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Abstract Let σ denote the usual sum-of-divisors function. We show that every pos-
itive real number can be approximated arbitrarily closely by a fraction m/n with
σ(m) = σ(n). This answers in the affirmative a question of Erdős. We also show
that for almost all of the elements v of σ(N), the members of the fiber σ−1(v) all
share the same largest prime factor. We describe an application of the second result
to the theory of L. E. Dickson’s amicable tuples, which are a generalization of the
ancient notion of an amicable pair.

1 Introduction

Let σ(n) := ∑d|n d be the familiar sum-of-divisors function. In this paper, we record
two theorems concerning the fibers of σ . The first of these answers in the affirmative
a 1959 question of Erdős (see [5, p. 172]).

Theorem 1. Let β > 0. For every ε > 0, one can find integers m and n with σ(m) =
σ(n) and |mn −β |< ε .

The primary tool in the proof will be the remarkable recent theorem of Yitang Zhang
approximating the prime k-tuples conjecture.

Our second result concerns the multiplicative structure of elements belonging to
a typical fiber. Building on work of Maier and Pomerance [8], Ford [6] developed
an extensive theory of σ -preimages and used it to answer a number of delicate
questions about the distribution of ϕ and σ -values. For example, he showed that the
count of σ -values in [1,x] is
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for certain constants C ≈ 0.8178146 and D ≈ 2.1769687, and that precisely the
same estimate holds for the ϕ-function. Here we show how Ford’s methods can be
adapted to prove the following theorem.

Theorem 2. For asymptotically 100% of the values v in the image of the σ -function,
all of the elements of the set σ−1(v) share the same largest prime factor.

“Asymptotically 100%” means that the density of such v, relative to σ(N), is 1.
Theorem 2 has an amusing consequence for a problem of L. E. Dickson. Recall

that m and n form an amicable pair if σ(m) = σ(n) = m+ n. Dickson [1] (cf. [2,
p. 50]) proposed the following generalization: Say that n1, . . . ,nk form an amicable
k-tuple if σ(ni) = n1 +n2 + · · ·+nk for each i ∈ {1,2, . . . ,k}. (Below, we refer to v
as the common σ -value of the amicable tuple.) Dickson gave a handful of examples
with k = 3. For several others, with k as large as 6, see [10, 15, 9].

The distribution of amicable tuples remains mysterious. For example, we do not
know if there are infinitely many amicable tuples, even if all k are considered simul-
taneously. In the case k = 2 (the amicable pair case), some progress has been made.
In 1955, Erdős [4] showed that the set of natural numbers belonging to an amica-
ble pair has density zero. This result has been steadily sharpened over the years
[3, 12, 13, 14]. However, when k > 2, we still do not know if the set of numbers
belonging to an amicable k-tuple has density zero. Thus, the following corollary of
Theorem 2 seems of some interest.

Corollary 1. Asymptotically 0% of the elements in the range of the σ -function ap-
pear as the common σ -value of an amicable tuple.

Notation

We reserve the letters p and q for primes. We let P+(n) denote the largest prime
factor of n, with the convention that P+(1) = 1. We use ω(n) for the number of
distinct primes dividing n and Ω(n) for the number of prime factors of n counted
with multiplicity. We write Ω(n,U,T ) for the number of primes dividing n with
U < p≤ T , again counted with multiplicity. We write logk for the kth iterate of the
natural logarithm.

2 Proof of Theorem 1

Let L be the closure of the set {log m
n : σ(m) = σ(n)}. Theorem 1 amounts to the

claim that L = R. Since log m
n = − log n

m , the set L is symmetric about 0, and so it
is enough to show that L contains all nonnegative real numbers.
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For any finite set of primes P , define LP in the same way as L but with m
and n restricted to be divisible by none of the primes in P . The next lemma is
fundamental.

Lemma 1. There is a natural number K for which the following holds: Let P be a
finite set of primes. Let α1 < · · · < αK be any K real numbers. Then α j−αi ∈ LP

for some pair of i and j with 1≤ i < j ≤ K.

The proof requires that we recall Dickson’s prime k-tuples conjecture and the
spectacular recent progress towards it made by Zhang [18]. A collection of linear
polynomials a1x+b1, . . . , akx+bk ∈ Z[x], each with positive leading coefficient, is
called admissible if gcd{∏k

i=1(ain+bi)}n∈Z = 1. Dickson conjectured that for any
admissible collection, there are infinitely many n for which all of the ain+ bi are
simultaneously prime.

