
HOW OFTEN IS EULER’S TOTIENT A PERFECT POWER?

PAUL POLLACK

Abstract. Fix an integer k ≥ 2. We investigate the number of n ≤ x for which
ϕ(n) is a perfect kth power. If we assume plausible conjectures on the distribution of
smooth shifted primes, then the count of such n is at least x/L(x)1+o(1), as x→∞,
where L(x) = exp(log x · log log log x/ log log x). This lower bound is implicit in
work of Banks–Friedlander–Pomerance–Shparlinski. We prove — unconditionally —
that x/L(x)1+o(1) serves as an upper bound. In fact, we establish this same bound
for the count of n ≤ x for which ϕ(n) is squarefull. The proof builds on methods
recently introduced by the author to study “popular subsets” for Euler’s function.

1. Introduction

Let ϕ(n) denote Euler’s totient function, i.e., ϕ(n) = #(Z/nZ)×. One of several
problems studied in the paper [2] of Banks, Friedlander, Pomerance, and Shparlinski
is the question of how often ϕ(n) assumes square values.

The methods of [2] for obtaining lower bounds in this problem depend on the
distribution of ‘smooth shifted primes’. Recall that a positive integer n is called
Y -smooth (alternatively, Y -friable) if there are no primes dividing n that exceed Y .
We write Ψ(X, Y ) for the count of Y -smooth n ≤ X. It is natural to guess that
shifted primes p− 1 are smooth with roughly the same frequency as ordinary integers
of the same size. This thought, which in vague form goes back at least to Erdős’s
work in [4], led Pomerance to float the following precise conjecture in [10].

Conjecture 1. If X, Y →∞ with X ≥ Y , then

#{p ≤ X : p− 1 is Y -smooth} ∼ Ψ(X, Y )

logX
.

Conjecture 1 appears rather difficult, and may even be overly optimistic. But the
authors of [2] show that even much weaker statements in this direction have interesting
consequences for the distribution of square values of ϕ(n). Specifically, suppose that
for a certain fixed U > 1 and a certain real number K, we have that

(1) #{p ≤ X : p− 1 is X1/U -smooth} � Ψ(X,X1/U)

(logX)K

for all large X. Then it is shown in [2] that there are at least x1−1/U+o(1) values of
n ≤ x for which ϕ(n) is a square, as x→∞. Baker and Harman have proved that (1)
holds for any U ≤ 3.3772. Consequently, ϕ(n) is a square for at least x0.7038 values of
n ≤ x. Conjecture 1 would predict that any U > 1 is admissible in (1), so that there
are more than x1−ε values of n ≤ x with ϕ(n) a square.
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Running these arguments with U allowed to vary, we can obtain a sharper lower
bound than x1−ε. This is the substance of our first theorem, which also treats kth
powers rather than merely squares. Writing logj for the jth iterate of the natural
logarithm, let

L(x) = exp

(
log x · log3 x

log2 x

)
.

Theorem 1 (conditional on Conjecture 1). Fix an integer k ≥ 2. As x → ∞, the
number of n ≤ x for which ϕ(n) is a kth power is at least x/L(x)1+o(1).

(It will emerge from the proof that the full strength of Conjecture 1 is not needed; all
we need is a lower bound of roughly the predicted size when Y ≈ exp(

√
logX).)

While Theorem 1 does not appear explicitly in [2], our argument below is a straight-
forward modification of the proof of Theorem 6.4 in [2]. We include the proof for
completeness, and for comparison with our main result, which we now turn to.

The discussion so far has focused on lower bounds. As regards upper bounds, it is
proved in [2] that (as x→∞) the number of n ≤ x for which ϕ(n) is squarefull does
not exceed

x exp(−(1 + o(1))
√

log x · log log log x).

Of course, this serves as an upper bound on the number of n ≤ x for which ϕ(n) is a
kth power (for any k ≥ 2). There is quite a gap between this upper bound and the
lower bound of x/L(x)1+o(1) in Theorem 1. The main purpose of this note is to close
this gap.

Theorem 2. As x→∞, the number of n ≤ x for which ϕ(n) is squarefull is at most
x/L(x)1+o(1).

The proof of Theorem 2 uses methods recently introduced by the author in [8] to
study popular values of Euler’s function (cf. [10, 11, 12]).

The cognate problem of counting squarefull m in the range of the Euler function
(rather than their preimages, as done here) was recently studied in [9]. It was shown
there that

x/(log x)3 � #{squarefull m ≤ x2 : m ∈ ϕ(N)} � x/(log x)0.0063.

