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Abstract. We call n a near-perfect number if n is the sum of all of its proper
divisors, except for one of them, which we term the redundant divisor. For example,
the representation

12 = 1 + 2 + 3 + 6

shows that 12 is near-perfect with redundant divisor 4. Near-perfect numbers are
thus a very special class of pseudoperfect numbers, as defined by Sierpiński. We
discuss some rules for generating near-perfect numbers similar to Euclid’s rule for
constructing even perfect numbers, and we obtain an upper bound of x5/6+o(1) for
the number of near-perfect numbers in [1, x], as x→∞.

1. Introduction

A perfect number is a positive integer equal to the sum of its proper positive divisors.
Let σ(n) denote the sum of all of the positive divisors of n. Then n is a perfect number
if and only if σ(n)− n = n, that is, σ(n) = 2n. The first four perfect numbers – 6, 28,
496, and 8128 – were known to Euclid, who also succeeded in establishing the following
general rule:

Theorem A (Euclid). If p is a prime number for which 2p − 1 is also prime, then
n = 2p−1(2p − 1) is a perfect number.

It is interesting that 2000 years passed before the next important result in the theory
of perfect numbers. In 1747, Euler showed that every even perfect number arises from
an application of Euclid’s rule:

Theorem B (Euler). All even perfect numbers have the form 2p−1(2p − 1), where p
and 2p − 1 are primes.

Recall that primes of the form 2p − 1 are called Mersenne primes. We do not know
whether or not there are infinitely many Mersenne primes, and so we do not know
whether or not there exist infinitely many even perfect numbers. Equally mysterious is
the question of whether there are any odd perfect numbers. For a survey of the (few)
known results and the (many) open problems concerning perfect numbers, we refer the
reader to [3, Chapter B] or [10, Chapter 1].

Following Sierpiński [11], the positive integer n is called pseudoperfect if n can be
written as a sum of some subset of its proper divisors. For example, 36 = 1+2+6+9+
18, and so 36 is pseudoperfect but not perfect. In this paper, we study pseudoperfect
numbers of a very special kind. We call n a near-perfect number if it is the sum of all
of its proper divisors, except one of them. The missing divisor d is termed redundant.
Thus,

n is near-perfect with redundant divisor d⇐⇒
d is a proper divisor of n, and σ(n) = 2n+ d.
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The first several near-perfect numbers are (cf. our sequence A181595 in [12])

12, 18, 20, 24, 40, 56, 88, 104, 196, 224, 234, 368, 464, 650, 992, . . .

corresponding to the redundant divisors (cf. our sequence A181596 in [12])

(1.1) 4, 3, 2, 12, 10, 8, 4, 2, 7, 56, 78, 8, 2, 2, 32, . . . .

We have not yet succeeded in showing that there are infinitely many near-perfect
numbers. But we give some strong evidence for this in §2, where we present various
rules for constructing near-perfect numbers analogous to Euclid’s rule for constructing
even perfect numbers. In §3, we present an upper bound on the count of the near-
perfect numbers: The number of such integers in [1, x] is at most x5/6+o(1), as x→∞.
We conclude the paper by considering what we call k-near-perfect numbers, where the
definition of near-perfect is relaxed to allow up to k redundant divisors.

Notation and terminology. We use the Landau–Bachmann o andO symbols, as well
as Vinogradov’s� notation, with their usual meanings; subscripts indicate dependence
of implied constants. We say that the integer m is squarefull if p2 divides m for every
prime p dividingm. By the squarefull part of an integer n, we mean its largest squarefull
divisor. We say that d is a unitary divisor of n if n has a decomposition of the form
n = dd′, where gcd(d, d′) = 1. If pe is a prime power, we write pe ‖ n to mean that
pe | n while pe+1 - n. We say that a number n is y-smooth if every prime dividing
n is bounded by y, and we let Ψ(x, y) denote the number of y-smooth n ≤ x. We
use τ(n) for the number of positive divisors of n, and we write Ω(n) for the number
of prime power divisors of n (equivalently, the number of prime divisors of n counted
with multiplicity).