Zhang’s breakthrough result in this direction was the following:

Proposition 1. There is a natural number K for which the following holds: Suppose
that a1x+ b1, a2x+ b2, . . . , aKx+ bK is admissible. For some pair of i and j with
1≤ i< j≤K, the expressions ain+bi and a jn+b j simultaneously represent primes
for infinitely many natural numbers n.

Zhang states his result only in the case when all ai = 1. A stronger version of the
proposition — explicitly stated for general linear forms — appears in recent work
of Maynard (see [11, Theorem 3.1]).

Proof (Lemma 1). Assuming Dickson’s conjecture, Schinzel and Sierpiński [16, p.
193] showed that there are solutions to σ(m) = σ(n) with the ratio m/n arbitrarily
large. We modify their approach to demonstrate Lemma 1. Our proof will show that
if K is acceptable in Proposition 1, then it is also acceptable in Lemma 1.

The set {log σ(n)
n : gcd(n,∏p∈P p) = 1} is dense in [0,∞). Indeed, if f is any

nonnegative additive function for which (1) ∑p f (p) diverges, and (2) f (p)→ 0
along primes p, then the values of f (n), with n squarefree, are dense in [0,∞). (This
follows from a straightforward application of the greedy algorithm.) We apply this
general fact with f any additive function having f (p) = 0 for p ∈P and f (p) =
log σ(p)

p for p 6∈P .
We can assume all αi > 0, by replacing each αi with αi +α0 for a suitably large

α0. For each 1 ≤ i ≤ K, fix a sequence {A(i)
j }∞

j=1 of integers coprime to ∏p∈P p
satisfying

lim
j→∞

log
σ(A(i)

j )

A(i)
j

= αi.

For each j ∈ N, we apply Proposition 1 to the collection {σ(A(i)
j )x−1}K

i=1. This
is an admissible collection, since the product of the polynomials at x = 0 is ±1.
By Proposition 1, we can find a natural number n j, and integers 1 ≤ a j < b j ≤
K, for which p j := σ(A

(a j)
j )n j − 1 and q j := σ(A

(b j)
j )n j − 1 are simultaneously
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prime. Moreover, we can assume that p j and q j are both larger than j, larger than
A(1)

j , . . . ,A(K)
j , and larger than any element of P . Observe that

p j +1
q j +1

=
σ(A

(a j)
j )

σ(A
(b j)
j )

, so that σ(p jA
(b j)
j ) = σ(q jA

(a j)
j );

also, both p jA
(b j)
j and q jA

(a j)
j are prime to ∏p∈P p. There are only

(K
2

)
possibilities

for the pair (a j,b j), and so some choice (a,b) must be taken on for infinitely many
j. As j→ ∞ through corresponding values,

log
q jA

(a)
j

p jA
(b)
j

= log
(q j +1)A(a)

j

(p j +1)A(b)
j

+o(1) = log
σ(A(b)

j )

A(b)
j

− log
σ(A(a)

j )

A(a)
j

+o(1),

which gives that αb−αa ∈ LP .

Proof (Theorem 1). We show that R≥0 is contained in L. Take any α ≥ 0.
Let ε > 0. Apply Lemma 1 with P = /0 and α1, . . . ,αk chosen as 0, 1

K ε, . . . , K−1
K ε .

We find that one of 1
K ε, 2

K ε, . . . , K−1
K ε ∈ L; in particular, L∩ ( ε

2K ,ε) 6= /0. Thus, we
can choose m1 and n1 with σ(m1) = σ(n1) and ε

2K < log m1
n1

< ε . Suppose we have
already defined m j and n j. Apply Lemma 1 with the same α1, . . . ,αk but with P the
set of primes dividing ∏

j
i=1 mini. We find that there are natural numbers m j+1 and

n j+1 with σ(m j+1) = σ(n j+1), gcd(m j+1n j+1,∏
j
i=1 mini) = 1, and ε

2K < log m j+1
n j+1

<

ε . We continue ad infinitum to produce infinite sequences {m j} and {n j}.
Since each log m j

n j
≥ ε

2K , we may choose J with ∑
J
j=1 log m j

n j
≥ α . Moreover, if J

is chosen minimally, then α ≤ ∑
J
j=1 log m j

n j
< α + ε . With m := ∏

J
j=1 m j and n :=

∏
J
j=1 n j, we see that σ(m) = σ(n) and 0≤ log m

n −α < ε .
Since ε > 0 was arbitrary, α ∈ L.

