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Abstract. We study the number of monic irreducible polynomials of degree n over
Fq having certain preassigned coefficients, where we assume that the constant term
(if preassigned) is nonzero. Hansen and Mullen conjectured that for n ≥ 3, one can
always find an irreducible polynomial with any one coefficient preassigned (regardless
of the ground field Fq). Their conjecture was established in all but finitely many
cases by Wan, and later resolved in full in work of Ham and Mullen. In this note, we
present a new, explicit estimate for the number of irreducibles with several preassigned
coefficients. One consequence is that for any ε > 0, and all n ≥ n0(ε), one can find a
degree n monic irreducible with any b(1 − ε)

√
nc coefficients preassigned (uniformly

in the choice of ground field Fq). For the proof, we adapt work of Kátai and Harman
on rational primes with preassigned digits.

1. Introduction

Since the time of Gauss, we have known that there are roughly qn/nmonic irreducible
polynomials P of degree n over the finite field Fq. Writing

(1) P = T n +
n−1∑
i=0

aiT
i,

it is natural to wonder what can be said about the coefficient sequences (a0, a1, . . . , an−1)
that correspond to these irreducibles. A great deal of work has gone into studying ques-
tions of this nature; what we know, as well as what still remains mysterious, is surveyed
in [GHP99], [Shp99, Chapter 3], and [Coh05, §2].

One of the success stories in this area concerns the following conjecture of Hansen
and Mullen [HM92, Conjecture B]: Given any n ≥ 3, any 0 ≤ i < n, and any a ∈ Fq,
one can find an irreducible polynomial P of the form (1) with ai = a, where we assume
a 6= 0 in the case i = 0. This conjecture was proved by Wan [Wan97] when either
n ≥ 36 or q > 19; the (finitely many) remaining cases were disposed of soon after by
Ham and Mullen [HM98].

It is natural to ask for generalizations of the Hansen–Mullen conjecture where more
than one coefficient is allowed to be preassigned. Panario and Tzanakis [PT12] (see also
[Tza10]) have shown that Wan’s method can sometimes be applied in this situation.
For example, they prove that if n ≥ 22 and q ≥ 107, then one can arbitrarily prescribe
both an−1 and any other ai (subject to a0 6= 0 if i = 0); moreover, if n ≥ 112, then
the same result holds with no restriction on q. However, their method will not give a
similar result for two arbitrary coefficients ai and aj.

1991 Mathematics Subject Classification. Primary: 11T55, Secondary: 11T23.
Key words and phrases. Hansen–Mullen conjecture, prescribed coefficients, exponential sums.

1



2 PAUL POLLACK

For each prime power q and each natural number n, we let πq(n) denote the number
of monic irreducible polynomials of degree n over Fq. Our main objective in this note
is to establish the following theorem:

Theorem 1. Let n ≥ 2. Let I be a nonempty subset of {0, 1, 2, . . . , n − 1}, and put
I = #I. Choose an element ai ∈ Fq for each i ∈ I, with a0 6= 0 if 0 ∈ I. Let S be
the set of monic, degree n polynomials where the coefficient of T i is ai, for all i ∈ I.
Then

(2)

∣∣∣∣∣∣∣
 ∑

P∈S
P irreducible

1

−S · πq(n)

∣∣∣∣∣∣∣ ≤ qn−
1
2
bn
2
c + qn−1−b

n
I+1
c,

where S = q−I if 0 6∈ I, and S = (q − 1)−1q−(I−1) if 0 ∈ I.

Example (irreducibles with two preassigned coefficients). Let us consider what Theorem
1 has to say about the problem of preassigning two arbitrary coefficients; in other words,
we look at the special case of Theorem 1 when I = #I = 2.

• (Asymptotics) Theorem 1 supplies us with a main term and an error term
for the number of irreducible elements of S . We temporarily ignore the the
explicit inequalities and think in terms of the big picture. Since S has order
q−2 and πq(n) has order qn/n (see, e.g., Lemma 4 below), the main term has

order qn−2/n; on the other hand, the error bound has order qn−
1
2
bn
2
c. So the

relative error is bounded by an expression of order n · q2− 1
2
bn
2
c. Now putting

X := qn, we see that once n ≥ 10,

n · q2−
1
2
bn
2
c ≤ n · q(9−n)/4 =

logX

log q
·X

9−n
4n ≤ logX

log 2
·X−1/40.