2. Constructing near-perfect numbers

For each integer k ≥ 1, we let Pk denote the set of primes of the form 2t − 2k − 1,
where t ≥ k + 1. Our first construction of near-perfect numbers is rooted in the
following observation:

Proposition 1. If n = 2t−1(2t−2k−1), where 2t−2k−1 ∈Pk, then n is a near-perfect
number with redundant divisor 2k.

Proof. Since k ≤ t − 1, we see that d = 2k is a proper divisor of n. Also, σ(n) =
(2t − 1)(2t − 2k). Since

σ(n)− 2n = (2t − 1)(2t − 2k)− 2t(2t − 2k − 1) = 2k,

the proposition follows. �

Unfortunately, the converse of Proposition 1 fails, even if we restrict our attention
to even near-perfect numbers. For example, 650 is near-perfect with redundant divisor
2, but does not arise from the construction of Proposition 1.

It appears likely that for each fixed k, there are infinitely many primes of the form
2t − 2k − 1. (See [2] for a careful discussion of some related conjectures.) Thus,
Proposition 1 suggests the following:

Conjecture 2. For each fixed k, there exist infinitely many near-perfect numbers with
redundant divisor 2k.
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Let P =
⋃∞
k=1 Pk be the collection of all primes which belong to at least one of the

sets Pk. The first several primes from P are (see our sequence A181741 in [12])

(2.1) 3, 5, 7, 11, 13, 23, 29, 31, 47, 59, 61, 127, 191, 223, 239, . . . .

Note that all Mersenne primes belong to P. Indeed, if a prime p has the form p = 2r−1,
then p = 2r+1 − 2r − 1 ∈ Pr. We also remark that if p is in the sequence (2.1), then
it belongs to exactly one set Pk; indeed, k is the unique integer for which 2k ‖ p+ 1.

Our second construction builds near-perfect numbers from even perfect numbers.

Proposition 3. A number n of the form n = 2jm, where m is even-perfect, is a near-
perfect number if and only if either j = 1 or j = p, where p is that prime for which
2p−1 ‖ m.

Proof. By Euler’s Theorem B, we have m = 2p−1(2p−1), where p and 2p−1 are prime.
Therefore, n = 2p+j−1(2p − 1). Also,

σ(n)− 2n = (2j+p − 1)2p − 2j+p(2p − 1) = 2p(2j − 1).

This is a proper divisor of n if and only if either j = p or j = 1. �

We see from Proposition 3 that every even perfect number m = 2p−1(2p−1) generates
two distinct near-perfect numbers n1 = 2m and n2 = 2pm. Note that n1 could also
been constructed using Proposition 1 (with t = p + 1 and k = p), but n2 is not given
by that result.

Our final construction is a very close analogue of Euclid’s Theorem A.

Proposition 4. If both p and 2p − 1 are prime numbers, then n = 2p−1(2p − 1)2 is
near-perfect with redundant divisor 2p − 1.

Proof. We have

σ(n)− 2n = (2p − 1)((2p − 1)2 + (2p − 1) + 1)− 2p(2p − 1)2 = 2p − 1. �

Propositions 3 and 4 have the following amusing consequence: Every even perfect
number is the difference of two near-perfect numbers. Indeed, if m = 2p−1(2p − 1) is
even-perfect, then m = n2 − n3, where n2 = 2pm and n3 = (2p − 1)m are near-perfect.

The numerical data on near-perfect numbers suggests a number of further questions,
which we urge upon the interested reader:

• From (1.1), it appears rare for a near-perfect number to have an odd redun-
dant divisor. Is it true that if n is an even near-perfect numbers with an odd
redundant divisor, then this divisor is a Mersenne prime (as in Proposition 4)?
• We conjectured above that every power of 2 appears as the redundant divisor

of infinitely many near-perfect numbers. Is it true that if ` is not a power of 2,
then ` is the redundant divisor of at most one near-perfect number?

If the answer to both of these questions were affirmative, we would easily obtain the
following partial converse of Proposition 4 (compare with Theorem B): Every even
near-perfect number with odd redundant divisor has the form 2p−1(2p − 1)2, where p
and 2p − 1 are primes.