Remark 1. Ford’s methods (see the proof of the lower bound in [6]) show that given
any fiber σ−1(v) = {n1, . . . ,nk}, a positive proportion of all fibers σ−1(w) have the
form {dn1, . . . ,dnk} for some natural number d. Clearly, dilating by a factor of d
does not change the ratios between elements of a set. Thus, not only is every β > 0
well-approximable by a ratio m/n, where σ(m) = σ(n), but it is not so unusual to
see a ratio close to β . For example, a positive proportion of v ∈ σ(N) have two
preimages m and n with |mn −π|< 10−10.

Remark 2. It seems interesting to observe that in the statement of Theorem 1, m and
n can be taken to be coprime. Indeed, the argument given above produces squarefree
integers m and n. Since σ(m) = σ(n), if we write m/n = m′/n′ in lowest terms, then
also σ(m′) = σ(n′).

Remark 3. With obvious modifications, our argument will show that Theorem 1 also
holds with ϕ replacing σ . In the same source [5] where Erdős mentions the problem
for σ , he claims that this ϕ-variant can be handled in an elementary fashion.
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3 Proof of Theorem 2

Overview of the basic method

The proof follows the method of [7] for showing that most ϕ-values are not σ -
values, and vice versa. We review the strategy of that argument here. For f ∈ {ϕ,σ},
let Vf (x) be the number of f -values belonging to [1,x]. As already alluded to in the
introduction, one knows [6, Theorem 14] that Vϕ(x) � Vσ (x) for x ≥ 1; thus, the
main result of [7] follows if it is shown that the number of common ϕ , σ values in
[1,x] is o(Vϕ(x)+Vσ (x)).

To this end, one begins by constructing [7, §3] sets Aϕ and Aσ with the property
that almost all f -values in [1,x] have all their f -preimages in A f . The precise defini-
tion of the sets A f [7, p. 1679] is quite intricate and incorporates both “anatomical”
and “structural” constraints. By “anatomical”, we mean multiplicative constraints
of the sort that often arise in elementary number theory. For example, we insist that
for a ∈A f , neither a nor f (a) has an extraordinarily large squarefull divisor or “too
many” prime divisors. Chief among the anatomical constraints is the requirement
that every prime p dividing an element of A f be a normal prime, meaning that
the prime divisors of both p− 1 and p+ 1 are roughly uniformly distributed on a
double-logarithmic scale.

By “structural”, we mean that extensive use is made of the results of [6] describ-
ing the fine structure of typical f -values and their preimages. As an example, precise
inequalities are imposed on the prime divisors of elements of A f ; the ordered list
of such primes, after a double-logarithmic rescaling, must (up to a small error) cor-
respond to a point in the fundamental simplex of [6, §3]. In addition, we require
— and this is the main innovation of [7] — that a particular linear combination of
renormalized prime factors be slightly less than 1 (this is condition (8) below in the
definition of the set Aσ ). This ensures that sieve bounds (such as those that feature
in Lemma 2 below) eventually yield a nontrivial estimate.

Having constructed such sets A f , it is enough to study how many common ϕ , σ

values appear as solutions to an equation of the form

ϕ(a) = σ(a′), where a ∈Aϕ ,a′ ∈Aσ . (1)

Write a = p0 p1 p2 · · · and a′ = q0q1q2 · · · , where the sequences of primes pi and q j
are nonincreasing. The normality condition in the definition of the sets A f implies
that for small values of i, we have pi ≈ qi, at least on a double logarithmic scale. We
classify the primes pi and qi dividing a and a′ into three categories: “large”, “small”,
and “tiny” (as described in [7, §5A]). Then (1) gives rise to an equation of the form

(p0−1)(p1−1) · · ·(pk−1−1) f d = (q0 +1)(q1 +1) · · ·(qk−1 +1)e. (2)

Here p0, . . . , pk−1 and q0, . . . ,qk−1 are the large primes in a and a′ (respectively), f
is the contribution to ϕ(a) of the small primes, d is the contribution to ϕ(a) of the
tiny primes, and e is the contribution to σ(a′) of both the small and tiny primes.
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To finish the argument, we require an estimate for the number of solutions to
equations of the form (2). We prove a lemma ([7, Lemma 4.1], cf. Lemma 2 below)
counting the number of solutions p0, . . . , pk−1,q0, . . . ,qk−1,e, f to possible equa-
tions of the form (2), given d and given intervals encoding the rough location of
the primes pi and qi. (The phrase “possible equations” means that there are many
further technical hypotheses in the lemma, but that these hypotheses are automati-
cally satisfied because of our choice of the sets A f .) Finally, we sum the estimate of
the lemma over all possible values of d and all possible selections of intervals; this
allows us to show [7, p. 1695] that

#{ϕ(a) : (a,a′) ∈Aϕ ×Aσ and ϕ(a) = σ(a′)}� x
logx

exp
(
−1

4
(log2 x)1/2

)
,

which is o(Vϕ(x)+Vσ (x)) with much room to spare.