So the relative error tends to zero as X = qn →∞, within the regime n ≥ 10.
• (Existence results) We now take advantage of the explicit nature of the inequal-

ity (2). Fix n ≥ 10. For prime powers q satisfying

q−2πq(n) > qn−
1
2
bn
2
c + qn−1−b

n
3
c,

the estimate (2) yields ∑
P∈S

P irreducible

1 > 0,

and thus there is a monic, degree n irreducible with any two coefficients arbi-
trarily preassigned. For example, if n = 10, a calculation in Maple shows that
q ≥ 101 is sufficient. Moreover, once n ≥ 30, the lower bound implicit in (2)
for the number of irreducibles in S is always positive, regardless of q.

Similar considerations apply with any fixed number of preassigned coefficients.

In fact, it is not necessary to fix the number of prescribed coefficients to obtain an
asymptotic result from Theorem 1.

Corollary 2. Adopt the notation and assumptions of Theorem 1. Let ε > 0. Then we
have the uniform asymptotic estimate∑

P∈S
P irreducible

1 ∼ S · πq(n) (as n→∞),

as long as the number of prescribed coefficients I satisfies I ≤ (1− ε)
√
n.
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It should be emphasized that the asymptotic result asserted in Corollary 2 holds
whenever n→∞, uniformly in q. In particular, we can arbitrarily prescribe b(1−ε)

√
nc

coefficients whenever n > n0(ε) (over any ground field Fq).
As the above examples illustrate, the method of this paper only gives results once

n is sufficiently large. When n is fixed, an alternative method of Cohen, depending on
the function field analogue of the Chebotarev density theorem, can often be applied.
See [Coh72, Theorem 1] and [Coh99].

The proofs of Theorem 1 and Corollary 2 are given in §3, after a brief discussion in
§2 of preparatory results. Our strategy for proving Theorem 1 is substantially different
from that used by Wan and earlier authors. We adapt a method developed by Harman
and Kátai to study rational primes with preassigned digits [Kát86, Har06, HK08] (cf.
work of Wolke [Wol05]). The proof makes essential use of an exponential sum estimate
obtained by Hayes [Hay66] in his investigations into the additive number theory of
irreducible polynomials.

Notation and definitions. We need a number of definitions, most of which will be
familiar to function field aficionados. Below, Fq(T )∞ denotes the completion of Fq(T )
at the prime associated to the (1/T )-adic valuation, and we identify Fq(T )∞ with the
field Fq((1/T )) of finite-tailed Laurent series in 1/T . We use |·| for the induced absolute
value on Fq(T )∞, so that |0| = 0 and

∣∣∑n
i=−∞ aiT

i
∣∣ = qn if an 6= 0. We define the unit

interval U by

U :=

{∑
i<0

aiT
i : ai ∈ Fq

}
.

If A =
∑

i aiT
i ∈ Fq(T )∞, we define its fractional part, denoted {A}, as the element∑

i<0 aiT
i ∈ U . We use ψ(·) for the additive character on Fq defined by

ψ(a) = exp

(
2πi

p
Tr(a)

)
,

where the trace is taken from Fq down to its prime field Fp. We write e : Fq(T )∞ → S1

for the map defined by

e

(
n∑

i=−∞

aiT
i

)
= ψ(a−1).

In all that follows, the letter P is reserved for monic irreducible elements of Fq[T ]. If
A ∈ Fq[T ], we write φ(A) = #(Fq[T ]/(A))× for the size of the unit group mod A. We
set µ(A) = 0 if P 2 | A for some P ; otherwise, we put µ(A) = (−1)k, where k is the
number of distinct monic primes dividing A.

In order to keep track of explicit constants, we adopt the nonstandard convention
that U = Θ(V ) means |U | ≤ V .

2. Preliminaries

2.1. An exponential sum estimate. The following lemma of Hayes [Hay66, Theo-
rem 4.3] is an analogue of a well-known result of Dirichlet in the theory of Diophantine
approximation.

Lemma 3. For each θ ∈ U , there is a unique pair of coprime polynomials G,H ∈
Fq[T ] with H monic, degG < degH ≤ n/2, and∣∣∣∣θ − G

H

∣∣∣∣ < 1

qdegH+n
2

.
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It will also be convenient for us to have a reasonably sharp form of Gauss’s prime
number theorem for polynomials.

Lemma 4. For each prime power q and each natural number n, we have

(3)
qn

n
− 2

qn/2

n
≤ πq(n) ≤ qn

n
.

Also,

(4) πq(n) ≥ 1

2

qn

n
.