In fact, the lower bound holds for the number of squares up to x2 in the range of ϕ.
For related results, see [3, 5, 6].

We note that the expression x/L(x)1+o(1) also arises in the study of counterexamples
to the converse of Fermat’s little theorem. Conjecturally, it describes the count of
Carmichael numbers up to x, as well the count of base a pseudoprimes for each fixed
a 6= 0,±1. For Carmichael numbers, the upper bound implicit in the conjecture is
known, while for base a pseudoprimes, an upper bound of x/L(x)1/2 (for x > x0(a))
has been shown. The heuristic lower bound arguments invoke a variant of Conjecture
1. For details, see [11].

Notation. The letter p is reserved throughout for primes. For Y > 0, we define
arithmetic functions ω>Y (·) and Ω>Y (·) by

ω>Y (n) =
∑
p|n
p>Y

1, and Ω>Y (n) =
∑
pe‖n
p>Y

e;
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when Y = 0, we omit the subscripts and write simply ω(·) and Ω(·).

2. Proof of Theorem 1

The following result in combinatorial group theory follows from combining Theorem
1.1 and Proposition 1.2 of [1].

Lemma 3. Let G be a finite abelian group of exponent m, and let

d = dm(1 + log(|G|/m))e.

For each pair of integers (r, t) with r > t > d, any sequence of r elements of G
contains at least

(
r
t

)
/
(
r
d

)
distinct subsequences of length at most t and at least t− d,

whose product is the identity element.

Proof of Theorem 1. Let X = exp((log2 x)2) and y = log x/(log2 x)3. Let r denote
the number of primes p ≤ X for which p − 1 is y-smooth. We will construct the
values of n in Theorem 1 as certain squarefree products of at most t of these r primes,
where

t := blog x/(log2 x)2c.
Note that all such products are at most x.

For each of the r primes p described above, write p− 1 =
∏

`≤y `
v`(p−1), where ` runs

over the primes at most y. We associate to p the (mod k)-reduced exponent vector

(v`(p− 1) mod k)`≤y ∈ (Z/kZ)π(y).

Asking for the product n of t of these primes to have ϕ(n) a kth power amounts
to asking that the sum of the corresponding exponent vectors be the zero element
in G := (Z/kZ)π(y). This implies that the number of n as in Theorem 1 is at least(
r
t

)
/
(
r
d

)
, where d = d(G) is the quantity of Lemma 3.

Assuming Conjecture 1, we have for large x that

r � Ψ(X, y)/ logX.

Now applying standard estimates for Ψ(·, ·) (for example, Theorem 2.1 of [12]), we
find that, with U := logX

log y
,

r � X exp(−(1 + o(1))U logU)

logX
= X exp(−(1 + o(1)) log2 x log3 x).

Since G has exponent k,

d ≤ 1 + k(1 + log(kπ(y)−1)) < y

(once x is large enough). Thus,
(
r
d

)
≤ rd ≤ Xy = L(x)o(1). On the other hand,(

r

t

)
≥
(r
t

)t
= rtt−t ≥ rtL(x)o(1) ≥ X t/L(x)1+o(1) = x/L(x)1+o(1).

It follows that
(
r
t

)
/
(
r
d

)
≥ x/L(x)1+o(1), as desired. �
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Remark. The kth powers appearing above are all y-smooth. There are only L(x)o(1)

y-smooth numbers n ≤ x (see, e.g., Theorem 5.2 of [13]), so by the pigeonhole
principle, some kth power m ≤ x satisfies #ϕ−1(m) ≥ x/L(x)1+o(1). (Compare with
the first half of [2, Theorem 6.2].) Pomerance [10] has shown that maxm≤x #ϕ−1(m) ≤
x/L(x)1+o(1). We conclude that there are kth powers that are essentially ‘as popular
as possible’ as ϕ-values.

3. Preliminaries for the proof of Theorem 2

We quote several results from the author’s recent work [8]. Given a real number
z ≥ 2, we let Wz(·) denote the additive arithmetic function whose value at each prime
power pe is given by Wz(p

e) = ω>z(ϕ(pe)).

Lemma 4 ([8, Lemma 2]). Let

z = exp((log2 x)1/2).

Fix any η ∈ (0, 1), and let

A = (log2 x)1−η.

As x→∞, ∑
n≤x

AWz(n) ≤ xL(x)o(1).

Lemma 5 ([8, Lemma 3]). Let Y, Z ≥ 1. The number of positive integers n ≤ x with∑
p|n

(Ω>Y (p− 1)− ω>Y (p− 1)) ≥ Z

is at most xL(x)2+o(1)Y −Z/2, as x→∞ (uniformly in Y, Z).