3.1 Definition of the set Aσ

Theorem 2 will be proved by modifying the above procedure. We start by giving a
careful definition of the set Aσ appearing above. The set Aϕ can be defined in an
entirely similar manner, but we will not need this.

Put

F(z) =
∞

∑
n=1

anzn, where each an =
∫ n+1

n
log t dt. (3)

The series defines F as a continuous, increasing function of z on (0,1). Moreover,
F(z)→ ∞ as z ↑ 1. Hence, there is a unique ρ ∈ (0,1) with F(ρ) = 1; numerically,
ρ ≈ 0.5426. We let C = 1

2| logρ| , which is ≈ 0.8178. (We met this constant already
in the introduction.)

Given a natural number n, write n= p0(n)p1(n)p2(n) . . . , where p0(n)≥ p1(n)≥
p2(n)≥ . . . are the primes dividing n (with multiplicity). Put

xi(n;x) =

{
log2 pi(n)/ log2 x if i < Ω(n) and pi(n)> 2,
0 otherwise.

For each real number L and each ξ = (ξ0, . . . ,ξL−2), we let SL(ξ) be the set of
(x1, . . . ,xL) ∈ RL with 0 ≤ xL ≤ xL−1 ≤ ·· · ≤ x1 ≤ 1, and satisfying the system of
inequalities

a1x1 +a2x2 + · · ·+aLxL ≤ ξ0

a1x2 + · · ·+aL−1xL ≤ ξ1x1

...
a1xL−1 +a2xL ≤ ξL−2xL−2.
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The region corresponding to ξ = (1,1, . . . ,1) is called the L-dimensional fundamen-
tal simplex. Let

L0(x) = b2C(log3 x− log4 x)c;

when x is clear from context, we abbreviate L0(x) to L0. One of the key observations
of [6] is that if the components of ξ are slightly larger than 1, and L is a little smaller
than L0, then the n for which (x1(n;x), . . . ,xL(n;x)) ∈ SL(ξ) generate almost all
σ -values in [1,x]. (See condition (5) below in the definition of Aσ for one way of
making this precise.)

Let S≥ 2. We say that a prime p is S-normal if Ω(p+1,1,S)≤ 2log2 S and, for
every pair of real numbers (U,T ) with S≤U < T ≤ p+1,

|Ω(p+1,U,T )− (log2 T − log2 U)|<
√

log2 S log2 T .

In other words, there are not exorbitantly many prime divisors of p+ 1 up to S,
and the larger prime divisors of p+1 are roughly uniformly distributed on a double
logarithmic scale. (In [7], the definition of S-normal required the same constraints
also on p−1, but for this paper working with p+1 is sufficient.)

We can now give a precise definition of the set Aσ . Fix ε ∈ (0,1/2) and assume
throughout that x≥ x0(ε). Let

S = exp((log2 x)36), ω = (log2 x)−
1
2+

ε
2 ,

L = bL0−2
√

log3 xc, and ξi = 1+
1

10(L0− i)3 .

Then Aσ = Aσ (ε,x) is the set of n = p0(n)p1(n) . . . with σ(n) ≤ x that satisfy all
of

(0) n≥ x/ logx,
(1) every squarefull divisor m of n or of σ(n) has m≤ (logx)2,
(2) all of the primes p j(n) are S-normal,
(3) Ω(σ(n))≤ 10log2 x and Ω(n)≤ 10log2 x,
(4) if d ‖ n and d ≥ exp((logx)1/2), then Ω(σ(d))≤ 10log2 σ(d),
(5) (x1(n;x), . . . ,xL(n;x)) ∈SL(ξ),
(6) n has at least L+1 odd prime divisors (counted with multiplicity),
(7) P+(p0 +1)≥ x1/ log2 x, p1(n)< x1/(100log2 x),
(8) a1x1(n;x)+ · · ·+aLxL(n;x)≤ 1−ω .