Proof (sketch). The lower and upper bounds for πq(n) in (3) are well-known. See, e.g.,
[LN97, Exercises 3.26 and 3.27, p. 142] for slightly stronger results. The lower bound
in (3) immediately implies (4) for qn ≥ 16. Since πq(1) = q, the estimate (4) also
holds whenever n = 1. This leaves only the pairs (q, n) ∈ {(2, 2), (2, 3), (3, 2)} to check,
which can be done directly. �

We now introduce the function field analogue of the usual exponential sum over
primes. For each θ ∈ U , let

f(θ) :=
∑

degP=n

e(θP ),

where the sum is over the monic irreducible polynomials P of degree n. The following
fundamental estimate is due to Hayes and relies in a crucial way on Weil’s analogue of
the Riemann Hypothesis.

Lemma 5. Given θ ∈ U , choose G and H as in Lemma 3. If |θ−G/H| < 1/qn, then

(5)

∣∣∣∣f(θ)− µ(H)

φ(H)
e (T n(θ −G/H)) · πq(n)

∣∣∣∣ ≤ qn−
1
2
bn
2
c.

Otherwise,

(6) |f(θ)| ≤ qn−
1
2
bn
2
c.

Proof (sketch). This follows from a careful reading of the proofs of [Hay66, Theorem
5.3 and Lemma 7.1]. Indeed, in our notation, [Hay66, eq. (5.14)] asserts that the
left-hand sides of (5) and (6) are bounded above by

qn/2 · (qn−bn/2c−degHφ(H))1/2.

To complete the proof of the lemma, we observe that φ(H) ≤ |H| = qdegH . �

2.2. Further preliminaries. We note the following consequence of Lemma 5.

Lemma 6. Let n ≥ 2. Let J be a nonempty subset of {0, 1, 2, . . . , n− 1}, and suppose
that θ ∈ U has the form θ =

∑
j∈J cjT

−j−1, where each cj is a nonzero element of Fq.
Choose G and H as described in Lemma 3. Then

(7) |f(θ)| ≤ qn−
1
2
bn
2
c + qn−degH .

Proof. We can assume that H is squarefree and that |θ − G/H| < q−n; otherwise,
Lemma 5 shows that (7) holds even with its second right-hand summand omitted.
Appealing now to (5), we see that

|f(θ)| ≤ qn−
1
2
bn
2
c +

πq(n)

φ(H)

≤ qn−
1
2
bn
2
c +

qn

n · φ(H)
,(8)
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using in the second line the upper bound of Lemma 4.
Put h := degH. Then h ≥ 1; otherwise, G = 0 and H = 1, and the inequality
|θ−G/H| < q−n contradicts the assumptions on θ. If H is not irreducible, then every
monic irreducible polynomial of degree h over Fq reduces to a unit modulo H, and
distinct monic irreducibles reduce to distinct elements mod H. So φ(H) ≥ πq(h) ≥
1
2
qh/h, by (4). This final lower bound on φ(H) also holds when H is irreducible, since

in that case φ(H) = qh − 1 ≥ 1
2
qh. So in either case,

qn

n · φ(H)
≤ 2h

n
qn−h ≤ qn−h,

using in the final step that h ≤ n/2. Inserting this upper bound into (8) yields (7). �

The following estimate will play a starring role in our proof of Theorem 1:

Lemma 7. Let n ≥ 2. Let J be a subset of {0, 1, 2, . . . , n−1}, and suppose that θ ∈ U
has the form θ =

∑
j∈J cjT

−j−1, where each cj is a nonzero element of Fq. Suppose

also that θ is not of the form c/T for any c ∈ Fq. Then with J := #J , we have

|f(θ)| ≤ qn−
1
2
bn
2
c + qn−1−b

n
J+1
c.

Proof. Choose G and H as in Lemma 3. As in the proof of Lemma 6, we may assume
that H is squarefree and that |G/H − θ| < q−n. By Lemma 6, it is enough to show
that h := degH satisfies h ≥ 1 + b n

J+1
c; in other words, it suffices to prove that

(9) h >
n

J + 1
.

Write H = T eH ′, where T - H ′. Since H is squarefree, we must have e = 0 or e = 1. We
must also have H ′ nonconstant: Otherwise, G/H = c/T for some (possibly vanishing)
constant c ∈ Fq. But then |G/H − θ| < 1/qn forces θ = c/T , contrary to hypothesis.