Lemma 6 ([8, Lemma 4]). Let Z ≥ 1. The number of n ≤ x with

(2) ω(n) ≤ log x · log3 x

(log2 x)2

satisfying ∑
p|n

Ω(p− 1) ≥ Z

is at most

xL(x)2+o(1)2−Z/2,

as x→∞ (uniformly in Z).

Lemma 7 (see [8, Lemma 5] and the remark following). The following statement
holds for a certain constant C > 0: Let x ≥ 3, and let d be a positive integer. Then
the number of positive integers n ≤ x for which d | ϕ(n) is at most

x

d
(C(log2 x)2)Ω(d) · Ω(d)Ω(d).

We also require the following exponential moment estimate, which will be used to
bound the number of integers possessing many prime factors exceeding log x.
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Lemma 8. Let y := log x
(log2 x)2

. Then, as x→∞,∑
n≤T

yΩ>log x(n) ≤ T · xo(1),

uniformly for real T ∈ [1, x].

Proof. Let G be the multiplicative function determined by the convolution identity

yΩ>log x(n) =
∑
d|n

G(d).

Then G vanishes at prime powers pa with p ≤ log x, while if p > log x, then
G(pa) = ya − ya−1. Hence,∑

n≤T

yΩ>log x(n) =
∑
d≤T

G(d)

⌊
T

d

⌋
≤ T

∑
d≤T

G(d)

d
≤ T

∏
log x<p≤T

(
1 +

y − 1

p
+
y2 − y
p2

+ . . .

)
.

If T ≤ log x, the product is empty (and thus equal to 1). So suppose that T > log x.
For all p ∈ (log x, T ], we have that (assuming x is large enough)

y − 1

p
+
y2 − y
p2

+ · · · = y − 1

p− y
<
y − 1

p/2
<

2y

p
,

and so∏
log x<p≤T

(
1 +

y − 1

p
+
y2 − y
p2

+ . . .

)
≤ exp

( ∑
log x<p≤T

(
y − 1

p
+
y2 − y
p2

+ . . .

))

≤ exp

( ∑
log x<p≤T

2y

p

)
< exp (2y log2 T ) ≤ exp(2 log x/ log2 x) = xo(1).

Collecting the estimates completes the proof. �

4. Proof of Theorem 2

In this section, z has the same meaning as in Lemma 4: z = exp((log2 x)1/2). We let
ε > 0 be arbitrary but fixed.

We begin by excluding a set of inconvenient values of n, of cardinality O(x/L(x)1−2ε).
This part of the argument closely parallels work in [8], but we repeat the details for
the convenience of the reader.

We start by assuming that ω(n) satisfies the inequality (2). By a 1917 theorem
of Hardy–Ramanujan [7], the number of n ≤ x with ω(n) > log x · log3 x/(log2 x)2

is

� x

log x

∑
k>log x·log3 x/(log2 x)2

(log2 x+O(1))k−1

(k − 1)!
≤ x/L(x)1+o(1),

as x→∞, which is well within our target upper bound.

Next, we assume that ϕ(n) > x/L(x). Since ϕ(n)� n/ log2 n, the number of n ≤ x
with ϕ(n) ≤ x/L(x) is O(x log2 x/L(x)), which is acceptable.
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We further assume that

Wz(n) ≤ (1− ε) log x

log2 x
.

By Lemma 4, with η = ε, this excludes at most x/L(x)(1−ε)2+o(1) values of x (as
x→∞). Again, this is acceptable.

Next, we assume that

(3) Ωz(ϕ(n)) ≤
(

1− 1

2
ε

)
log x

log2 x
.

If this inequality fails, then

1

2
ε

log x

log2 x
< Ω>z(ϕ(n))−Wz(n)

=
∑
pe‖n

(Ω>z(ϕ(pe))− ω>z(ϕ(pe)))

=
∑
pe‖n

(Ω>z(p
e−1)− ω>z(pe−1)) +

∑
p|n

(Ω>z(p− 1)− ω>z(p− 1))

=
∑
pe‖n
e≥2
p>z

(e− 2) +
∑
p|n

(Ω>z(p− 1)− ω>z(p− 1)).

Thus, one of the final two sums exceeds 1
4
ε log x

log2 x
. If it is the first sum, then∏

pe‖n
e≥2

pe ≥
∏
pe‖n
e≥2
p>z

ze > z
1
4
ε log x
log2 x = exp

(
1

4
ε

log x

(log2 x)1/2

)
.