The following statement appears as [7, Lemma 3.2].

Proposition 2. The number of σ -values in [1,x] which have a preimage n 6∈Aσ is

�Vσ (x)(log2 x)−
1
2+ε .

This makes precise our claim in the overview that the elements of Aσ generate
almost all σ -values in [1,x].
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3.2 The proof proper

Say that the σ -value v is exceptional if it possesses two preimages a and a′ for which
P+(a) 6= P+(a′). We wish to show that the count of exceptional σ -values in [1,x] is
o(Vσ (x)), as x→∞. In view of Proposition 2, we may assume v is such that all of its
preimages belong to Aσ . Pick preimages a and a′ with P+(a) 6= P+(a′), and write

a = p0 p1 p2 . . . , and a′ = q0q1q2 . . . ,

where pi and qi are nonincreasing sequences.

3.2.1 Rewriting σ(a) = σ(a′)

Following the overview presented above, our first task is to deduce from the equation
σ(p0 p1 p2 · · ·) = σ(q0q1q2 · · ·) an auxiliary equation of the shape

(p0 +1)(p1 +1) · · ·(pk−1 +1) f d = (q0 +1)(q1 +1) · · ·(qk−1 +1)e. (4)

We select k — our cutoff between “large” and “small” primes — in exact parallel
with how k is selected in [7, §5A]. In other words, we choose k0 as the smallest
index for which

log2 P+(pk0 +1)≤ (log2 x)1/2+ε/10,

and we take k = k0 unless pk0 and pk0−1 are too close together in a certain technical
sense, in which case we take k = k0−1.1 As explained on [7, p. 1689], the properties
of Aσ imply that

k ∼ (1/2− ε/10)L. (5)

(This asymptotic formula is essentially [7, Lemma 5.3]; one has only to change the
p−1 to a p+1 in its proof.) Moreover, if 0≤ i < k, then

log2 pi > (log2 x)1/2+ε/10 and log2 qi > (log2 x)1/2+ε/11.

(For this, see again [7, p. 1689].) These last estimates, along with condition (1) in
the definition of Aσ , guarantee that p2

i - a and q2
i - a′. Thus, the first k factors on the

left and right-hand sides of (4) represent the contribution to σ(a) and σ(a′) from
the “large” primes p0, . . . , pk−1 and q0, . . . ,qk−1, respectively.

To make the right-hand side of (4) coincide with σ(a′), it suffices to define

e = σ(qkqk+1qk+2 · · ·).

The choices of f and d are slightly more delicate. If pL−1 6= pL, then we put

1 Precisely: With η := 10L
√

log2 S/ log2 x, we choose k = k0 unless xk0−1(n;x)−xk0 (n;x)< 20η .
This becomes relevant for verifying that the intervals [ui,vi] selected later in the proof satisfy the
conditions of Lemma 2 below. Since we will refer to [7] for the selection of ui and vi and this
verification, it does not make sense here to go into more detail.
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f = σ(pk pk+1 · · · pL−1), d = σ(pL pL+1 · · ·).

(In the language of the overview, L is what one thinks of as the cutoff between small
and tiny primes.) In the general case, we let A be the largest divisor of a supported
on the primes pk, . . . , pL−1, and we put f =σ(A) and d =σ(a/(p1 · · · pk−1A)). Then
(4) holds. Note that by assumption, p0 6= q0.

3.2.2 The key sieve lemma

To continue, we need a tool that allows us to count solutions to (4). We use the
following variant of [7, Lemma 4.1], which was proved by repeated application of
the upper bound sieve. As the required changes to the proof of [7, Lemma 4.1] are
little more than typographical, we omit the demonstration.

Lemma 2. Let y be large, k ≥ 1, 30 ≤ S ≤ vk ≤ vk−1 ≤ . . . ≤ v0 = y, and u j ≤ v j

for 0 ≤ j ≤ k− 1. Suppose that 1 ≤ B ≤ y1/10, and put δ =
√

log2 S/ log2 y. Set
ν j = log2 v j/ log2 y and µ j = log2 u j/ log2 y. Suppose that d is a natural number for
which P+(d)≤ vk. Moreover, suppose that both of the following hold:

(a) For 2 ≤ j ≤ k−1, either (µ j,ν j) = (µ j−1,ν j−1) or ν j ≤ µ j−1−2δ . Also, νk ≤
µk−1−2δ .

(b) For 1≤ j ≤ k−2, we have ν j > ν j+2.

