
PRACTICAL PRETENDERS

PAUL POLLACK AND LOLA THOMPSON

Abstract. Following Srinivasan, an integer n ≥ 1 is called practical if every natural
number in [1, n] can be written as a sum of distinct divisors of n. This motivates us
to define f(n) as the largest integer with the property that all of 1, 2, 3, . . . , f(n) can
be written as a sum of distinct divisors of n. (Thus, n is practical precisely when
f(n) ≥ n.) We think of f(n) as measuring the “practicality” of n; large values of f
correspond to numbers n which we term practical pretenders. Our first theorem describes
the distribution of these impostors: Uniformly for 4 ≤ y ≤ x,

#{n ≤ x : f(n) ≥ y} � x

log y
.

This generalizes Saias’s result that the count of practical numbers in [1, x] is � x
log x .

Next, we investigate the maximal order of f when restricted to non-practical inputs.
Strengthening a theorem of Hausman and Shapiro, we show that every n > 3 for which

f(n) ≥
√
eγn log log n

is a practical number.
Finally, we study the range of f . Call a number m belonging to the range of f an

additive endpoint. We show that for each fixed A > 0 and ε > 0, the number of additive
endpoints in [1, x] is eventually smaller than x/(log x)A but larger than x1−ε.

1. Introduction

In 1948, Srinivasan [15] initiated the study of practical numbers, natural numbers n
with the property that each of 1, 2, 3, . . . , n− 1 admits an expression as a sum of distinct
divisors of n. For example, every power of 2 is practical (since every natural number
admits a binary expansion), but there are many unrelated examples, such as n = 6 or
n = 150. Srinivasan posed two problems: Classify all practical numbers and say something
interesting about their distribution.

The first of these tasks was carried to completion by Stewart [16] in 1954. The same
classification was discovered independently, and almost concurrently, by Sierpiński [14].
Given a natural number n, write its canonical prime factorization in the form

(1.1) n := pe11 p
e2
2 · · · perr , where p1 < p2 < · · · < pr.

Put n0 = 1, and for 1 ≤ j ≤ r, put nj :=
∏j

i=1 p
ei
i . Using σ for the usual sum-of-divisors

function (so that σ(m) :=
∑

d|m d), the number n is practical if and only if

(1.2) pj+1 ≤ σ(nj) + 1 for all 0 ≤ j < r.

Below, we refer to this as the Stewart–Sierpiński classification of practical numbers. This
criterion implies, in particular, that all practical numbers n > 1 are even. Stewart and
Sierpiński also showed that if all of the inequalities (1.2) hold, then not only are all integers
in [1, n−1] expressible as a sum of distinct divisors of n, but the same holds for all integers
in the longer interval [1, σ(n)]. Note that [1, σ(n)] is the largest interval one could hope
to represent, since the sum of all distinct divisors of n is σ(n).
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The distribution of practical numbers has proved more recalcitrant. Let P (x) denote
the count of practical numbers not exceeding x. Already in 1950, Erdős [2] claimed he
could show that the practical numbers have asymptotic density zero, i.e., that P (x) = o(x)
as x → ∞, but he gave no details. In 1984, Hausman and Shapiro [6] made the more
precise assertion that P (x) ≤ x/(log x)β+o(1), with β = 1

2
(1 − 1/ log 2)2 ≈ 0.0979 . . ..

Their proof has an error (specifically, [6, Lemma 3.2] is incorrect); one should replace
β with the smaller exponent 1 − 1+log log 2

log 2
≈ 0.0860713. Much sharper results on P (x)

were soon established by Tenenbaum [17, 19], who proved that P (x) = x
log x

(log log x)O(1).

By a refinement of Tenenbaum’s methods, Saias [13] established in 1997 what is still the
sharpest known result: There are absolute constants c1 and c2 with

(1.3) c1
x

log x
≤ P (x) ≤ c2

x

log x
for all x ≥ 2.

On the basis of the numerical data, Margenstern [9] has conjectured that P (x)
x/ log x

tends to

a limit ≈ 1.341.
In this paper, we are concerned with what we term near-practical numbers or practical

pretenders. Define f(n) as the largest integer with the property that all of the numbers
1, 2, 3, . . . , f(n) can be written as a sum of distinct divisors of n. By definition, n is
practical precisely when f(n) ≥ n − 1. We define a near-practical number as one for
which f(n) is “large”. This definition is purposely vague; its nebulous nature suggests
that we investigate the behavior of the two-parameter function

N(x, y) := #{n ≤ x : f(n) ≥ y}

for all x and y. Our first result gives the order of magnitude of the near-practical numbers
for essentially all interesting choices of x and y.