Remark. In 2010 (see sequence A181595 [12]) the second-named author conjectured
that all near-perfect numbers are even. It is easy to see that any counterexample must
be a perfect square. At the beginning of 2012, Donovan Johnson (private communica-
tion) found the counterexample 173369889 = 34 · 72 · 112 · 192.
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3. An upper bound on the number of near-perfect numbers

The goal of this section is to establish the following estimate, announced already in
the introduction.

Theorem 5. The number of near-perfect numbers n ≤ x is at most x5/6+o(1), as
x→∞.

For comparison, it was established by Hornfeck and Wirsing [5] (compare with [14])
that the number of perfect numbers up to x is xo(1), as x → ∞. It seems plausible
that their stronger estimate also holds for the near-perfect numbers, but this seems
difficult. We do not even know how to prove such an upper bound for the near-perfect
numbers with redundant divisor 1 (so-called quasiperfect numbers), even though not a
single example of such a number is known!

The proof of Theorem 5 requires some preparation. We begin by recalling Gronwall’s
determination of the maximal order of the sum-of-divisors function [4, Theorem 323,
p. 350].

Lemma 6 (Gronwall). As n→∞, we have lim sup σ(n)
n log logn

= eγ, where γ = 0.57721 . . .

is the Euler–Mascheroni constant.

The next proposition, extracted from [6, Theorem 1.3], asserts that gcd(n, σ(n)) is
small on average.

Lemma 7. For each x ≥ 3, we have∑
n≤x

gcd(n, σ(n)) ≤ x1+C/
√
log log x,

where C is an absolute positive constant.

The next lemma concerns solutions to the congruence σ(n) ≡ a (mod n). For a
given a, we divide the solutions n to this congruence into two classes: by a trivial
solution, we mean an integer

(3.1) n = pm, where p is a prime not dividing m, m | σ(m), and σ(m) = a.

(It is straightforward to check that all such n satisfy σ(n) ≡ a (mod n).) All other
solutions are called sporadic. Pomerance [9, Theorem 3] showed that for each fixed a,
the number of sporadic solutions to σ(n) ≡ a (mod n) with n ≤ x is at most

(3.2) x/ exp((1/
√

2 + o(1))
√

log x log log x),

as x→∞. Theorem 5 requires a stronger bound, with attention paid to uniformity in
a.

Lemma 8. Let x ≥ 3, and let a be an integer with |a| < x2/3. Then the number of
sporadic solutions n ≤ x to the congruence σ(n) ≡ a (mod n) is at most x2/3+o(1).
Here the o(1) term decays to 0 as x→∞, uniformly in a.

The authors would like to mention that a version of Lemma 8 was independently
obtained by Aria Anavi while an undergraduate at Dartmouth College.

Remark. In addition to the congruence σ(n) ≡ a (mod n), Pomerance [9] also treats the
congruence n ≡ a (mod φ(n)), proving the same upper bound (3.2) for the number of
“nontrivial” solutions n ≤ x. (Here the term trivial solution has an analogous meaning
to that introduced above.) He returned to this latter congruence in the papers [7] and
[8], which sharpen the upper bound to x2/3+o(1) and x1/2+o(1), respectively (again, for
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each fixed a). Our proof of Lemma 8 is an adaptation of the method of [7]. It would
be interesting to improve the exponent 2/3 to 1/2, to match the result of [8], but this
does not seem so easy.

Proof. We may assume that the squarefull part of n is bounded by x2/3, since the
number of n ≤ x for which this condition fails is

� x
∑

m>x2/3
squarefull

1

m
� x2/3.

(We use here that the counting function of the squarefull numbers is � x1/2.) We also
assume, as is clearly permissible, that n > x2/3.

Consider first the case when the largest prime factor p of n satisfies p > x1/3. Say
that n = mp, so that m < x2/3. By our condition on the squarefull part of n, we see
that p - m. Write σ(n) = qn + a, where q is a nonnegative integer; from Lemma 6,
q � log log x. Observe that

σ(m)(p+ 1) = σ(mp) = qmp+ a,

so that

(3.3) p(σ(m)− qm) = a− σ(m).