The number of solutions of

(p0 +1) · · ·(pk−1 +1) f d = (q0 +1) · · ·(qk−1 +1)e≤ y/B,

in p0, . . . , pk−1,q0, . . . ,qk−1,e, f satisfying

(i) gcd(∏k−1
i=0 pi,∏

k−1
j=0 q j) = 1;

(ii) pi and qi are S-normal primes;
(iii) ui ≤ P+(pi +1),P+(qi +1)≤ vi for 0≤ i≤ k−1;
(iv) no pi +1 or qi +1 is divisible by r2 for a prime r ≥ vk;
(v) P+(e f )≤ vk; Ω( f )≤ 4l log2 vk;

(vi) p0 +1 has a divisor ≥ y1/2 which is composed of primes ≥ v1;

is

� y
dB

(c log2 y)6k(k+1)Ω(d)(logvk)
8(k+l) log(k+l)+1(logy)−2+∑

k−1
i=1 aiνi+E ,

where E = δ ∑
k
i=2(i log i+ i)+ 2∑

k−1
i=1 (νi− µi). Here c is an absolute positive con-

stant, and the ai are as defined in (3).

Remark 4. The condition (i) is not present in [7, Lemma 4.1]. The explanation is
that applying the upper bound sieve requires a linear independence condition on the
linear forms. This condition is automatic when treating the equation (2), because the
left-hand shifted prime factors are shifted by −1 whereas the right-hand shifts are
by +1. In (4), the primes are shifted by +1 on both sides, forcing us to assume (i).
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3.2.3 Capturing solutions with Lemma 2: Attempt #1

Given a pair (a,a′) ∈Aσ ×Aσ satisfying

σ(a) = σ(a′) and P+(a) 6= P+(a′), (6)

we described in §3.2.1 how to construct a solution to (4). By a ‘solution’, we mean
the values of p0, . . . , pk−1, q0, . . . ,qk−1, d, e, and f . On the other hand, given a solu-
tion to (4) that arose this way, we can recover the common value of σ(a) and σ(a′)
by computing either side of (4). So we can bound the number of exceptional σ -
values having all preimages in Aσ by the number of solutions to (4) that arise — in
the manner detailed in §3.2.1 — from (a,a′) ∈Aσ ×Aσ satisfying (6). Henceforth,
when we speak of a ‘solution’ to (4), we always mean a solution that arose this way.

We group solutions to (4) according to the value of k, the value of d, and the
“rough positions” of the primes P+(pi +1) and P+(qi +1). (In view of the fact that
each pi,qi is normal, this is essentially the same as grouping by the positions of the
pi and qi themselves, but turns out to be technically more convenient.) Our hope is
to apply Lemma 2 to bound the number of solutions in each group, and then sum
over all the groups.

Suppose we start with a solution to (4) and want to place it in a group. What
does it mean precisely to specify “the rough positions” of the primes P+(pi + 1)
and P+(qi + 1)? We will interpret this to mean that we specify u0, . . . ,uk−1 and
v0, . . . ,vk so that, taking y := x,

• 30≤ S≤ vk ≤ vk−1 ≤ . . .≤ v0 = y
• u j ≤ v j for 0≤ j ≤ k−1,
• (a) and (b) in Lemma 2 hold,
• (iii) holds.

A systematic way of choosing ui and vi to satisfy these criteria is described in detail
in [7, §5B].2

Moreover, if one selects the ui and vi by that recipe, and takes

B = 1 and l = L− k,

then our solution to (4) satisfies not only (iii) but in fact every condition of Lemma
2 except possibly condition (i). That is, P+(d) ≤ vk and all of (ii)–(vi) hold. This
follows mutatis mutandis from the corresponding proofs in [7, §5C]. The only point
that merits further discussion is the verification that P+(e f )≤ vk (as claimed in (v))
and the related point that P+(d) ≤ vk. Here the more wild behavior of σ on prime
powers, vis-à-vis ϕ , complicates matters.

Let r := P+(e). Since k < L and a′ has at least L+ 1 distinct odd prime divi-
sors, e = σ(qkqk+1 · · ·)> 1 and so r > 1. Choose a prime power R exactly dividing
qkqk+1qk+2 · · · for which r | σ(R). If R is a proper prime power, then (1) in the

2 Since we are working with solutions to (4) instead of (2), one should read [7, §5B] mentally
replacing each expression of the form p−1 with p+1.
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definition of Aσ implies that R≤ (logx)2 and so

r ≤ σ(R)< 2(logx)2 < S≤ vk.