Theorem 1.1. There are absolute positive constants c3 and c4 so that for 4 ≤ y ≤ x, we
have

c3
x

log y
≤ N(x, y) ≤ c4

x

log y
.

Remark. To see why the technical restriction y ≥ 4 is necessary, note that N(x, x) = 0
for all 3 < x < 4.

Theorem 1.1 has the following easy corollary, proved in §3.

Corollary 1.2. For each m, the set of natural numbers n with f(n) = m possesses an
asymptotic density, say ρm. The constant ρm is positive whenever there is at least one n
with f(n) = m. Moreover,

∞∑
m=1

ρm = 1.

We call a natural number m for which ρm is nonvanishing (equivalently, an m in the
image of f) an additive endpoint. Thus, Corollary 1.2 shows that ρm is the probability
mass function for additive endpoints. The first several additive endpoints are

1, 3, 7, 12, 15, 28, 31, 39, 42, 56, 60, 63, 73, 90, 91, 96, 100, 104, 108, 112, 120, . . . .

Just from this limited data, one might conjecture that ρm is usually zero, i.e., zero apart
from of a set of m of vanishing asymptotic density. This guess is confirmed, in a much
sharper form, in our next theorem.
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Theorem 1.3. For each fixed A > 0 and all x ≥ 3, the number of integers in [1, x] which
occur as additive endpoints is �A x/(log x)A. In the opposite direction, the number of
additive endpoints up to x exceeds

x/ exp(c5(log log x)3)

for all large x, for some absolute constant c5 > 0.

Above, we noted Stewart’s result that if f(n) ≥ n− 1, then f(n) = σ(n). In this state-
ment, a weak lower estimate on f(n) implies that f(n) is as large as possible. Hausman and
Shapiro [6] proposed investigating the extent of this curious phenomenon. More specifi-
cally, they asked for the slowest-growing monotone function g(n) for which f(n) ≥ g(n)
implies (at least for n large) that n is practical. Set

H(n) :=
√
eγn log log n,

where γ is the Euler–Mascheroni constant. The next proposition appears as [6, Theorems
2.1, 2.2].

Proposition 1.4. Let ε > 0. Apart from finitely many exceptional n, all solutions to
f(n) ≥ (1 + ε)H(n) are practical. On the other hand, there are infinitely many non-
practical n with f(n) ≥ (1− ε)H(n).

Our final theorem removes the factor 1 + ε from the first half of Proposition 1.4.

Theorem 1.5. If n > 3 and f(n) ≥ H(n), then n is practical.

Notation. We use the Landau–Bachmann o and O symbols, as well as Vinogradov’s �
notation, with their usual meanings; subscripts indicate dependence of implied constants.
We write ω(n) :=

∑
p|n 1 for the number of distinct prime factors of n and Ω(n) :=

∑
pk|n 1

for the number of prime factors of n counted with multiplicity; Ω(n; y) :=
∑

pk|n, p≤y 1
denotes the number of prime divisors of n not exceeding y, again counted with multiplicity.
The number of divisors of n is denoted d(n). We use P−(m) for the smallest prime factor
of m, with the convention that P−(1) is infinite. Absolute positive constants are denoted
by c1, c2, c3, etc., and have the same meaning each time they appear.

2. Proofs of Theorem 1.1 and Corollary 1.2

We begin by recording some useful lemmas. Our first gives a formula for f(n) in terms
of the prime factorization of n.

We assume that the factorization of n has been given in the form (1.1). We define
n0 := 1 and nj :=

∏
1≤i≤j p

ei
i . Let 0 ≤ j < r be the first index for which pj+1 > σ(nj) + 1,

putting j = r if no such index exists (i.e., if n is practical). Then nj is a practical number,
by the Stewart–Sierpiński classification, and we call nj the practical component of n.

Lemma 2.1. We have f(n) = σ(nj), where nj is the practical component of n.