If σ(m) − qm = 0, then (3.3) implies that a = σ(m); referring back to the definitions
we see that n is a trivial solution to the congruence σ(n) ≡ a (mod n), contrary to
hypothesis. Thus, σ(m) − qm 6= 0, and now (3.3) shows that p is uniquely deter-
mined given m and q. Since the number of possibilities for m is at most x2/3, while
q � log log x, the number of n that arise in this manner is � x2/3 log log x, which is
acceptable for us.

Now suppose that the largest prime factor of n does not exceed x1/3. We claim that
n has a unitary divisor m from the interval (x1/3, x2/3]. The claim obviously holds if
every prime power divisor of n is bounded by x1/3. Otherwise, pe ‖ n for some prime
power pe > x1/3 (with e > 1). In this case, pe ≤ x2/3 by our restriction on the squarefull
part of n, and so we can take m = pe.

Since m is a unitary divisor of n, it follows that

σ(n) ≡ 0 (mod σ(m)) and σ(n) ≡ a (mod m).

This places σ(n) is a uniquely-defined residue class modulo lcm[m,σ(m)]. Thus, sum-
ming over m ∈ (x1/3, x2/3], we have that the number of values σ(n) that can arise in
this way is at most∑

x1/3<m≤x2/3

(
x

lcm[m,σ(m)]
+ 1

)
≤ x2/3 + x

∑
x1/3<m≤x2/3

gcd(m,σ(m))

mσ(m)

≤ x2/3 + x
∑

x1/3<m≤x2/3

gcd(m,σ(m))

m2
.(3.4)

Letting A(t) =
∑

m≤t gcd(m,σ(m)), the final sum in (3.4) is given by∫ x2/3

x1/3

1

t2
dA(t) ≤ A(x2/3)x−4/3 + 2

∫ x2/3

x1/3
A(t)t−3 dt

≤ x−2/3+o(1) + x−1/3+o(1) = x−1/3+o(1),



6 PAUL POLLACK AND VLADIMIR SHEVELEV

where we use the estimate of Lemma 7 for A(t). Referring back to (3.4), we see that
the number of values σ(n) that can arise is at most x2/3+o(1). Since σ(n) = qn + a,
the values σ(n) and q uniquely determine n. Since the number of possible values of q
is � log log x = xo(1) (as above), and there are only x2/3+o(1) possible values of σ(n),
there are also only x2/3+o(1) possible values of n. �

Proof of Theorem 5. Suppose that n ≤ x is near-perfect. We can assume that n > x5/6.
Write σ(n) = 2n+ d, where d is a proper divisor of n. If d > x1/6, then gcd(n, σ(n)) =
d > x1/6. By Lemma 7, the number of such n ≤ x is at most x5/6+o(1).

So suppose that d ≤ x1/6. In this case, we observe that σ(n) ≡ d (mod n) and apply
Lemma 8. Let us check that our near-perfect number n is not a trivial solution to this
congruence. If it were, then we could write n in the form (3.1), with ‘d’ in place of ‘a’.
This shows that

(p+ 1)d = (p+ 1)σ(m) = σ(mp) = 2mp+ d, so that d = 2m.

But then d and pm have the same number of prime factors (counted with multiplicity),
contradicting that d is a proper divisor of n. So n is a sporadic solution, and thus
the number of possibilities for n, given d, is at most x2/3+o(1). Summing over values of
d ≤ x1/6, we see that the number of n that arise in this way is at most x5/6+o(1). �

4. Concluding remarks: k-near-perfect numbers

It is natural to wonder what happens if we allow ourselves to loosen the definition
of a near-perfect number. For k ≥ 1, we say that n is k-near-perfect if n is expressible
as a sum of all of its proper divisors with at most k exceptions (again called redundant
divisors). So, for example,

{1-near-perfect numbers} = {perfect numbers} ∪ {near-perfect numbers}.
By our Theorem 5 and the Hornfeck–Wirsing results on perfect numbers, the number
of 1-near-perfect integers in [1, x] is at most x5/6+o(1), as x → ∞. We conclude this
note by discussing the situation for general k.