So we can assume that R is a prime divisor of qkqk+1 · · · . Then r | R+ 1, and r ≤
P+(R+1)≤max{3,R} ≤ qk. From the fifth display on [7, p. 1692],

log2 qk/ log2 x≤ log2 pk/ log2 x+(2k+1)
√

log2 S/ log2 x≤ log2 vk/ log2 x.

Thus, r≤ qk ≤ vk. An entirely similar argument shows that P+(σ(pk pk+1 · · ·))≤ vk,
so that both P+( f )≤ vk and P+(d)≤ vk.

If (i) were to always hold, it would be clear how we ought to finish the proof of
Theorem 2. In that case, every solution to (4) would fit in a group of the sort counted
by Lemma 2. Summing the estimate of the lemma over the possible k, d, and ui, vi
(that is, over all possible groups of solutions) would give us an upper bound on the
count of all solutions. However, there is no reason for (i) to always hold. It could
well be that the list p1, . . . , pk−1 overlaps with the list q1, . . . ,qk−1. So we must work
a bit harder before Lemma 2 can be applied.

3.2.4 Attempt #2

There is an easy fix for the problem we have just run into: Do not attempt to apply
Lemma 2 until after canceling factors arising from the common large primes! Given
a solution to (4), put

m = gcd(p0 · · · pk−1,q0 · · ·qk−1).

By assumption, p0 6= q0. It follows that neither p0 nor q0 can divide m. Indeed,
from conditions (3) and (7) in our definition of Aσ , both p0,q0 > x1/2 while each

pi,qi ≤ x
1

100log2 x for i≥ 1.
For each prime p dividing m, cancel the factors of p+ 1 from both sides of (4).

Relabeling, we obtain an equation of the form

(p̃0 +1) · · ·(p̃K−1 +1)d f = (q̃0 +1) · · ·(q̃K−1 +1)e (7)

where K = k−ω(m) and the common value of both sides of (7) is at most x/σ(m).
We may assume that the p̃i and q̃i are in nonincreasing order. Since gcd(m, p0q0) =
1, we have K ≥ 1, p̃0 = p0, and q̃0 = q0. Write each

p̃i = p ji , and q̃i = q j′i
,

where the indices i and i′ satisfy i≤ ji, j′i < k for 0≤ i < K.
In the last section, our choices of parameters in Lemma 2 possibly failed to cap-

ture the solution p0, . . . , pk−1, q0, . . . ,qk−1, d,e, f to (4). We now describe how to
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capture the solution p̃0, . . . , p̃K−1, q̃0, . . . , q̃K−1, d,e, f to (7) by making slightly dif-
ferent choices of these parameters.

We continue to assume that ui and vi are chosen as in the preceding section. Since
hypothesis (a) of Lemma 2 holds, for i≥ 1 the intervals [ui,vi] and [ui+1,vi+1] either
coincide or are disjoint. Now appealing to (iii) — which was also satisfied for our
choices of ui, vi — we see that

u ji = u j′i
≤ P+(p ji +1),P+(q j′i

+1)≤ v ji = v j′i

for every 1≤ i≤ K−1. Put

ũi = u ji and ṽi = v ji for 0≤ i≤ K−1, and put ν̃K = νk.

From the second half of condition (7) in the definition of Aσ and the estimate
k < L = O(log3 x),

σ(m)≤ m2 ≤ (p1 · · · pk−1)
2 ≤ xO(log3 x/ log2 x).

Hence,
σ(m)< x1/10

for large x.
We will apply Lemma 2 with

y = x, K playing the role of k in the lemma, ũi, ṽi in place of ui, vi,
B = σ(m), d as before, l as before (i.e., l = L− k for our original k).

Since all of the previous hypotheses except (possibly) (i) held for our solution to
(4), all of the statements in Lemma 2 are satisfied for our solution to (7). That is,
with this choice of parameters, Lemma 2 succeeds in capturing our solution to (7).

Now given m, one can recover the original solution to (4) from the solution to
the canceled form (7). So to count solutions to (4), it is enough to sum the upper
bound of the lemma over possible values of the parameters d, m (which determines
B = σ(m)), k (which determines l = L− k), K, the ũi, and ṽi.

3.2.5 Finishing up

Making analogous calculations to those on [7, pp. 1693–1694], the upper bound
arising from a single application of Lemma 2 is seen to be

� x
σ(m) logx

exp(−1
3
(log2 x)1/2+ε/2)

LΩ(d)

d
.