The number of n ≤ x with a squarefull divisor of this size does not exceed

x
∑

m>exp

(
1
4
ε log x

(log2 x)
1/2

)
m squarefull

1

m
� x exp

(
−1

8
ε

log x

(log2 x)1/2

)
.

(The sum on m has been estimated by partial summation, after recalling that the
count of squarefull m ≤ T is O(T 1/2), for all T ≥ 1.) In particular, the number of
these n is smaller than x/L(x) for large x. If the second of the two sums exceeds
1
4
ε log x

log2 x
, then Lemma 5 (with Y = z and Z = 1

4
ε log x

log2 x
) shows that n belongs to a set

of size at most

xL(x)2+o(1)Y −Z/2 = xL(x)2+o(1) exp

(
−1

8
ε

log x

(log2 x)1/2

)
,

which is again smaller than x/L(x) for large x.

Finally, we assume that

(4) Ω(ϕ(n)) ≤ log x

(log2 x)2/3
.

Supposing this inequality fails, we have that∑
p|n

Ω(p− 1) +
∑

pe‖n, e≥2

(e− 1) =
∑
p|n

Ω(ϕ(pe)) = Ω(ϕ(n)) >
log x

(log2 x)2/3
.
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So one of the two sums on the far left exceeds 1
2

log x
(log2 x)2/3

. If it is the latter, then n

is divisible by a squarefull number exceeding 2
1
2

log x/(log2 x)2/3 . The number of such
n ≤ x does not exceed

x
∑

m>2
1
2 log x/(log2 x)

2/3

m squarefull

1

m
� x exp

(
− log 2

4

log x

(log2 x)2/3

)
;

this is smaller than x/L(x) for large x. If it is the former, we apply Lemma 6 to see
that n is placed in a certain set of size at most

xL(x)2+o(1) exp

(
− log 2

4

log x

(log2 x)2/3

)
,

which is again smaller than x/L(x) for large x.

We will show that the number of n ≤ x for which ϕ(n) is squarefull, and for which all

of the above assumptions are satisfied, is smaller than x1− 1
10
ε. As this is o(x/L(x)),

we conclude that the total number of n ≤ x with ϕ(n) squarefull is O(x/L(x)1−2ε).
Since ε may be taken arbitrarily small, the theorem follows.

Every squarefull integer can be decomposed as a2b3, with a, b positive integers. Hence,
we may write

ϕ(n) = a2
1a

2
2a

2
3b

3
1b

3
2b

3
3

where

p | a1b1 ⇒ p ≤ z,

p | a2b2 ⇒ z < p ≤ log x,

p | a3b3 ⇒ log x < p.

From the definition of z together with (4),

a2
1b

3
1 ≤ zΩ(a21b

3
1) ≤ zΩ(ϕ(n)) ≤ exp

(
log x

(log2 x)1/6

)
= xo(1).

Since ϕ(n) > x/L(x), we deduce that

(5) a2
2a

2
3b

3
2b

3
3 >

x

L(x)a2
1b

3
1

= x1+o(1).

Put R = dlog xe and δ = 1/R. Choose α2, α3, β2, β3 ∈ {1/R, 2/R, . . . , (R− 1)/R, 1}
such that, for i = 2, 3,

ai ∈ [xαi−δ, xαi ], while bi ∈ [xβi−δ, xβi ].

Note that x1/R � 1, and so ai � xαi , bi � xβi . By (5),

(6) 2α2 + 2α3 + 3β2 + 3β3 ≥ 1 + o(1).

Also, recalling (3),

(7) 2Ω(a2) + 2Ω(a3) + 3Ω(b2) + 3Ω(b3) = Ωz(ϕ(n)) ≤
(

1− 1

2
ε

)
log x

log2 x
.
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Switching perspective, we may view a1, a2, a3, b1, b2, b3 as given, and count the number
of corresponding values of n ≤ x. By Lemma 7,

#{n ≤ x : ϕ(n) = a2
1a

2
2a

2
3b

3
1b

3
2b

3
3} ≤ #{n ≤ x : a2

3b
3
3 | ϕ(n)}

≤ x

a2
3b

3
3

(C(log2 x)2)Ω(a23b
3
3)Ω(a2

3b
3
3)Ω(a23b

3
3).

Keeping (7) in mind, and using that ai � xαi , bi � xβi , this upper bound is seen to
be at most

x1−2α3−3β3+o(1)(log x)Ω(a23b
3
3) = x1−2α3−3β3+o(1)(log x)2A3+3B3 ,

where we define Ai = Ω(ai) and Bi = Ω(bi).