Proposition 9. Fix k ≥ 1. For x ≥ e3, the number of k-near-perfect numbers up to x
is at most x

log x
(log log x)Ok(1). In particular, for any fixed k, the set of k-near-perfect

integers has asymptotic density zero.

The proof requires two lemmas. The first is a consequence of the prime number
theorem first noted by Landau; see, e.g., [4, Theorem 437, p. 491].

Lemma 10. Fix k ≥ 1. As x→∞, we have

#{n ≤ x : Ω(n) = k} ∼ 1

(k − 1)!

x

log x
(log log x)k−1.

We also need a crude estimate for the count of smooth numbers. The following result
appears as [13, Theorem 1, p. 359].

Lemma 11. For x ≥ y ≥ 2, we have Ψ(x, y)� x exp(−u/2), where u := log x
log y

.

Proof of Proposition 9. Suppose that n ≤ x is k-near-perfect. We begin by showing
that we can assume all of the following about n:

(i) the largest prime factor p of n satisfies p > y, where y := exp( log x
4 log log x

),

(ii) writing n = mp, so that m := n/p, we have that p - m,
(iii) τ(m) ≤ (log x)3,
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(iv) τ(m) > k,

By Lemma 11 (with u = 4 log log x), the number of n ≤ x not satisfying (i) is �
x/(log x)2, which is negligible compared to the upper bound claimed in the proposition.
So we can assume (i). If (i) holds but (ii) fails, then n has squarefull part > y2, and
the number of such n ≤ x is � x/y, which is again negligible. (Observe that y grows
faster than any fixed power of log x.) If (iii) fails, then τ(n) ≥ τ(m) > (log x)3; since∑

n≤x τ(n) � x log x (cf. [4, Theorem 320, p. 347]), the number of possible n is

� x/(log x)2. Again, these n can be ignored. Finally, if τ(m) ≤ k, then

Ω(n) = Ω(mp) = 1 + Ω(m) ≤ τ(m) ≤ k,

and the number of such n ≤ x is �k
x

(log x)
(log log x)k−1, by Lemma 10. This count is

majorized by the upper bound claimed in the proposition, and so is acceptable for us.
Since n is k-near-perfect, it follows that there is a set D of proper divisors of n with

#D ≤ k for which σ(n) = 2n+
∑

d∈D d. Let

D1 := {d ∈ D : p - d}, and D2 := {d/p : d ∈ D , p | d}.
Then D1 and D2 are both subsets of the divisors of m, and D2 consists only of proper
divisors of m (since D consists only of proper divisors of n = mp). Using that p - m,
we see that

(p+ 1)σ(m) = σ(n)

= 2mp+
∑
d∈D1

d+ p
∑
d∈D2

d.

Reducing modulo p, we find that σ(m) ≡
∑

d∈D1
d, so that

(4.1) p |

(
σ(m)−

∑
d∈D1

d

)
.

Note that m = n/p ≤ x/y. For each m ≤ x/y, our strategy will be to use (4.1) to
estimate the number of suitable values of p (and thus the number of corresponding
values of n = mp).

The right-hand side of (4.1) is nonzero, since #D1 ≤ #D ≤ k while τ(m) > k.
Using again that #D1 ≤ k, we see that the number of possibilities for the right-hand
side of (4.1), given m, is crudely bounded above by

(#{d : d = 0 or d | m})k = (1 + τ(m))k ≤ (1 + (log x)3)k �k (log x)3k.

Moreover, the right-hand side of (4.1) belongs to the interval [1, σ(m)], which is a
subinterval of [1, x] once x is large. (In fact, σ(m) � x

y
log log x, by Lemma 6.) Since

each integer in [1, x] has O(log x) prime factors, it follows that given m, the prime p
is determined by (4.1) in �k (log x)3k · (log x) ways. Since m ≤ x/y, we see that the
number of possibilities for n = mp is �k

x
y
(log x)3k+1, which is negligible compared to

the upper bound asserted in the proposition. �

Remarks.