Proof. Since nj is practical, f(n) ≥ f(nj) = σ(nj). On the other hand, σ(nj) + 1 is not
representable as a sum of proper divisors of n. Indeed, if d is a divisor of n involved in
an additive representation of σ(nj) + 1, then d ≤ σ(nj) + 1 < pj+1 < pj+2 < · · · < pr. It
follows that the only primes dividing d are p1, . . . , pj, so that d is a divisor of nj. But the
largest number which can be formed as a sum of distinct divisors of nj is σ(nj), which is
smaller than σ(nj) + 1. So σ(nj) + 1 is not representable as a sum of distinct divisors of
n, and hence f(n) = σ(nj), as claimed. �

The following lemma was observed by Margenstern [9, Corollaire 1] to follow from the
Stewart–Sierpiński classification.
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Lemma 2.2. If n is practical and m ≤ σ(n) + 1, then mn is practical.

We now employ Lemma 2.2 to show that reasonably short intervals contain a positive
proportion of practical numbers.

Lemma 2.3. Let ε > 0. For x > x0(ε), the number of practical numbers in ((1− ε)x, x]
is �ε x/ log x.

Proof. We can assume that 0 < ε < 1. With c1 and c2 as defined in (1.3), we set
r := d2c2/c1e and s := d1/εe. From (1.3), we have that for large x (depending on ε), the
number of practical numbers in the interval (x/rs, x/s] is

≥ c1
x/s

log (x/s)
− c2

x/rs

log (x/rs)
>
c1

3s

x

log x
≥ c1

6
ε
x

log x
.

By the pigeonhole principle, one of the intervals ( x
s+1

, x
s
], ( x

s+2
, x
s+1

], . . . , ( x
rs
, x
rs−1

] contains

> c1
6rs
εx/ log x � ε2x/ log x practical numbers. Suppose this interval is ( x

j+1
, x
j
], where

s ≤ j < rs, and let n be a practical number contained within. If x > (rs)2, then
j < x

j+1
< n, and so jn is practical by Lemma 2.2. (Note that the lower bound on x

assumed here depends only on ε.) Letting n run through the practical numbers in ( x
j+1

, x
j
],

we obtain � ε2x/ log x practical numbers jn ∈ (x j
j+1

, x]. But (x j
j+1

, x] ⊂ ((1 − ε)x, x],

by our choice of s. This proves Lemma 2.3. Moreover, we have shown that the implied
constant in the lemma statement may be taken proportional to ε2. �

The next result, due to Hausman and Shapiro [6, Theorem 4.1], shows that substantially
shorter intervals than those considered in Lemma 2.3 always contain at least one practical
number.

Lemma 2.4. For all real x ≥ 1, there is a practical number x < n < x+ 2x1/2.

Let Φ(x, y) denote the number of natural numbers n ≤ x divisible by no primes ≤ y.
The following lemma is a consequence of Brun’s sieve. Variants can be found, e.g., as [3,
Theorem 1, p. 201] or [18, Theorem 3, p. 400].

Lemma 2.5. Uniformly for 2 ≤ y ≤ x, we have Φ(x, y) � x/ log y. If we assume also
that x > c6y for a suitable large absolute constant c6, then Φ(x, y)� x/ log y.

We now prove Theorem 1.1, treating the upper and lower estimates separately.

Proof of the upper bound in Theorem 1.1. Suppose that n ≤ x and f(n) ≥ y. By the
upper bound in (1.3), we may restrict our attention to non-practical n. Let d be the
practical component of n and write n = dq. By Lemma 2.1, σ(d) = f(n). In particular,
since we are assuming that f(n) ≥ y ≥ 4, we must have that d > 1. Moreover, since n is
not practical, d < n. Thus, q > 1 and

P−(q) > σ(d) + 1 > d.

Hence,

d2 < d · P−(q) ≤ dq = n ≤ x,

and so d ≤
√
x.

Given d, the number of possibilities for n is bounded above by the number of q ≤ x/d
with P−(q) > d. Since 2 ≤ d ≤ x/d, we may apply Lemma 2.5 to find that the number
of possibilities for q is � x

d log d
. Since σ(d) = f(n) ≥ y and (crudely) σ(d) < d2, it
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follows that d >
√
y. Hence, using partial summation and (1.3), we see that the number

of possibilities for n is

� x
∑

√
y<d≤

√
x

d practical

1

d log d
≤ x

P (
√
x)√

x log
√
x

+ x

∫ √x
√
y

P (t)
1 + log t

(t log t)2
dt

� x

(log x)2
+ x

∫ √x
√
y

dt

t(log t)2
� x

(log x)2
+

x

log y
� x

log y
. �

Proof of the lower bound in Theorem 1.1. The proof is suggested by that offered for the
upper bound, but some care is necessary to ensure uniformity throughout the stated range
of x and y.