We claim that in the Laurent expansion of G/H, there is no string of h consecutive
vanishing coefficients. Otherwise, |{T rG/H}| < q−h for some exponent r ≥ 0. But for
every r, we have |{T rG/H}| ≥ |H|−1 = q−h. (We use here that H ′ is a nonconstant
divisor of H coprime to both T and G, so that H cannot divide T rG.) We deduce that
at least bn/hc of the coefficients of T−1, T−2, . . . , T−n in the Laurent expansion of G/H
are nonzero. Since |G/H − θ| < q−n, the corresponding coefficients in the expansion of
θ are also nonvanishing. But by definition, θ has exactly J nonvanishing coefficients.
So J ≥ bn/hc > n/h− 1, yielding (9). �

Our final lemma allows us to convert the problem of counting irreducible polynomials
with preassigned coefficients to one of estimating exponential sums.

Lemma 8. If A =
∑

i aiT
i ∈ Fq(T )∞, j ∈ Z, and a ∈ Fq, we set χ(A; j, a) = 1 if

a = aj and χ(A; j, a) = 0 otherwise. Then

χ(A; j, a) =
1

q

∑
c∈Fq

e(cT−j−1 · A) · ψ(−ac).

Proof. Expanding out the definitions, we find that∑
c∈Fq

e(cT−j−1 · A) · ψ(−ac) =
∑
c∈Fq

ψ(c(aj − a)).

As c ranges over Fq, the functions a 7→ ψ(ca) range over the additive characters of
Fq (see [LN97, Theorem 5.7, p. 190]). The lemma now follows from the familiar
orthogonality relations (e.g., see [LN97, p. 189]). �
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3. Proofs of the main results

Proof of Theorem 1. By Lemma 8, we have∑
P∈S

1 =
∑

degP=n

∏
i∈I

χ(P ; i, ai)

= q−I
∑

degP=n

∏
i∈I

∑
ci∈Fq

e(ciT
−i−1 · P ) · ψ(−aici)


= q−I

∑
{ci}i∈I

(∏
i∈I

ψ(−aici)

) ∑
degP=n

e

((∑
i∈I

ciT
−i−1

)
P

)
;(10)

in (10), the outermost sum is over all tuples {ci}i∈I with each ci ∈ Fq.
Suppose first that 0 6∈ I, so that we are not prescribing the constant term. The

tuple {ci} = 0 makes a contribution to (10) of exactly

q−Iπq(n).

For all of the remaining tuples {ci}, the innermost sum in (10) can be estimated by
applying Lemma 7 with

(11) θ :=
∑
i∈I

ciT
−i−1.

We find that each of these qI − 1 remaining tuples makes a contribution to (10) of

(12) Θ
(
q−I

(
qn−

1
2
bn
2
c + qn−1−b

n
I+1
c
))

.

Putting this together with our estimate when {ci} = 0 gives∑
P∈S

1 = q−Iπq(n) + Θ
(
qn−

1
2
bn
2
c + qn−1−b

n
I+1
c
)
,

which is the claim of Theorem 1 in this case.
In the case when 0 ∈ I, we partition the tuples {ci}i∈I into two classes: In the first

class, we put the q tuples having ci = 0 for all i ∈ I \ {0}. In the second class, we put
the remaining qI − q tuples. The contribution to (10) of the tuples in the first class is
described by the double sum

(13) q−I
∑
c0∈Fq

ψ(−a0c0)
∑

degP=n

e
(
c0T

−1 · P
)
.

When c0 = 0, the inner sum in (13) is precisely πq(n). For c0 6= 0, Lemma 5 (taking
G = c0 and H = T ) shows that the inner sum may be estimated as

∑
degP=n

e
(
c0T

−1 · P
)

= − 1

q − 1
πq(n) + Θ(qn−

1
2
bn
2
c).
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Substituting these estimates into (13), we find that

q−I
∑
c0∈Fq

ψ(−a0c0)
∑

degP=n

e
(
c0T

−1 · P
)

= q−I · πq(n)

1− 1

q − 1

∑
c0∈Fq

c0 6=0

ψ(−a0c0)

+ Θ(q−I · (q − 1) · qn−
1
2
bn
2
c)

= q−I · πq(n)

 q

q − 1
− 1

q − 1

∑
c0∈Fq

ψ(−a0c0)

+ Θ(q−I · q · qn−
1
2
bn
2
c).

We are assuming that a0 6= 0, and so the orthogonality relations imply that the re-
maining sum over c0 vanishes. Hence, the contribution of the tuples in the first class
simplifies to

q−(I−1)(q − 1)−1 · πq(n) + Θ(q−I · q · qn−
1
2
bn
2
c).