Our strategy for the rest of the proof is as follows: We fix values for α3, β3, A3,
and B3. This puts an additional constraint on the tuples a1, a2, a3, b1, b2, b3; namely,
it amounts to specifying the order of magnitude and the number of prime factors
of a3 and b3. In the next paragraph, we bound from above the number of tuples
a1, a2, a3, b1, b2, b3 obeying this constraint. Each such tuple corresponds to at most
x1−2α3−3β3+o(1)(log x)2A3+B3 values of n. Thus, multiplying our bound on the number
of these tuples by x1−2α3−3β3+o(1)(log x)2A3+B3 yields a bound on the number of n
corresponding to this particular choice of α3, β3, A3, and B3. (As we will see, some
additional effort is required to suss out the size of this bound.) Finally, we bound
the total number of n by summing on α3, β3, A3, and B3. We emphasize that all o(1)
terms appearing here and below are to be understood with x → ∞, and that the
convergence of o(1) to 0 is uniform in all other parameters.

Let y be as in Lemma 8, i.e., y = log x
(log2 x)2

. The total number of (log x)-smooth

integers in [1, x] is xo(1) (see again Theorem 5.2 of [13]), and so there are at most
xo(1) possibilities for each of a1, b1, a2, b2. We have that a3 ≤ xα3 (with α3 fixed), that
every prime factor of a3 exceeds log x, and that Ω(a3) takes the fixed value A3; thus,
the number of possibilities for a3 is at most

y−A3

∑
m≤xα3

yΩ>log x(m) ≤ y−A3xα3+o(1).

Similarly, the number of possibilities for b3 is at most y−B3xβ3+o(1). Thus, the number
of n corresponding to a fixed choice of α3, β3, A3, B3 is at most

(8) x1−2α3−3β3+o(1)(log x)2A3+3B3 · xα3+β3+o(1)y−A3−B3 .

Assume that there is some tuple a1, a2, a3, b1, b2, b3 corresponding to our fixed choice
of α3, β3, A3, and B3. (If this fails, then there are no corresponding n.) Choose one
and define, for i = 2, 3,

α̃i =
Ai

log x/ log2 x
, and β̃i =

Bi

log x/ log2 x
.

(Since A3, B3 are fixed, the values of α̃3 and β̃3 do not depend on the choice of tuple

a1, a2, a3, b1, b2, b3, but the values of α̃2 and β̃2 may.) By (7),

(9) 2α̃2 + 2α̃3 + 3β̃2 + 3β̃3 ≤ 1− 1

2
ε.

For both i = 2, 3, we have that (log x)Ai = xα̃i , (log x)Bi = xβ̃i , yAi = xα̃i+o(1), and

yBi = xβ̃i+o(1) (as x→∞); making these substitutions above transforms our upper
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bound (8) into

(10) x1−(α3−α̃3)−2(β3−β̃3)+o(1).

How large is the exponent here? Subtracting (9) from (6),

2(α2 − α̃2) + 2(α3 − α̃3) + 3(β2 − β̃2) + 3(β3 − β̃3) ≥ 1

2
ε+ o(1);

hence,

2(α3 − α̃3) + 3(β3 − β̃3) ≥ 1

2
ε+ 2(α̃2 − α2) + 3(β̃2 − β2) + o(1).

Since every prime factor of a2b2 is at most log x, we see that xα2−δ ≤ a2 ≤ (log x)A2 =

xα̃2 ; thus, α2 ≤ α̃2 + o(1). Similarly, β2 ≤ β̃2 + o(1). Therefore,

2(α3 − α̃3) + 3(β3 − β̃3) ≥ 1

2
ε+ o(1).

Since each prime factor of a3, b3 exceeds log x, we find that α3 ≥ α̃3 and β3 ≥ β̃3; so
both of the left-hand summands in the last display are nonnegative. Thus, either
α3− α̃3 ≥ 1

8
ε+ o(1) or β3− β̃3 ≥ 1

12
ε+ o(1). Putting this back into (10), we find that

the number of n corresponding to a fixed choice of α3, β3, A3, B3 is at most

x1− 1
8
ε+o(1).

It remains to sum on α3, β3, A3, B3. There are (crudely) only O(log x) possibilities for
each of these parameters. Hence, the total number of n satisfying our assumptions
for which ϕ(n) squarefull is at most x1− 1

8
ε+o(1)(log x)4, and so is smaller than x1− 1

10
ε

for large x, as desired.
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