First, we treat the range when x1/10 ≤ y ≤ x. In this domain, we use the trivial
lower bound N(x, y) ≥ N(x, x). We estimate the right-hand side from below by counting
practical numbers n belonging to the interval [x+1

2
, x]. Note that for such n, we have

f(n) = σ(n) ≥ 2n − 1 ≥ x (using for the first inequality that n − 1 is a sum of proper
divisors of n), and so n is indeed counted by N(x, x).

If 6 ≤ x ≤ 11, then n = 6 is a practical number in [x+1
2
, x]. Similarly, if 4 ≤ x ≤ 6,

then n = 4 works. Finally, if x ≥ 11, then Lemma 2.4 gives a practical number n with

x+ 1

2
< n <

x+ 1

2
+ 2

√
x+ 1

2
≤ x.

Hence, we always have N(x, x) ≥ 1. (Recall that we only consider x ≥ 4.) Moreover, by
Lemma 2.3, there are � x/ log x practical numbers in [x+1

2
, x] once x is large. It follows

that N(x, x)� x/ log x for all x ≥ 4. So if x1/10 ≤ y ≤ x, then

N(x, y) ≥ N(x, x)� x/ log x� x/ log y,

which gives the lower bound of the theorem in this case.
Now suppose that 4 ≤ y < x1/10. We consider numbers of the form n = dq ≤ x,

where d is a practical number in (y, y3] and where P−(q) > y6. For any such n, we have
f(n) ≥ f(d) ≥ d > y. Moreover, each n constructed in this way arises exactly once, since
q is determined as the largest divisor of n supported on primes > y6. Given d, the number
of corresponding q is Φ(x/d, y6). If x is large, then

x/d

y6
≥ x

y9
≥ x1/10 > c6,

and so Lemma 2.5 gives

(2.1) Φ(x/d, y6)� x

d log y
.

On the other hand, (2.1) is trivial for bounded x, since 1 is always counted by Φ(x/d, y6).
Thus, (2.1) holds in any case. Hence, the number of n constructed in this way is

� x

log y

∑
y<d≤y3
d practical

1

d
.

That the sum appearing here is � 1 for large y follows from partial summation and the
lower bound in (1.3). For bounded y, the sum is also� 1, since Lemma 2.4 guarantees that
there is at least one practical number between y and y3. (Certainly y + 2y1/2 < 3y < y3

when y ≥ 4.) This completes the proof of the lower bound. �
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Proof of Corollary 1.2. One can detect whether or not f(n) = m given just the list of
divisors of n not exceeding m + 1. Thus, whether or not f(n) = m depends only on the
residue class of n modulo (m+1)!. This gives the first two assertions of the corollary. For

the third, notice that 1−
∑N

n=1 ρm represents the density of the set of n with f(n) > N ,
which is � 1/ logN by Theorem 1.1. Letting N →∞ completes the proof. �

3. Proof of Theorem 1.3

We divide the proof of Theorem 1.3 into two parts.

3.1. The upper bound in Theorem 1.3. Central to the proof of both halves of The-
orem 1.3 is the observation, immediate from Lemma 2.1, that m belongs to the range of
f precisely when m = σ(n) for some practical number n. Thus, we are really asking in
Theorem 1.3 for estimates on the range of σ restricted to practical inputs.

Lemma 3.1. Let A ≥ 30. Suppose that x ≥ 3. If n is a practical number with x3/4 <
n ≤ x, then either

(3.1) Ω(n) > 2A log log x

or

(3.2) ω(n) >
1

2 logA
log log x.

Proof. Since n is practical, every integer in [1, n] can be written as a subset-sum of divisors
of n. Thus, 2d(n) ≥ n, so we can use the hypothesis that n > x3/4 to show

d(n) ≥ log n

log 2
>

3/4

log 2
log x > log x.

Suppose that n =
∏`

i=1 p
ei
i is the factorization of n into primes, where ` = ω(n). Since

d(n) =
∏`

i=1(ei + 1) > log x, the inequality between the arithmetic and geometric means
gives that

(3.3)
1

``

(∑̀
i=1

(ei + 1)

)`

≥
∏̀
i=1

(ei + 1) > log x.

