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We let ϕ(n) denote Euler’s totient function. That is, ϕ(n) is the
number of integers in [1, n] that are relatively prime to n.
Equivalently,

ϕ(n) = #(Z/nZ)×.

The chief object of study in this talk is the arithmetic function

N(m) = #{n : ϕ(n) = m}.

Here are its first several values:

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14
N(m) 2 3 0 4 0 4 0 5 0 2 0 6 0 0

As an example, N(12) = 6, corresponding to
ϕ−1(12) = {13, 21, 26, 28, 36, 42}.
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How large might we expect N(m) to be?

To get a feel for this, one might look at the first moment (or average)
of N(m). Note that∑

m≤x
N(m) = #{n : ϕ(n) ≤ x}.

Clearly, ϕ(n) is never larger than n. It is also not that much smaller:
For all n ≥ 3, we have ϕ(n)� n/ log log n. Hence, any n with
ϕ(n) ≤ x satisfies n� x log log x , and so∑

m≤x
N(m)� x log log x .
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The above argument is crude.

While ϕ(n)/n is occasionally as small as O(1/ log log n), such n are
quite rare. Quantifying this, Erdős and Turán showed that there is a
constant C > 0 with ∑

m≤x
N(m) ∼ Cx , x →∞.

It was later noticed that C could be given in closed form:
C = ζ(2)ζ(3)/ζ(6).

Proof sketch.
Apply the Wiener–Ikehara theorem to

∞∑
m=1

N(m)/ms =
∞∑
n=1

1/ϕ(n)s = ζ(s)
∏
p

(1 + (p − 1)−s − p−s). �
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So N(m) behaves like a constant, on average.

Question
For how many m ≤ x is N(m) > 0? In other words, how does the
count of ϕ-values up to x grow, as a function of x?

Question
How large can N(m) be as a function of m? In other words, what is
the maximal order of N(m).

Starting from about 1930, the 1st question was the subject of several
papers, by Pillai, Erdős, Erdős–Hall, Pomerance, Maier–Pomerance,
and most recently Ford (1998).

Ford obtains the correct order of the counting function. It behaves
roughly like x

log x exp(C (log log log x)2), where C ≈ 0.82.
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The first and second questions are, of course, related.

Since ϕ maps [1, x ] into a subset of [1, x ] of size x/(log x)1+o(1), one
sees immediately that

max
m≤x

N(m) ≥ (log x)1+o(1).

Erdős saw in 1935 how to do better. His idea was to construct a large
N ⊂ [1, x ] such that ϕ(N ) is entirely contained in the set of numbers
that are (log x)-smooth, meaning having no prime factors > log x .
Erdős knew that there were only xo(1) numbers up to x that are
(log x)-smooth. Hence, by the Pigeonhole principle,

max
m≤x

N(m) ≥ #N
#{(log x)-smooths [1, x ]}

≥ xo(1)#N .
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If ϕ(n) is (log x)-smooth, one needs p − 1 to be (log x)-smooth for all
p | n. So to construct these n, one needs to know that there are
primes p with p − 1 having only small prime factors.

Theorem (Baker–Harman 1998)

For large T , there are “many” primes p ≤ T with p − 1 having all
prime factors at most T 0.2961.

Erdős in 1935 had a much weaker version of the theorem, with 0.2961
replaced by an exponent slightly smaller than 1.

Using B–H, Erdős’s construction produces S with #N ≥ x0.7039−o(1),
each member of ϕ(N ) being (log x)-smooth; hence,

max
m≤x

N(m) ≥ x0.7038.

Erdős had this result with 0.7038 replaced by some positive constant.
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Probably the exponent 0.2961 can be replaced with any exponent
> 0. This would show that for any ε > 0 and all large x ,

max
m≤x

N(m) ≥ x1−ε.

This is already beyond reach, but we can be bold and see what
happens if we assume something like the Baker–Harman theorem for
still smaller values of T , of the size T o(1). The “right” conjecture can
be guessed based on assuming that smooth p − 1’s are distributed
similarly to smooth n’s of the same size. This suggests:

Conjecture

Let L(x) = exp(log x · log log log xlog log x ). Then

max
m≤x

N(m) ≥ x/L(x)1+o(1), (as x →∞).
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This conjecture was first proposed by Pomerance (1980).

In the same paper, Pomerance proved (unconditionally) that

max
m≤x

N(m) ≤ x/L(x)1+o(1) (as x →∞).

Thus, subject to plausible conjectures on the distribution of smooth
shifted primes, we understand the upper order of N(m).
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From popular values to popular subsets

Recently I considered the following question: Suppose S is a subset of
[1, x ] with #S ≈ xα? What can one say about #ϕ−1(S)? In other
words, how large is ∑

m∈S
N(m) ?

Of course, one can put in Pomerance’s pointwise upper bound for
N(m), but the result is worse than trivial if α > 0. Remember that
the sum is certainly � x , and we cannot bound the size of single
term by anyting smaller than x/L(x)1+o(1).
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Theorem (P., 2018)

Fix α ∈ (0, 1). Then as x →∞,

#ϕ−1(S) ≤ x/L(x)1−α+o(1),

uniformly in the choice of subsets S ⊂ [1, x ] with #S ≤ xα.

Choosing α ≈ 0 recovers Pomerance’s pointwise bound on N(m).