(compare with [7, eq. (5-13)]). It remains to sum on d, k, K, m, ũi, and ṽi.
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Since each of k and K is bounded by L, there are only O((log3 x)2) possibilities
for the pair (k,K). Reasoning as in [7, eq. (5-14)], the number of possibilities for
the ũi and ṽi is bounded by exp(O((log3 x)2)).

To handle the sum on d, we first establish the uniform bound

Ω(d)� (log2 x)1/2.

Recall that we defined d so that d = σ(h) for some unitary divisor h of a supported
on primes ≤ pL. If h ≤ exp((log2 x)1/2), then the desired bound on Ω(d) follows
from the estimate Ω(d)� logd. Otherwise, conditions (3) and (4) in the definition
of Aσ give us

Ω(d)≤ 10log2 σ(h)� log2 h≤ log2 p10log2 x
L ,

and this is also O((log2 x)1/2), by the calculation in the final display of [7, p. 1694].
It follows that

LΩ(d) ≤ exp(O((log2 x)1/2 log4 x)).

Recall that P+(d) ≤ vk. Our choice of vk now yields log2 P+(d) ≤ (log2 x)1/2+ε/5

[7, eq. (5-12)]. Hence,

∑
1
d
� exp((log2 x)1/2+ε/5).

Assembling the preceding estimates, we find that the number of solutions to (4)
corresponding to a given value of m = gcd(p0 . . . pk−1,q0 · · ·qk−1) is at most

x
σ(m) logx

exp
(
−(log2 x)1/2

)
.

It remains finally to treat the sum over m. Since m divides p1 · · · pk−1, we have that
m is squarefree and (recalling (5))

ω(m)< k <
1
2

L < 0.9log3 x.

Hence,

∑
m

1
σ(m)

≤ ∑
j≤0.9log3 x

1
j!

(
∑
p≤x

1
p+1

) j

< exp((log3 x)2),

by a short calculation using Mertens’s estimate ∑p≤x p−1 = log2 x+O(1). We con-
clude that the total number of solutions to (4) is bounded by (say)

x
logx

exp
(
−1

2
(log2 x)1/2

)
.
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As discussed before, this is also an upper bound on the number of exceptional σ -
values in [1,x] all of whose preimages belong to Aσ . Since this upper bound is
certainly o(Vσ (x)), the proof of Theorem 2 is complete.

Remark 5. Recall that ε > 0 can be taken arbitrarily small in the definition of Aσ .
From the above argument and Proposition 2, it follows that the number of excep-
tional σ -values in [1,x] is at most Vσ (x)/(log2 x)1/2+o(1), as x→ ∞.

Remark 6. Using the preceding remark and further ideas from [6] and [7], one can
establish the following strengthening of Theorem 2: For each fixed K, almost all
σ -values in [1,x] are such that all of their preimages share the same largest K + 1
prime factors. One could even extend this to certain functions K = K(x)→ ∞, but
we do not pursue this possibility here.

Remark 7. Theorem 2 as well as the comments in the preceding remarks all hold
with σ replaced by Euler’s ϕ-function, by essentially the same proofs.

4 Proof of Corollary 1

Proof. Suppose that v ≤ x is the common σ -value of some amicable tuple. Then
there are n1, . . . ,nk with ∑

k
i=1 ni = v and each σ(ni) = v. Clearly, each ni ≤ x. By

Theorem 2, we can assume that all the ni have the same largest prime factor P. We
can also assume that P > z, where z := x1/(4loglogx). Otherwise, a crude upper bound
on the count of smooth numbers (such as [17, Theorem 1, p. 359]) shows that each
ni is restricted to a set of size � x/(logx)2 = o(Vσ (x)), which would mean that
v = σ(n1) is also so restricted. For the remaining values of v, observe that P divides
∑

k
i=1 ni = v = σ(n1). Write n1 = Pm. If P | m, then n1 is divisible by the square of

a prime exceeding z, leaving � x∑p>z p−2 � x/z = o(Vσ (x)) possibilities for n1.
So assume that P - m. Since P divides σ(n1) = (P+1)σ(m) and P = P+(n1), there
must be a proper prime power R dividing m for which P | σ(R). Since P divides
σ(R) and σ(R)< 2R, we have that R > P/2≥ z/2. Thus, n1 possesses a squarefull
divisor exceeding z/2, which restricts n1 — and also v = σ(n1) — to a set of size
� x/

√
z = o(Vσ (x)).
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