Now assume that (3.1) fails. Then
∑`

i=1(ei + 1) ≤ 2
∑`

i=1 ei ≤ 4A log log x, and (3.3)

gives (4A log log x
`

)` > log x. Writing ` = λ log log x, we deduce that(
4A

λ

)λ log log x

> log x, and so λ log
4A

λ
> 1.

This latter inequality, along with the condition A ≥ 30, implies that λ > 1
2 logA

(by a

short exercise in calculus). Since ω(n) = λ log log x, we have (3.2). �

The next lemma, which belongs to the study of the anatomy of integers, bounds from
above the number of n with an abnormally large number of small prime factors.

Lemma 3.2. Let x, y ≥ 2, and let k ≥ 1. The number of n ≤ x with Ω(n; y) ≥ k is
� k

2k
x log y.

Remark. As a special case (when y = x), the number of n ≤ x with Ω(n) ≥ k is
� k

2k
x log x.
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Proof. The proof is almost identical to that suggested in Exercise 05 of [4, p. 12], details
of which can be found in [8, Lemmas 12, 13]. Thus, we only sketch it. Let v := 2− 1/k.
Let g be the arithmetic function determined through the convolution identity vΩ(n;y) =∑

d|n g(d). Then g is multiplicative. For e ≥ 1, we have g(pe) = ve − ve−1 if p ≤ y, and

g(pe) = 0 if p > y. Hence,∑
n≤x

vΩ(n;y) =
∑
d≤x

g(d)
⌊x
d

⌋
≤ x

∑
d≤x

g(d)

d

≤ x
∏
p≤y

(
1 +

v − 1

p
+
v2 − v
p2

+ . . .

)
=

x

2− v
∏

3≤p≤y

(
1 +

v − 1

p− v

)
.

Now 2− v = 1/k, and the rightmost product is

≤ exp

( ∑
3≤p≤y

v − 1

p− v

)
≤ exp

( ∑
3≤p≤y

1

p− 2

)
≤ exp

(∑
p≤y

1

p
+O(1)

)
� log y.

Collecting our estimates, we have shown that∑
n≤x

vΩ(n;y) � kx log y.

But each term with Ω(n; y) ≥ k makes a contribution to the left-hand side that is ≥ vk =
(2− 1/k)k = 2k(1− 1

2k
)k � 2k. Thus, the number of such terms is � k

2k
x log y. �

The next lemma is a partial shifted-primes analogue of the Hardy-Ramanujan inequal-
ities. A proof can be found in the text of Prachar [11, Lemma 7.1, p. 166] (cf. Erdős [1]).
There a slightly stronger assertion is shown for shifted primes p− 1; only trivial changes
are required to replace p− 1 with p+ 1.

Lemma 3.3. Let t ≥ 3, and let k ≥ 1. The number of primes p ≤ t with ω(p+ 1) = k is

� t

(log t)2

(
(log log t+ c7)k+2

(k − 1)!
+ 1

)
.

Proof of the upper bound in Theorem 1.3. It is enough to prove the result for large values
of A. Suppose that m ≤ x is an additive endpoint, and write m = σ(n) with n practical.
Put Z := 2A log log x. The number of values of m corresponding to an integer n ≤ x3/4

or an n with Ω(n) > Z is, by Lemma 3.2,

� x3/4 +
Z

2Z
x log x�A

x

(log x)A
.

Thus, with

Z ′ :=
1

2 logA
log log x,

Lemma 3.1 allows us to assume that

(3.4) ω(n) ≥ Z ′.

We now show that most of the primes dividing n make a large contribution to Ω(σ(n)) =
Ω(m). We claim we can assume that both of the following hold:

(i) There are fewer than Z ′/4 primes p for which p2 | n.
(ii) There are fewer than Z ′/4 primes p dividing n for which

(3.5) Ω(p+ 1) ≤ 8A logA.
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With K := dZ ′/4e, the number of n ≤ x which are exceptions to (i) is, by the multinomial
theorem,

≤ x
∑

d≤x, squarefree
ω(d)=K

1

d2
≤ x

K!

(∑
p≤x

1

p2

)K

≤ x(e/K)K < x/(log x)A,

once x is large. (We use here that
∑
p−2 < 1 and the elementary inequality K! ≥ (K/e)k.)

To handle (ii), we observe that from Lemma 3.3 and partial summation, the sum of the
reciprocals of all p satisfying (3.5) converges. Let S denote this sum. Then the number
of exceptions to (ii) is, for large x,

≤ x

K!