For each of the qI − q tuples in the second class, Lemma 7 can be applied with θ given
by (11), and each tuple makes a contribution to (10) of size (12). Putting everything
together, we obtain for

∑
P∈S 1 the main term predicted by Theorem 1, with an error

term that is

Θ(q−I · q · qn−
1
2
bn
2
c) + Θ

(
q−I · (qI − q) ·

(
qn−

1
2
bn
2
c + qn−1−b

n
I+1
c
))

=

Θ
(
qn−

1
2
bn
2
c + qn−1−b

n
I+1
c
)
,

which also agrees with Theorem 1. �

Proof of Corollary 2. Theorem 1 gives us a main term for
∑

P∈S 1 of order qn−I/n,

and an error bound of qn−
1
2
bn
2
c + qn−1−b

n
I+1
c. So the relative error is bounded, in order

of magnitude, by n ·qI− 1
2
bn
2
c+n ·qI−1−b

n
I+1
c. Since we are assuming that I ≤ (1− ε)

√
n,

we find that for large n,

n · qI−
1
2
bn
2
c + n · qI−1−b

n
I+1
c ≤ n · q

√
n−n

4 + n · q−ε
√
n ≤ n · 2

√
n−n

4 + n · 2−ε
√
n.

The final expression tends to 0 as n→∞, and the corollary follows. �

4. Concluding remarks

4.1. An alternative error bound. We take this opportunity to record that Theorem
1 remains true with its conclusion (2) replaced by

(14)

∣∣∣∣∣∣∣
 ∑

P∈S
P irreducible

1

−S · πq(n)

∣∣∣∣∣∣∣ ≤ qn−
1
2
bn
2
c + qn−1−min I .

When all of the elements of I are large, this bound is more useful than (2), in the sense
that it gives nontrivial estimates for

∑
P∈S 1 for larger values of #I. The proof of (14)

is exactly the same as that given for Theorem 1, except that everywhere Lemma 7 was
used, we substitute the following result:
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Lemma 9. Let n ≥ 2. Let J be a nonempty subset of {0, 1, 2, . . . , n− 1}, and suppose
that θ ∈ U has the form θ =

∑
j∈J cjT

−j−1, where each cj is a nonzero element of Fq.
Then

(15) |f(θ)| ≤ qn−
1
2
bn
2
c + qn−1−minJ .

Proof of Lemma 9. Choose G and H as in Lemma 3. As in the proof of Lemma 6,
we may assume that H is squarefree and that |θ − G/H| < q−n. We have |θ| =
q−1−minJ ≥ q−n; thus, |G/H| = |θ| by the ultrametric triangle inequality. This forces
degH ≥ 1 + minJ . The estimate (15) now follows from Lemma 6. �

4.2. Prescribing consecutive coefficients. It has long been known that for the
problem of prescribing the first and last several coefficients, one can do much better
than what is guaranteed by Theorem 1. The next proposition is a consequence of work
of Hayes together with Weil’s Riemann Hypothesis (compare with [Hay65, Theorem
1.3]). For more refined results, see the papers of Rhin [Rhi72, Chapter 2], Hsu [Hsu96],
and Car [Car99].

Proposition 10. Fix ε > 0, and assume that n > n0(ε). Let s and t be nonnegative
integers with s + t ≤ (1

2
− ε)n. For all all prime powers q, there is a degree n monic

irreducible over Fq with the coefficient of T i arbitrarily prescribed for all i ∈ [0, s) ∪
[n− t, n). We assume that the constant term, if prescribed, is nonzero.

So in some sense, it is the middle coefficients that present the most difficulty. In this
direction, Garefalakis [Gar08] has shown that for n > n0(ε), there is a monic, degree n
irreducible with any b(1

3
−ε)nc consecutive coefficients set to zero (excluding, of course,

the T n-coefficient and the constant term).
The method of this note permits us to arbitrarily prescribe any b(1

4
−ε)nc consecutive

coefficients, again for n > n0(ε). (We exclude the T n-coefficient from this statement
and assume that the constant term, if prescribed, is nonzero.) Indeed, let I ⊂ [0, n)
be a set of b(1

4
− ε)nc consecutive integers. If min I < 1

4
n and n is sufficiently large, we

can prescribe the coefficient of T i for all i ∈ I by Proposition 10. On the other hand,
when min I ≥ 1

4
n, the same conclusion follows from (14).
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