x/ log3 x.

In [6], the lemma is stated with ϕ(n) in place of λ(n), but from (8) and (9), the numbers
ϕ(n) and λ(n) always share the same set of prime factors. As an immediate consequence of
Lemma 3, the number of n ≤ x with E(n, x) > ε is � ε−1x/ log3 x.

Proof of the upper bound in Theorem 2. We start with a summary of our strategy: Let R
be the nearest even integer to log3 x

log 2
, and consider pairs (m, p) with v2(λ(m)) = R and

v2(p− 1) ≤ R. Assume also that p is coprime to m. Then with n := mp,

λ(n) =
p− 1

d
λ(m), where d := gcd(p− 1, λ(m)).

The number (p − 1)/d is odd, so that v2(λ(n)) = v2(λ(m)) = R. In particular, v2(λ(n)) is
even. Using again u(·) to denote the odd part, we have that

u(λ(n)) =
p− 1

d
u(λ(m)).

Thus, if we define Am ∈ {1, 3, 5, 7} so that

Am · u(λ(m)) ≡ 7 (mod 8),

and if p is such that
p− 1

d
≡ Am (mod 8), (13)

then u(λ(n)) ≡ 7 (mod 8). So by Legendre’s criterion, λ(n) is not a sum of three squares.
We now show how to construct � x such values of n ≤ x.

Since we are seeking a lower bound, we are free to impose convenient conditions on the
pairs (m, p) which we consider. In order to ensure that p is coprime to m and that the
representation of n in the form mp is unique (so as to avoid overcounting), we require that

x1/6 < m ≤ x1/3

and that
1

2
x/m < p ≤ x/m,

so that p > 1
2
x2/3 > x1/3 ≥ m for large x. Thus, the number of n ≤ x for which λ(n) 6=

� + � + � is bounded below by∑
d

∑
x1/6<m≤x1/3

d|λ(m)
v2(λ(m))=R

∑
1
2
x/m<p≤x/m

(p−1,λ(m))=d
v2(p−1)≤R

p−1
d
≡Am (mod 8)

1.
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To simplify the situation slightly, let us sum only over d for which 2 ‖ d. Note that for
large x, the condition v2(p − 1) ≤ R then follows automatically from the two conditions
(p−1, λ(m)) = d and v2(λ(m)) = R; in fact, we get that v2(p−1) = 1. For technical reasons
having to do with limitations in the range of uniformity of the prime number theorem in
arithmetic progressions, we impose further arithmetic restrictions on m and d: We require
that E(m,x), defined by (12), satisfies

E(m,x) ≤ 1

and that the number and size of the prime factors of d are constrained,

Ω(d) ≤ 2 log4 x and P (d) ≤ log log x. (14)

Reordering the sums, we are led to the following lower bound, valid for all large x:

#{n ≤ x : λ(n) 6= � + � + �} ≥
∑

x1/6<m≤x1/3
v2(λ(m))=R
E(m,x)≤1

∑
d|λ(m), 2‖d
P (d)≤log log x
Ω(d)≤2 log4 x

∑
1
2
x/m<p≤x/m

p−1
d
≡Am (mod 8)

(p−1,λ(m))=d

1. (15)

Instead of requiring in the final sum of (15) that gcd(p − 1, λ(m)) = d, for the sake of
subsequent estimates it is expedient to impose a slightly weaker condition on p, viz.

min{vq(p− 1), vq(λ(m))} = vq(d) for all q ≤ log2 x. (16)

In other words, we require only that d be the (log2 x)-smooth part of gcd(p− 1, λ(m)). This
change causes us to count some additional integers, but this does not hurt us since, as we
show below, the number A(x) of additional integers satisfies

A(x)� x/ log3 x. (17)

Indeed, suppose that p satisfies (16) but that gcd(p− 1, λ(m)) 6= d. Since P (d) ≤ log2 x, it
follows that there is some q > log2 x with q | gcd(p− 1, λ(m)). So the contribution of these
p to the right-hand side of (15) is bounded by∑

x1/6<m≤x1/3

∑
q>log log x
q|λ(m)

∑
p≤x/m
q|p−1

1�
∑

x1/6<m≤x1/3

∑
q>log log x
q|λ(m)

x

mq log x

� x

log x

∑
x1/6<m≤x1/3

1

m

∑
q>log log x
q|λ(m)

1

q
.

(Here we have applied the Brun–Titchmarsh inequality; note that mq ≤ m2 ≤ x2/3, so that
log x

mq
� log x.) For x1/6 ≤ y ≤ x1/3, we have∑

m≤y

∑
q>log log x
q|λ(m)

1

q
≤
∑
m≤y

E(m, y)� y

log3 y
,
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so that by Abel summation, ∑
x1/6<m≤x1/3

1

m

∑
q>log log x
q|λ(m)

1

q
� log x

log3 x
.

Collecting our estimates, we have (17). Hence, to show that the right-hand side of (15) is
� x, it is enough to show that∑

m

∑
d

∑
x/2m<p≤x/m

p satisfies (13), (16)

1� x. (18)

Here and below, a sum over m or d without additional subscripts indicates that the conditions
of summation are the same as in (15).

The sum over p in (18) can be estimated using standard results on the distribution of
primes in progressions. We may interpret (13) and (16) as asserting that p falls into a certain
collection of residue classes modulo M , where

M := 8d
∏

2<q≤log log x
q|λ(m)/d

q.