( ∑
p≤x

p satisfies (3.5)

1

p

)K

≤ x(eS/K)K < x/(log x)A.

Hence, we can indeed assume (i) and (ii).
From (3.4), it now follows that there are at least Z ′−2Z

′

4
= Z′

2
primes p for which p ‖ n

and for which Ω(p+ 1) > 8A logA. Hence,

Ω(m) = Ω(σ(n)) ≥
∑
p‖n

Ω(p+ 1) > 8A logA · Z
′

2
= 2A log log x.

But by Lemma 3.2, the number of m ≤ x with Ω(m) this large is �A x/(log x)A. This
completes the proof of Theorem 1.3 for large x. If x is bounded in terms of A, then the
theorem is trivial. �

Remark. The method given here can be pushed to yield the more explicit result that
the count of m ≤ x that occur as additive endpoints is smaller than

x/ exp

(
c8 log log x

log log log x

log log log log x

)
.

3.2. The lower bound in Theorem 1.3. The lower bound in Theorem 1.3 will be
deduced from the following proposition, which may be of interest outside of this context.

Proposition 3.4. Let A > 0. There is a constant c = c(A) so that the following holds.
If x is sufficiently large, say x > x0(A, c), then any subset S ⊂ [1, x] with

#S ≤ x/ exp(c(log log x)3)

satisfies
#σ−1(S ) ≤ x/(log x)A.

Here σ−1(S ) denotes the set of n with σ(n) ∈ S .

Remark. It is perhaps surprising that one cannot improve the upper bound on #σ−1(S )
very much, even if one assumes that S consists of only a single element! Indeed, plausible
conjectures about the distribution of smooth shifted primes p + 1 (such as what would
follow from the Elliott–Halberstam conjecture) imply that for all large x, there is a sin-
gleton set S ⊂ [1, x] with #σ−1(S ) > x1−ε. (Here ε > 0 is arbitrary but fixed.) For
the Euler ϕ-function, this result is due to Erdős [1] (see also the exposition of Pomerance
[10]); the σ-version can be proved similarly, replacing p− 1 with p+ 1 when necessary.

To apply Proposition 3.4 to the case of the practical numbers, it is convenient to
recall Gronwall’s determination of the maximal order of the sum-of-divisors function σ [5,
Theorem 323, p. 350].
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Lemma 3.5. We have lim supn→∞
σ(n)

n log logn
= eγ.

Proof of the lower bound in Theorem 1.3. Let x be large. By Lemma 3.5, if n ≤ x
2 log log x

,

then σ(n) ≤ x. (We use here that eγ < 2.) Thus, with S the set of additive endpoints
not exceeding x,

#σ−1(S ) ≥ PR

(
x

2 log log x

)
� x

(log x)(log log x)
,

using the lower estimate in (1.3) for the last step. The desired lower bound on #S now
follows from (the contrapositive of) Proposition 3.4, with A = 1.1. �

The rest of this section is devoted to the proof of Proposition 3.4. The proof rests on
a σ-analogue of a result for the Euler function appearing in a paper of Luca and the first
author [7, Lemma 2.1].

Lemma 3.6. Let x ≥ 3. Let d be a squarefree natural number with d ≤ x. The number
of n for which d | σ(n) and σ(n) ≤ x is

≤ x

d
(c9 log x)3ω(d).

Proof. If d = 1, the result is clear. Suppose that d > 1. Let n be an integer for which
σ(n) ∈ [1, x] is a multiple of d. Write the prime factorization of n in the form n =

∏
i p

ei
i .

Since d | σ(n), there is a factorization d = d1d2 · · · for which each di | σ(peii ). Discarding
those terms with di = 1 and relabeling, we can assume that d = d1 · · · d`, where each
di > 1. Clearly, ` ≤ ω(d).

We now fix the factorization d = d1 · · · d` and count the number of corresponding n.
This count does not exceed

(3.6) x
∏̀
i=1

 ∑
pe: σ(pe)≤x
di|σ(pe)

1

pe

 .

We proceed to estimate the inner sum in (3.6). If di | σ(pe), then σ(pe) = dim, with
m ≤ x/di. Since σ(pe) = 1 + p+ · · ·+ pe ≤ 2pe,∑

pe: σ(pe)≤x
di|σ(pe)

1

pe
≤ 2

di

∑
m≤x/di

1

m

∑
pe : σ(pe)=mdi

1.