The result is probably best possible for every α. Let S be the set of
(log x)1/(1−α)-smooths in [1, x ]. Then #S = xα+o(1). Banks,
Friedlander, Pomerance, Shparlinski have shown — conditional on the
same conjectures alluded to before — that
#ϕ−1(S) = x/L(x)1−α+o(1).
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One idea

The proof uses several estimates from probabilistic number
theory/anatomy of integers. It becomes particularly important to
understand the frequency of large values of the additive function

W (n) :=
∑
pe‖n

ω(ϕ(pe)).

We do this by estimating a large exponential moment of W (n). The
proof uses Rankin’s trick and is modeled on an earlier argument of
Luca and Pomerance bounding∑

n≤x
τ(ϕ(n)),

with τ the usual divisor function.
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A problem of Davenport–Heilbronnn

According to Erdős (1958), Davenport and Heilbronn corresponded
about the second moment of N(m), i.e., the behavior of

1

x

∑
m≤x

N(m)2. (*)

Note that the sum counts the number of pairs n, n′ with
ϕ(n) = ϕ(n′) ≤ x .

Heilbronn proved that (*) tends to infinity as x →∞.

Taking a single term is enough to show unconditionally that

(∗) > (x0.7038)2/x > x0.4

for large x and, conjecturally, that

(∗) > x/L(x)2+o(1), as x →∞.
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There’s also a fairly easy upper bound. Let A = maxm≤x N(m). Then∑
m≤x

N(m)2 ≤ A
∑
m≤x

N(m)� Ax .

Since A ≤ x/L(x)1+o(1), we get that

(∗) ≤ x/L(x)1+o(1), as x →∞.

Q: What is the correct exponent on L(x)? Is it 1, 2 or something
inbetween?

Theorem (P., 2018)

As x →∞,
(∗) ≤ x/L(x)2+o(1).
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The number of solutions to ϕ(n′) = ϕ(n), with n given

Let C (n) = N(ϕ(n)). In other words, C (n) is the number of n′ with
ϕ(n′) = ϕ(n). Clearly, C (n) ≥ 1 for all n.

Conjecture (Carmichael, 1907)

C (n) > 1 for all n.

Carmichael’s conjecture remains open.

Theorem (Ford, 1999)

C (n) assumes each integer value > 1 infinitely often.
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One could also consider the average and typical values of C (n).
Studying the average of C (n) is more or less equivalent to
understanding the second moment of N(m) (the
Davenport–Heilbronn question).

What about the typical size of C (n)? Erdős and Pomerance showed
that for asymptotically 100% of n ≤ x (as x →∞), the number ϕ(n)
has (12 + o(1))(log log x)2 prime factors.

Now the number of integers up to x with more than
(12 + o(1))(log log x)2 prime factors has size

x/ exp((1/2 + o(1))(log log x)2 log log log x).
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Using this, one can show — as Florian Luca and I did in 2011 – that
for 100% of n ≤ x (as x →∞), we have

C (n) > exp((1/2 + o(1))(log log x)2 log log log x).

Theorem (P., 2018)

For 100% of n ≤ x (as x →∞), we have

C (n) < exp((1/2 + o(1))(log log x)2 log log log x).
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Power values of Euler’s function

Question: Is ϕ(n) a square for infinitely many n?

YES, since ϕ(22k+1) = (2k)2, or ϕ(52k+1) = (2 · 5k)2.

OK, but what if we restrict to squarefree n? The answer is still yes.

Here is a sketch of a proof. Consider the numbers ϕ(p) = p − 1 for
odd primes p ≤ x . Each p − 1 is even and smaller than x , we can
write

p − 1 =
∏
`≤x/2

`v`(p−1).

To each p, we assign the exponent vector (v`(p − 1) mod 2)`≤x/2.

This lives vector in Fk
2 , where k = π(x/2).
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To each p, we assign the exponent vector (v`(p − 1) mod 2)`≤x/2.

This lives vector in Fk
2 , where k = π(x/2).

Suppose that some subset of our p’s is such that the corresponding
collection of exponent vectors sums to 0 in Fk

2 . Then the product of
those p’s — call this n — has ϕ(n) a square.

How do we know we can find such a subset? Linear algebra to the
rescue! The number of vectors is π(x)− 1, while the dimension of Fk

2

is k = π(x/2). So a dependence relation is forced.

So there is at least one squarefree n with ϕ(n) = �. But we can
re-do the construction after removing the finitely many p’s dividing n
to produce a new n, etc.
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Question: Can we count the number of n ≤ x for which ϕ(n) is a
square? Call this V�(x).

To produce many n by the above construction, one can restrict the
primes p in the construction to ones for which p − 1 is smooth. Note
that this puts the exponent vector in an F2-vector space of small
dimension.

Using the Baker–Harman theorem on smooth p − 1’s,
Banks–Friedlander–Pomerance–Shparlinski showed that

V�(x) > x0.7038

for large x .
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Theorem (Banks–Friedlander–Pomerance–Shparlinski)

Assuming the aforementioned conjectures on smooth shfited primes,

V�(x) ≥ x/L(x)1+o(1), (x →∞).

In fact, the same lower bound holds for the number of n ≤ x for
which ϕ(n) is a kth power, for any fixed k .

Theorem (P., 2018)

The number of n ≤ x for which ϕ(n) is squarefull is at most
x/L(x)1+o(1), as x →∞.
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