• For every prime p > 3, the number 6p = p+2p+3p is 4-near-perfect, and there
are � x/ log x such numbers up to x. More generally, fix j ≥ 1, and suppose
that 3 < p1 < p2 < . . . < pj. Then 6p1 · · · pj is k-near-perfect with k = 2j+2−4,
and the number of integers of this form up to x is�j

x
log x

(log log x)j−1 for large

x. This shows that for k ≥ 4, the estimate of Proposition 9 is best-possible up
to a more precise determination of the exponent Ok(1) of log log x.
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• For k < 4, one can do substantially better than what is claimed in Proposition
9. By a more careful application of the method of proof of that result, one can
show that the number of k-near-perfect n ≤ x is at most

x

exp
(
(ck + o(1))

√
log x log log x

) (as x→∞),

where c2 =
√

6/6 and c3 =
√

2/4. It would be interesting to replace these upper
bounds with x1−δ for a fixed δ > 0.

On the constructive end, we have the following generalization of Proposition 1.

Proposition 12. Suppose that n = 2t−1(2t − 2r1 − · · · − 2rk − 1), where t > r1 > r2 >
· · · > rk, and 2t − 2r1 − · · · − 2rk − 1 is prime. Then n is k-near-perfect number with
redundant divisors 2r1 , . . . , 2rk .

Proof. We have only to observe that

σ(n)− 2n = (2t − 1)(2t − 2r1 − · · · − 2rk)− 2t(2t − 2r1 − · · · − 2rk − 1)

= 2r1 + 2r2 + · · ·+ 2rk . �

Notice that when Proposition 1 applies, the constructed number n is k-near-perfect
with exactly k redundant divisors. We conjecture that for each k ≥ 1, there are
infinitely many n of this type. The next theorem confirms this conjecture for all large
values of k.

Theorem 13. For all large k, there are infinitely many k-perfect numbers n with
exactly k redundant divisors. In other words, there are infinitely many n for which

σ(n) = 2n+d1+d2+ · · ·+dk, where d1 < d2 < · · · < dk are all proper divisors of n.

The following lemma is a special case of a recent theorem of Drmota, Mauduit, and
Rivat [1, Theorem 1.1]. Let s2(p) denote the number of 1’s in the binary expansion of
p. Write log2 x for the base-2 logarithm of x.

Lemma 14. Uniformly for integers j ≥ 0 and real x ≥ 3, the number of primes p ≤ x
for which s2(p) = j is

π(x)

√
2

π log2 x

(
exp

(
−2

(j − 1
2

log2 x)2

log2 x

)
+O((log x)−1/3)

)
.

Proof of Theorem 13. We employ a modified version of the construction of Proposition
9. Suppose that k is large, and write k = 5K + r, where r ∈ {0, 1, 2, 3, 4}. We choose
a prime p ≤ 22K for which s2(p) = K + 3− r, which is possible for large k by Lemma
14. (Indeed, the number of such p is � 22K/K3/2 for large K.)

Now consider the number n0 := 22Kp. We claim that n0 is a sum of 3K + 3 − r of
its proper divisors. To see this, observe that by the choice of p, we can write

p = 2r1 + 2r2 + · · ·+ 2rs , where 2K > r1 > · · · > rs, and s = K + 3− r.
Also,

n0 − p = p(22K − 1)

= p+ 2p+ 22p+ · · ·+ 22K−1p.

Adding these representations of p and n0 − p gives the claimed representation of n0 as
a sum of 3K + 3− r of its proper divisors.
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Now let q be any prime 6= 2, p. Multiplying the representation of the last paragraph
through by q gives a representation of n := n0q as a sum of 3K + 3− r proper divisors
of n. But the total number of proper divisors of n is τ(n)−1 = τ(22Kpq)−1 = 8K+3,
and so the number of redundant divisors in the representation of n is

8K + 3− (3K + 3− r) = 5K + r = k.

Since there are infinitely many choices for q, we obtain infinitely many n with precisely
k redundant divisors. In fact, this argument gives that for large k, the count of such
n ≤ x is �k x/ log x for large x. �
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numbers and Polignac’s conjecture, J. Number Theory 128 (2008), no. 7, 1916–1940.

[3] R. K. Guy, Unsolved problems in number theory, third ed., Problem Books in Mathematics,
Springer-Verlag, New York, 2004.

[4] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, sixth ed., Oxford
University Press, Oxford, 2008.
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