For each fixed e ≥ 1, there is at most one prime p with σ(pe) = mdi; moreover, since
mdi ≤ x, there are no such p once e > log x/ log 2. Thus,

2

di

∑
m≤x/di

1

m

∑
pe : σ(pe)=mdi

1� log x

di

∑
m≤x/di

1

m
� (log x)2

di
.

Inserted back into (3.6), we find that for a certain absolute constant C > 1, the number
of n corresponding to the given factorization is at most

x
∏̀
i=1

C(log x)2

di
=
x

d
C`(log x)2` ≤ x

d
Cω(d)(log x)2ω(d).

Finally, we sum over unordered factorizations of d into parts > 1. Since d is squarefree,
the number of such factorizations is precisely Bω(d), where Bk denotes the kth Bell number
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(the number of set partitions of a k-element set). Thinking combinatorially, we have the
crude bound Bk ≤ kk, and so the total number of n which arise is

≤ ω(d)ω(d)
(x
d
Cω(d)(log x)2ω(d)

)
=
x

d
(Cω(d)(log x)2)ω(d).

By definition, we have ω(d) ≤ Ω(d) ≤ log x/ log 2, where the final inequality follows
from the simple observation that 2Ω(d) ≤ d ≤ x. This proves our lemma with c9 =
(C/ log 2)1/3. �

Lemma 3.7. Fix A ≥ 3. The number of n ≤ x for which

(3.7) Ω(σ(n)) ≥ 8A2(log log x)2

is o(x/(log x)A), as x→∞.

Proof. We may suppose that ω(n) ≤ 2A log log x. Indeed, Lemma 3.2 shows that for
x ≥ 3, the number of n ≤ x not satisfying the stronger inequality Ω(n) ≤ 2A log log x is

� A log log x

2A log log x
x log x�A

x log log x

(log x)2A log 2−1
.

Since A ≥ 3, the exponent 2A log 2− 1 > A, and so this upper bound is o(x/(log x)A).
Writing Ω(σ(n)) =

∑
pe‖n Ω(σ(pe)), we thus deduce that if (3.7) holds, then

(3.8) Ω(σ(pe)) ≥ 8A2(log log x)2

2A log log x
= 4A log log x

for some prime power pe ‖ n.
Suppose first that e > 1. Then (for large x) the squarefull part of n is of size at least

(3.9) pe ≥ 1

2
σ(pe) ≥ 1

2
2Ω(σ(pe)) ≥ 1

2
24A log log x > (log x)5A/2.

But then the number of possibilities for n ≤ x is � x/(log x)5A/4, and so in particular
is o(x/(log x)A). On the other hand, if e = 1, then (3.8) implies that n is divisible by
some prime p with Ω(p+ 1) ≥ 4A log log x. For each such p, the number of corresponding
n is ≤ x/p < 2x/(p + 1). Summing over p, we find that the total number of such n ≤ x
is at most

2x
∑
d≤x

Ω(d)≥4A log log x

1

d
.

Put Z := 4A log log x; by partial summation, along with Lemma 3.2 and the final inequal-
ity in (3.9), this upper bound is

� x
Z

2Z

∫ x

2

log t

t
dt� x(log x)2 Z

2Z
�A x

(log x)2 log log x

(log x)5A/2
,

and so is o(x/(log x)A), as x→∞. This completes the proof. �

Lemma 3.8. Let x ≥ 3, and let z ≥ 1. The number of n ≤ x with σ(n) divisible by p2

for some prime p > z is � x(log x)2z−1/2.

Proof. If p2 | σ(n), then either p | σ(qe) for a proper prime power qe exactly dividing n,
or there are two distinct primes q1 and q2 exactly dividing n with q1, q2 ≡ −1 (mod p).
In the former case, n has a squarefull divisor of size ≥ qe ≥ 1

2
σ(qe) > p/2 > z/2. The
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number of such n is � xz−1/2, which is acceptable for us. For a given p, the number of n
arising in the second case is

≤ x

( ∑
q≤x

q≡−1 (mod p)

1

q

)2

≤ x

(∑
j≤x

1

pj − 1

)2

� x(log x)2p−2.

Summing over p > z, we find that the total number of n that can arise from this case is
� x(log x)2z−1, which is also acceptable. �

Proof or Proposition 3.4. We may suppose that our fixed constant A satisfies A ≥ 5. We
will show that for such A, the proposition holds with c(A) = 50A3.