Notice that by the prime number theorem and (14),

M ≤ 8d
∏

q≤log log x

q ≤ 8(log log x)2 log4 x(log x)1+o(1) < (log x)3/2

for large x. One checks that the number of coprime residue classes modulo M consistent
with both (13) and (16) is

ϕ(M)

8

1

ϕ(d/2)

∏
q|λ(m)/d

2<q≤log log x
q|d

(
1− 1

q

) ∏
q|λ(m)/d

2<q≤log log x
q-d

(
1− 2/q

1− 1/q

)
,

which is

� ϕ(M)

8

1

ϕ(d/2)

∏
q|λ(m)/d

2<q≤log log x

(
1− 1

q

)
.

Now a moderately strong form of the prime number theorem for progressions (see, e.g., [5,
Chapter 20]) gives that the sum over p in (18) is

�

 1

ϕ(d)

∏
q|λ(m)/d
q≤log log x

(
1− 1

q

) x

m log x
≥ 1

ϕ(d)

x

m log x

∏
q≤log log x

(
1− 1

q

)

� 1

ϕ(d)

x

m log x

1

log log log x
.
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Hence the triple sum on the left-hand side of (18) is

� x

log x

∑
m

1

m

(
1

log log log x

∑
d

1

ϕ(d)

)
. (19)

We now turn our attention to the sum over d in (19). We start by observing that∑
d

1

ϕ(d)
≥

∑
d|λ(m), 2‖d
P (d)≤log log x

1

ϕ(d)
−

∑
d|λ(m), 2‖d
P (d)≤log log x
Ω(d)>2 log4 x

1

ϕ(d)
. (20)

The first right-hand sum in (20) is easy to estimate: Since λ(m) is even, we have∑
d|λ(m), 2‖d
P (d)≤log log x

1

ϕ(d)
≥

∑
d|λ(m), 2‖d
P (d)≤log log x
d squarefree

1

ϕ(d)
=

1

ϕ(2)

∏
2<q≤log log x

q|λ(m)

(
1 +

1

q − 1

)

� exp

 ∑
q|λ(m)

q≤log log x

1

q

� log log log x,

where we use that ∑
q|λ(m)

q≤log log x

1

q
≥

∑
q≤log log x

1

q
− E(m,x) ≥ log4 x+O(1).

(Recall that E(m,x) ≤ 1.) We now show that the second sum on the right-hand side of (20)
is o(log3 x), so that the left-hand side of (20) is � log3 x. Consider first the contribution of
those d with ω(d) > 3

2
log4 x. Using the multinomial theorem, we see that this contribution

is bounded by

∑
d : P (d)≤log log x

ω(d)> 3
2

log4 x

1

ϕ(d)
≤

∑
k> 3

2
log4 x

1

k!

 ∑
q≤log2 x

(
1

ϕ(q)
+

1

ϕ(q2)
+ . . .

)k

≤
∑

k> 3
2

log4 x

1

k!
(log4 x+O(1))k < (log3 x)9/10.

(To verify the last estimate in this chain, it is helpful to keep in mind the elementary
inequality k! ≥ (k/e)k and to observe that the sum over k is dominated by its first term.)
Now consider the contribution of those d with ω(d) ≤ 3

2
log4 x. Write d = d1d2, where d1 is

the largest squarefree divisor of d. Then

Ω(d2) = Ω(d)− Ω(d1) = Ω(d)− ω(d) >
1

2
log4 x.
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Put e := d2

∏
q|d2 q. Then e is a squarefull divisor of d, and clearly

e ≥ 2Ω(e) ≥ 2Ω(d2) > 2
1
2

log4 x.

Moreover, e is coprime to d′ := d/e, and so ϕ(d) = ϕ(e)ϕ(d′). So the contribution from these
d to the second sum on the right of (20) is

�
∑

e squarefull
e>2(log4 x)/2

1

ϕ(e)

∑
d′|λ(m)

P (d′)≤log2 x
d′ squarefree

1

ϕ(d′)
≤

∑
e squarefull
e>2(log4 x)/2

1

ϕ(e)

∏
q≤log2 x

(
1 +

1

q − 1

)

� log3 x
∑

e squarefull
e>2(log4 x)/2

1

ϕ(e)
.

The final sum over e is the tail of a convergent series, since∑
e squarefull

1

ϕ(e)
=
∏
q

(
1 +

1

ϕ(q2)
+

1

ϕ(q3)
+ . . .

)
<∞.

So those d with ω(d) ≤ 3
2

log4 x also contribute o(log3 x), as desired.

Referring back to (19), we now have a lower bound which is

� x

log x

∑
x1/6<m≤x1/3
v2(λ(m))=R
E(m,x)≤1

1

m
.

For x1/6 ≤ y ≤ x1/3, there are � y values of m ≤ y with v2(λ(m)) = R, by Lemma 2.
(We use here that log3 is very slowly varying, so that | log3 y

log 2
− R| ≤ 1.1, say, for all such

y.) Requiring E(m,x) ≤ 1 excludes only o(y) of these m. (Indeed, if E(m,x) > 1, then
E(m, y) ≥ 1/2, and there are only o(y) of these m in [1, y] by Lemma 3.) The estimate∑

1
m
� log x now follows by partial summation. Inserting this above shows that there are

� x values of n ≤ x for which λ(n) is not a sum of three squares.
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