Let S1 consist of those m ∈ S for which either

(i) m ≤ x/(log x)2A, or
(ii) Ω(m) ≥ 8A2(log log x)2, or
(iii) p2 | m for some p > (log x)3A.

We let S2 consist of the remaining elements of S . By Lemmas 3.7 and 3.8, the size of
σ−1(S1) is o(x/(log x)A) as x→∞ (uniformly in the choice of S ).

We turn now to S2. To each m ∈ S2, we associate the divisor m′ of m defined by

m′ :=
∏
pe‖m

p>(log x)3A

pe.

Then m′ is squarefree, and

(3.10) ω(m′) ≤ Ω(m) < 8A2(log log x)2.

Moreover, assuming that x is large, since m > x/(log x)2A,

(3.11) m′ ≥ m/((log x)3A)Ω(m) >
x/(log x)2A

exp(24A3(log log x)3)
> x/ exp(25A3(log log x)3).

We bound the number of σ-preimages of m from above by the number of n for which
σ(n) ∈ [1, x] is a multiple of m′. By Lemma 3.6, along with (3.10) and (3.11), the number
of such n is

≤ x

m′
(c9 log x)3ω(m′) ≤ exp(25A3(log log x)3)(c9 log x)24A2(log log x)2

≤ exp(49A3(log log x)3),

say. Summing over the elements of S2, we find that

#σ−1(S2) ≤ exp(49A3(log log x)3) ·#S2.

So if we assume that #S ≤ x/ exp(50A3(log log x)3), then #σ−1(S2) = o(x/(log x)A),
as x → ∞. Combined with our earlier estimate on the size of σ−1(S1), this shows that
#σ−1(S ) ≤ x/(log x)A once x is sufficiently large. �

4. Proof of Theorem 1.5

The key to the proof of Theorem 1.5 is the following inequality of Robin [12, Théorème
2].

Lemma 4.1. For each natural number n ≥ 3,

σ(n) ≤ eγn log log n+ 0.6483
n

log log n
.
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Proof of Theorem 1.5. Suppose for the sake of contradiction that f(n) ≥ H(n) but that
n is not practical. We assume to begin with that n > 14, treating small n at the end of
the proof. Let d be the practical component of n, and write n = dq. Then q > 1, and

P−(q) > σ(d) + 1 = f(n) + 1 > H(n) > n1/2,

where in fact the last inequality holds for all n > 6. It follows that q is prime and
P−(q) = q. Hence, H(n) < q = n/d, and so

d <
n

H(n)
.

Also, since σ(d) = f(n) ≥ H(n), we have

q = n/d ≤ n

d

σ(d)

H(n)
.

Multiplying the last two displayed inequalities shows that

n = dq ≤ σ(d)

d

(
n

H(n)

)2

=
σ(d)

d
n(eγ log log n)−1,

and so

(4.1)
σ(d)

d
≥ eγ log log n.

Since q > n1/2 and n = dq, we have that q > d, and so

log log n = log log (qd) > log log (d2) = log log d+ log 2;

thus, (4.1) gives

σ(d)

d
≥ eγ log log d+ eγ log 2

> eγ log log d+ 1.2345.(4.2)

We now derive a contradiction to Robin’s inequality. We can assume that d ≥ 6; otherwise,
σ(d)/d ≤ 7/4, and (4.1) then implies that n ≤ 14, contrary to hypothesis. By Lemma
4.1,

σ(d)

d
≤ eγ log log d+

0.6483

log log d
.

Combining this inequality with (4.2), we obtain 0.6483/ log log d > 1.2345. But this fails
for all d ≥ 6. This contradiction completes the proof for n > 14.

It remains to treat the cases when 3 < n ≤ 14. For odd n > 3, the hypotheses of
the theorem are never satisfied, since f(n) = 1 < H(5) ≤ H(n). So the only possible
exceptions to the theorem have n even. The non-practical even values of n ≤ 14 are
n = 10 and n = 14, and in both cases, f(n) = 3 < H(n), so the theorem holds. �
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[9] M. Margenstern, Les nombres pratiques: théorie, observations et conjectures, J. Number Theory 37

(1991), no. 1, 1–36.
[10] C. Pomerance, Two methods in elementary analytic number theory, Number theory and applications

(Banff, AB, 1988), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 265, Kluwer Acad. Publ.,
Dordrecht, 1989, pp. 135–161.

[11] K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin, 1957.
[12] G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math.
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